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Dynamic factor models

• Dynamic factor models have the typical form

yit = µi +

m∑

j=0

λ′ijft−j + uit, uit = φiuit + εit,

where ft is a lower-dimensional (unobserved) dynamic process
that may also enter yit in lags for i = 1, . . . , N and t = 1, . . . , T .

• Key contributions are given by Joreskog (1969), Sargent and Sims
(1977), Geweke (1977), Reinsel (1983), Connor and Korajczyk
(1986,1988,1993), Harvey, Fernandez-Macho and Stock (1987),
Forni, Hallin, Lippi and Reichlin (2000, 2002), Stock and Watson
(2002,2005), Bai and Ng (2002,2004,2007), Marcellino, Stock and
Watson (2003), Breitung (2005), Doz, Giannone and Reichlin
(2006) and many interesting empirical contributions recently.

• Estimation treatments are based on frequency domain methods,
principal components, static factor analysis, etc: “exact”
treatments are usually dismissed on computational grounds...
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Dynamic factor model with regression effects

We consider the slightly more general form

yit = µi + xitβ +
m∑

j=0

λ′ijft−j + uit, i = 1, . . . , N, t = 1, . . . , T,

where
• yit denotes the observed value for the ith time series at time t;
• µi is a fixed and unknown constant;
• xit is a 1 ×K vector of covariates;
• β is a K × 1 vector of regression coefficients;
• ft is an r × 1 vector of stationary common factors;
• λij is an r × 1 vector of fixed and unknown loadings for ft−j ;

• uit is the stationary idiosyncratic autoregressive component.
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Panel time series models

The inclusion of constants (fixed effects) and covariates (exogenous)
variables into the dynamic factor model allows the extension of the

results towards panel time series models that may also include
unobserved dynamic effects.
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Vector representation

The DFM model in vector form is

yt = µ̄+ X̄tβ + Λ(L)ft + ut,

Φ(L)ft = Θ(L)ζt, Ψ(L)ut = εt, t = 1, . . . , T,

where ...
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Vector representation

The DFM model in vector form is

yt = µ̄+ X̄tβ + Λ(L)ft + ut,

Φ(L)ft = Θ(L)ζt, Ψ(L)ut = εt, t = 1, . . . , T,

where yt = (y1t, . . . , yNt)
′, ut = (u1t, . . . , uNt)

′,
µ̄ = (µ1, . . . , µN )′, X̄t = (x′1t, . . . , x

′
Nt)

′;

• Λ(L) = Λ0 +
∑m

j=1
ΛjL

j with Λj = (λ1j , . . . , λNj)
′ for j = 0, . . . ,m;

• Φ(L)ft = Θ(L)ζt, with innovations ζt, Var(ζt) = Σζ , and lag
polynomials Φ(L) = I −

∑qΦ

j=1
ΦjL

j and Θ(L) = I +
∑qΘ

j=1
ΘjL

j ;

• Ψ(L)ut = εt, with innovations εt, Var(εt) = Σε, and lag
polynomial is Ψ(L) = I −

∑qΨ

j=1
ΨjL

j .

Parameters are in ψ. Parameters excluding µ̄ and β are in θ, that is

ψ = (µ̄′ , β′ , θ′)′.
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DFM model assumptions

1. For all |z| ≤ 1, we have |Φ(z)| 6= 0 and |Ψ(z)| 6= 0.

2. By taking Ft as the σ-algebra generated by y1, . . . , yt, we have
E(εt|Ft−1) = 0, E(ζt|Ft−1) = 0, E(εtε′t|Ft−1) = Σε, E(ζtζ′t|Ft−1) = Σζ ,

for t = 1, . . . , T and with F0 = ⊘.

3. Sequences {εt} and {ζt} are uncorrelated and have finite fourth moments.

4. Sequence {X̄t} is independent of {εt} and {ζt}.

5. Matrix limT→∞

1

T

PT
t=1

X̄tX̄′

t+j = ΓX(j) exists and is finite for every integer j.

6. The permissible parameter space Sψ is a compact subset of the Euclidean space.
The true parameter ψ0 is an interior point of Sψ .

7. For ψ as an element of Sψ and ψ 6= ψ0, t = 0, 1, . . . and ψ∗ ∈ Sψ , let
Γy(t;ψ∗) = Eψ∗(y1y′1+t) denote the autocovariance function. Then
Γy(s;ψ) 6= Γy(s;ψ0) for at least one value of s.
Generally, all parameters in Λ̄, Φ1, . . . ,ΦqΦ , Θ1, . . . ,ΘqΘ and Σζ cannot be
identified: it is necessary to restrict matrices depending on model.

