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Non-regular Model Selection Problems

Model selection for state space models often leads to testing problems which
are non-regular from the view-point of classical statistics

e Observation equation for time series observation y;, t =1,...,T"

Yt = Wt +E¢,  Et NN(OaUE)

e 1 follows a random walk with a random drift:

Mt = pt—1 + a1 + Wi, w1t ~ N (0,67)
ar = at—1 + wWay, Wat ~~ N(O, 02),
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Non-regular Model Selection Problems

e |s the drift a; fixed or random? Testing 05 =0 versus 65 > 0: the null
hypothesis lies on the boundary of the parameter space

e Is the drift term a; significant? Testing the null hypothesis
ap =a; = ---=ap =0 (local level model) versus a local trend model is
a non-regular problem: size of the hypothesis increases with the number of
observations

No standard likelihood-ratio tests.
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The Bayesian Approach

The Bayesian approach is, in principle, able to deal with non-regular testing
problems

Assign a prior probability p(M}) to each model (e.g. uniform distribution over
all models)

Compute the posterior probability distribution p(My|y) for each model using
Bayes rule

p(Myly) o< p(y[Mi)p(Mki),
where p(y|My) is the marginal likelihood for model M.
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Challenges with the Bayesian Approach

Posterior probabilities are not easily computed:

e Marginal Likelihoods: Computing the posterior probabilities p(My|y) by Bayes
rule requires computation of the marginal likelihood p(y|My}) for each model.
As the integration may be high-dimensional this is a numerical challenge:
importance sampling (Zellner and Rossi, 1984; Frihwirth-Schnatter, 1995),
Chib’s estimator (Chib, 1995), bridge sampling (Friihwirth-Schnatter, 2004),
auxiliary mixture sampling (Frihwirth-Schnatter and Wagner, 2008a)

e Model-space MCMC methods — sample jointly the model indicator and the
unknown parameters

— reversible jump MCMC (Green, 1995)
— variable selection approach (George and McCulloch, 1993, 1997)
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The Variable Selection Approach for Regression Models

For regression models the variable selection approach aims at identifying non-zero
regression effects by indicators:
yi:Xi,B—Féfi, €¢NN(O,O'?), Zzl,,N
Bj — O, lff 5j — O,

3; unconstrained, iff §; = 1.

Each restricted regression model may be represented by a certain realization of

0 =(01,...,0q), eg. d=05:

Y; = xi101+xi4Ps+ B+ €5
= 0174131 + 02x4202 + 03%i303 + 04x4B4 + 0505 + €4,
5 = (51,69, 65, 64,65) = (1,0,0,1,1).
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The Variable Selection Approach for Regression Models

e Joint estimation of § = (d1,...,d4), B and o2 by a simple MCMC scheme

e Feasible, even if the total number of possible models is rather large; attractive
alternative to computing marginal likelihoods also for a small set of models

e Feasible for non-Gaussian data (Tuchler, 2008) using auxiliary mixture
sampling (Frihwirth-Schnatter and Wagner, 2006; Friihwirth-Schnatter and
Frithwirth, 2007)

e |t is useful far beyond the common problem of selecting covariates and allows

— covariance selection in random effects models (Chen and Dunson, 2003;
Friuhwirth-Schnatter and Tiichler, 2008).

— Model selection for state space models (Frihwirth-Schnatter and Wagner,
2008b)
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Time Series of Road Accidents of Children

killed or injured pedestrians, Children (aged 6-10) in Linz (Austria) (left) and

number of children in this age (right), monthly data January 1987 - December
2005
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A legal intervention intended to increase road safety became effective on October
1,1994: increased priority for pedestrians
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Time Series of Road Accidents of Children

Basic structural model (Harvey and Durbin, 1986):

yr ~ P (€t>\t) ;

log At = pt + s¢,

e = ft—1 + Qp—1 + Wit, wie ~ N (0,07)
At = Qt—1 + Wat, war ~ N (0,0-),

St = —St—1 — *** — St—11 T W3¢, w3t ~~ N(07 93)

Modification of trend component for time of intervention, t = t;,,;:

pe = fe—1 +ap—1 + A+ wiy
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Time Series of Road Accidents of Children

Unrestricted model: intervention effect not significant!?

0.5

Intervention effect

0.9

posterior kde
prior

0.8

L i 04f

|

0 L L I T A L L L
1987 1989 1991 1993 1995 1997 1999 2001 2003 2005

“HM [w

Figure 1: Posterior density of the intervention effect A (October 1,1994) in
comparison to the prior (unrestricted basic structural model)
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Stochastic model specification search for state space models

e How to introduce binary indicators for model selection?
e How to choose the priors?

e How to run MCMC?

Discuss Frithwirth-Schnatter and Wagner (2008b)
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The Parsimonious Local Trend Model

Introduce three binary indicator 0, 7; and 5 in a noncentred version of the
model:

[ = [lt—1 + W1t, w1t ~ N (0,1),
ay = Q¢—1 + Way, wor ~ N (0,1),

Ay = Ay +as,
yr = po + Otag + V1V O1fis + 1o/ 024 + &1, £t ~ N (07 0?) ,
with fig = ag = Ay = 0. Lo and ag are the initial values for the level and the

drift component and #; and 65 are equal to the variances in the dynamic linear
trend model.
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The Parsimonious Local Trend Model

8 different models:

e 0 =1,7 = 1,7 =1 leads to the local trend model
e 0 = 0,7 = 0,7 =1 leads to the local level model
e 1 =0,7% = 0,0 =1 leads to a regression model with linear trend

e 5 additional models
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Identifiability

The sign of /60, and i, A, is not identified, because it may be changed without