8. The process yt − µ̄− X̄tβ can be written as a VAR process Π(L)yt = et where
Π(z) = I −

P
∞

i=1
Πiz

i, E(et|Ft−1) = 0 and the elements of Π1,Π2 . . . are
absolutely summable.

Likelihood-based Analysis for Dynamic Factor Models – p. 7



Contributions

We present new results that lead to computationally efficient methods
for a likelihood-based analysis of high-dimensional dynamic factor
models:

• Signal extraction;
• Likelihood evaluation; marginal likelihood (not here);
• Parameter estimation via maximum likelihood;
• Forecasting (not here);
• Bayesian estimation using MCMC (not here).

Illustration 1: We treat a panel of 132 time series from which four or
seven dynamic factors are extracted. Such models require the
estimation of more than 1000 parameters.
Illustration 2: A World Yield Curve...

The new results of this paper enable us
to estimate this set of parameters as a matter of routine
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A basic example

Consider the basic dynamic factor model, for N × 1 observation vector
yt and r × 1 latent factor vector ft, as given by

yt = Λft + εt, ft = Φft−1 + ζt, t = 1, . . . , T,

where εt ∼ IID(0,Σε) and ζt ∼ IID(0,Σζ). For identification
purposes, we have vec(Σζ) = (I − Φ ⊗ Φ)−1vec(I). In other words,
factors ft are standardized.
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A basic example (cont.)

For N × 1 data vector yt and r factors in ft, the basic DFM is

yt = Λft + εt, ft = Φft−1 + ζt, t = 1, . . . , T.

Cross-section dimension N is typically high and time series length T is
moderate.

• We are interested in N >> T .

• Estimation concentrates on Λ, Σε and Φ.

• However, first we concentrate on
◦ signal extraction of ft,
◦ likelihood evaluation,

for given values of Λ, Σε and Φ.
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Signal extraction

Model

yt = Λft + εt, ft+1 = Φft + ζt, t = 1, . . . , T.

can be viewed as a state space model with ft as the state vector.

Likelihood evaluation is based on predicion error decomposition

ℓ = p(y1)
T∏

t=2

p(yt|y1, . . . , yt−1),

and is routinely computed by the Kalman filter. Evaluation of

f̃t = E(ft|y1, . . . ys), V ar(ft|y1, . . . ys), s = t− 1, . . . , T,

for t = 1, . . . , T is carried out by Kalman filter and related methods.

Kalman filter methods often dismissed as N becomes very large : (
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Transformation by regression

However, huge computational gains can be obtained as follows : )
Model

yt = Λft + εt, ft = Φft−1 + ζt, t = 1, . . . , T.

Carry out OLS based on “covariate” matrix Λ (is given), for every t:

f̂t = Pyt, where P = (Λ′Λ)−1Λ′.

Then, transform model for yt to a model for f̂t, that is

f̂t = ft + et, ft = Φft−1 + ζt, t = 1, . . . , T,

with et = Pεt ∼ IID{0, σ2
ε(Λ

′Λ)−1}. It can be shown that

f̃t = E(ft|y1, . . . ys) = E(ft|f̂1, . . . f̂s), t, s = 1, . . . , T.

It implies that observation equation dimension N reduces to r.
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Two-step method

Model

yt = Λft + εt, ft = Φft−1 + ζt, t = 1, . . . , T,

for known Λ, Φ, Σε.

Signal extraction for ft is carried out in two steps:

1. Cross-section step: OLS (or GLS later ...)

f̂t = (Λ′Λ)−1Λ′yt.

2. Time series step: use Kalman filter methods to evaluate
f̃t = E(ft|y1, . . . ys) based on low-dimensional model

f̂t = ft + et, ft = Φft−1 + ζt, et ∼ IID{0, σ2
ε(Λ

′Λ)−1}.

It turns out that all inference can be based on this model for f̂t,
including the evaluation of the likelihood function.
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Towards a more general DFM model: static form

Static form of the DFM model yt = µ̄+ X̄tβ+ Λ(L)ft + ut with VARMA
factors Φ(L)ft = Θ(L)ζt and VAR disturbances ut = Ψ(L)εt is given by

yt = µ+ dt +Xtβ + ΛFt + εt, Ft = (f ′t , f
′
t−1, . . . , f

′
t−s)

′,

where µ = Ψ(I)µ̄, dt =
∑qΨ

j=1
Ψjyt−j , Xt = Ψ(L)X̄t and

Λ = (Λ∗
0,Λ

∗
1, . . . ,Λ

∗
s) . . . with Λ∗

i from Ψ(L)Λ(L) and s = max(m, qΨ).
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Towards a more general DFM model: state space form

Static form of the DFM model yt = µ̄+ X̄tβ+ Λ(L)ft + ut with VARMA
factors Φ(L)ft = Θ(L)ζt and VAR disturbances ut = Ψ(L)εt is given by

yt = µ+ dt +Xtβ + ΛFt + εt, Ft = (f ′t , f
′
t−1, . . . , f

′
t−s)

′,

where µ = Ψ(I)µ̄, dt =
∑qΨ

j=1
Ψjyt−j , Xt = Ψ(L)X̄t and

Λ = (Λ∗
0,Λ

∗
1, . . . ,Λ

∗
s) . . . with Λ∗

i from Ψ(L)Λ(L) and s = max(m, qΨ).

State space form is given by the observation equation

yt = µ+ dt +Xtβ + Zαt + εt,

where αt = (f ′t , f
′
t−1, . . . , f

′
t−κ)′ with κ = max(s, qΦ, qΘ + 1) such that

we obtain the companion form for the VARMA factors (state equation)

αt = Hαt−1 +Rζt, t = 1, . . . , T.

Since Ft is a sub-set of αt, we have Z = ΛG, G = (Ir·s, 0).
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Transforming the observation vector

Consider model yt = µ+ dt +Xtβ + Zαt + εt with Z = ΛG.

Transform y+
t = Ayt, for t = 1, . . . , T , for some non-singular matrix A:

MMSLEs are not affected and loglikelihood function differs only by the
Jacobian term log |A|T .

A =

[
AL

AH

]
, y+

t =

(
yL

t

yH
t

)
,

where yL
t = AL(yt −µ− dt −Xtβ), yH

t = AH(yt −µ− dt −Xtβ).
Choose A s.t.

yL
t = ALZαt + eL

t , yH
t = eH

t ,

(
eL
t

eH
t

)
∼

{(
0

0

)
,

[
ΣL 0

0 ΣH

]}
, with

ΣL = ALΣεA
L′,

ΣH = AHΣεA
H′.
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Conditions for transformation

A suitable matrix A needs to fulfill the following conditions:

1. A is full rank, prevents any loss of information;

2. AHΣεA
L′ = 0, ensures that both equations are independent;

3. Row{AH} = Col{Z}⊥ with Z = ΛG, implies that yH
t does not

depend on αt (can be weakened);

LEMMA 1:

Matrix A satisfies these conditions if and only if

AL = CΛ† ′Σ−1
ε ,

for some nonsingular r† × r† matrix C and for some N × r† matrix Λ†;
the r† columns of Λ† form a basis for the column space of Λ.

For this matrix AL, we can always find a matrix AH that satisfies 1,2,3.
However, we will not need AH in our treatment.
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Illustration

Consider the one-factor model

yt = Λft + εt, ft = φft−1 + ζt + θζt−1, t = 1, . . . , T.

Apply transformation based on AL = CΛ′Σ−1
ε with C =

(
Λ′Σ−1

ε Λ
)−1

.

For this choice of C, the scalar yL
t is effectively the generalised least

squares (GLS) estimator of ft in the “regression model” yt = Λft + εt,
for a given t. We have

yL
t =

(
Λ′Σ−1

ε Λ
)−1

Λ′Σ−1
ε yt, t = 1, . . . , T.

The model for the univariate time series yL
t is then given by

yL
t = ft + eL

t , E(eL
t e

L ′
t |Ft−1) = C, t = 1, . . . , T.
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An additional condition for convenience

A suitable matrix A needs to fulfill the following conditions:

1. A is full rank, prevents any loss of information;

2. AHΣεA
L′ = 0, ensures that both equations are independent;

3. Row{AH} = Col{Z}⊥ with Z = ΛG, implies that yH
t does not

depend on αt (can be weakened);

4. |ΣH | = 1 where ΣH = AHΣεA
H ′

The additional fourth condition is not restrictive, it is about scaling and
it simplifies various calculations.

For example, from the fourth condition, it follows that

|A|2 = |Σε|
−1|AΣεA

′| = |Σε|
−1|ALΣεA

L ′||AHΣεA
H ′| = |Σε|

−1|ΣL|.

Particularly convenient for likelihood evaluation, next.
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Likelihood evaluation

Gaussian likelihood (GL) based on transformation via A is

ℓ(y;ψ) = ℓ(yL;ψ) + ℓ(yH ;ψ) + T log |A|, |A|2 = |Σε|
−1|ΣL|.

The first term ℓ(yL;ψ) can be evaluated by the Kalman filter.
The second term is

ℓ(yH ;ψ) = −
(N −m)T

2
log 2π −

1

2

T∑

t=1

yH ′
t Σ−1

H yH
t ,

as the log-determinental term vanishes since |ΣH | = 1 (condition 4).

LEMMA 2:
yH ′

t Σ−1
H yH

t = e′tΣ
−1
ε et,

where et = yt − Λ†
(
Λ† ′Σ−1

ε Λ†
)−1

Λ† ′Σ−1
ε yt is the GLS residual for

data-vector yt, covariate matrix Λ† and variance matrix Σε.
Choice of C is irrelevant.
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Sketch of Proof Lemma 2

yH′
t Σ−1

H yH
t = (yt − dt)

′AH′(AHΣεA
H′)−1AH(yt − dt)

= (yt − dt)
′JHΣ−1

ε (yt − dt),

where JH def.
= AH′(AHΣεA

H′)−1AHΣε is the projection matrix for a
GLS with covariate matrix AH′ and variance matrix Σ−1

ε . Similarly,

define JL def.
= AL ′(ALΣεA

L ′)−1ALΣε as the GLS projection matrix for
covariate matrix AL′ and variance matrix Σ−1

ε .

Since A is full rank and ALΣεA
H′ = 0, we must have JH = I − JL.

The definition of AL implies that JH = I −Σ−1
ε Λ†(Λ† ′Σ−1

ε Λ†)−1Λ† ′ and

JH′ = ΣεA
H′(AHΣεA

H′)−1AH = I − Λ†(Λ† ′Σ−1
ε Λ†)−1Λ† ′Σ−1

ε

def.
= MΛ.

Proof is completed by JHΣ−1
ε = JHΣ−1

ε JH′ and et
def.
= MΛ(yt − dt).
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Likelihood evaluation

Gaussian likelihood (GL) can now be expressed as

ℓ(y;ψ) = c+ ℓ(yL;ψ) −
T

2
log

|Σε|

|ΣL|
−

1

2

T∑

t=1

e′tΣ
−1
ε et,

where c is a constant independent of both y and ψ.

It follows that for the evaluation of the loglikelihood, computation of
matrix AH and vectors yH

t , for t = 1, . . . , T , is not required.

Matrix Σε is oftentimes treated as diagonal or has other strong
structure (blocks, bands, spatial). Term |ΣL| is delivered by KFS.

This GL expression is instrumental for a computationally feasible
approach to a quasi-likelihood based analysis of the dynamic factor
model.

Likelihood-based Analysis for Dynamic Factor Models – p. 22



Regression part

The DFM model in vector form is

yt = µ̄+ X̄tβ + Λ(L)ft + ut,

Φ(L)ft = Θ(L)ζt, Ψ(L)ut = εt, t = 1, . . . , T,

Within this approach, the estimation of constant vector µ̄ and β is
treated within the same transformation and at no additional
computational cost of any significance.

The calculations can be done in the same two-step procedure.

This may seem obvious given the linear model settings.
However:

the devil is in the detail...

Consequently, the derivations are lengthy.
Likelihood-based Analysis for Dynamic Factor Models – p. 23



Computational gains

The two panels below present the gains in computing time when evaluating the

loglikelihood respectively the diffuse loglikelihood functions of two types of dynamic

factor models. Model A is of the form yit = λ′ift + εit and model B of the form

yit = µi + λ′ift + εit, where ft is a VAR(1), εit ∼ IID(0, σ2), for some positive scalar

σ and µi is a scalar. The ratio d1/d2 is reported: d1 is the CPU time for the standard

(diffuse) Kalman filter and d2 is CPU time for our new algorithms. The ratios are reported

for different panel dimensions N and different state vector dimensions p.

Model A Model B

N\p 1 5 10 25 50 1 5 10 25 50

10 2.0 1.3 – – – 10.4 2.3 – – –

50 5.7 4.7 3.1 1.5 – 50.6 40.0 18.0 3.4 –

100 6.7 7.5 5.6 2.5 1.5 55.0 62.0 47.2 13.5 3.2

250 8.7 14.8 12.4 5.5 3.0 79.0 82.2 82.9 63.6 22.6

500 12.5 15.9 21.2 10.2 5.4 107.5 108.9 109.5 108.7 69.7
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Maximum likelihood estimation

The DFM model in vector form is

yt = µ̄+ X̄tβ + Λ(L)ft + ut,

Φ(L)ft = Θ(L)ζt, Ψ(L)ut = εt, t = 1, . . . , T.

All coefficients in Λ(L), Φ(L), Θ(L) and Ψ(L) and Σε are collected in ψ
which can be potentially large.

No miracles here, just hard work:
• EM algorithm;
• direct likelihood maximization based on analytical score for ψ.

Main computational work for both EM (Watson and Engle) and
analytical score (Koopman and Shephard) relies on Kalman filter
methods and can take advantage of the results given here.

Final comment: don’t shy away from maximizing a likelihood function in
a 1000-dimensional space: repeated score evaluations are informative.
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Illustration 1: a macro-economic panel

We consider the "sims.xls" data file, used in Stock and Watson (2005)
“Implication of DFM for VAR”, obtained from Mark W. Watson website.

The data file consists of N = 132 variables and we used the balanced
sample of Sept 1960 – Dec 2003 (T = 515).

The model is given by

yt = µ+ Λft + ut, ft = Φft−1 + ζt, t = 1, . . . , T,

where
ui,t = ρiui,t−1 + εit, i = 1, . . . , N,

with εit ∼ IID(0,Σε), ζt ∼ IID(0,Σζ), vec(Σζ) = (I − Φ ⊗ Φ)−1vec(I).

The number of factors are (i) r = 7 with ρi = 0; (ii) r = 4 with ρi 6= 0.

Further, Λ full, Φ full, Σε diagonal: more than 1000 parameters ...

Estimation has taken place using the new methods as presented.
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Data-set

Code Description Number of Time Series

A Real Output and Income 17

B Employment and Hours 30

C Real Retail 1

D Manufacturing and Trade Sales 1

E Consumption 1

F Housing Starts and Sales 10

G Real Inventories 3

H Orders 7

I Stock Prices 4

J Exchange Rates 5

K Interest Rates and Spreads 17

L Money and Credit Quantity Aggregates 11

M Price Indexes 21

N Average Hourly Earnings 3

O Miscellanea 1
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Estimated seven factors (without AR errors)
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R
2 for seven factors

0

0.5

1
Factor 1

A B F H I J K L M N OG

0

0.5

1
Factor 2

A B F H I J K L M N OG

0

0.5

1
Factor 3

A B F H I J K L M N OG

0

0.5

1
Factor 4

A B F H I J K L M N OG

0

0.5

1
Factor 5

A B F H I J K L M N OG

0

0.5

1
Factor 6

A B F H I J K L M N OG

0

0.5

1
Factor 7

A B F H I J K L M N OG

Likelihood-based Analysis for Dynamic Factor Models – p. 29



R
2 for seven PCs from Stock-Watson procedure
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Estimated four factors (with AR errors)
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R
2 for four factors
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Box-Ljung Q(5) statistics
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Illustration 2: A World Yield Curve

The US yield curve (Fama-Bliss)
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Illustration 2: A dynamic Yield Curve model

The dynamic Nelson-Siegel model of Diebold, Rudebusch and Aruoba
(2006) is given by the dynamic 3-factor model:

yt = Γ(λ)ft + εt, εt ∼ NID(0,Σε),

ft+1 = (I − Φ)µ+ Φft + ηt, ηt ∼ NID(0,Ση),

with yt containing typically 17 maturities (N = 17),

yt = (yt(τ1), . . . , yt(τN ))′,

Γij(λ) =





1, j = 1,(
1 − e−λ·τi

)
/ λ · τi, j = 2,(

1 − e−λ·τi − λ · τie
−λ·τi

)
/ λ · τi, j = 3,

ft = (f1t, f2t, f3t)
′, (f1t = level , f2t = slope , f3t = curvature)

εt = (ε1t, . . . , εNt)
′,

ηt = (η1t, η2t, η3t)
′.
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A World Yield Curve

Diebold, Li and Yue (2007) propose a dynamic factor analysis for
obtaining a World Yield Curve. Due to the "curse of dimensionality"
problem, they resort to MCMC analysis.

In joint work with Michel van der Wel (Rotterdam, Aarhus) and
Borus Jungbacker, we consider

• ML estimation (based on presented results);
• Different structures for introducing the "factors" of "factors":

◦ level factors of all countries can be described by one or two
common level factors;

◦ the same can be applied to the slope and curvature factors but
using different specifications.

• "unrestricted" dynamic factor analysis can be considered as well.
• specifications can be properly tested by likelihood ratio tests (at

least within the same number of latent factors).
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Dynamic factor estimates: preliminary results
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Likelihood-based analysis for dynamic factor models

Borus Jungbacker and Siem Jan Koopman

Department of Econometrics, VU University Amsterdam

Tinbergen Institute, Amsterdam

http://staff.feweb.vu.nl/koopman

Thank you !
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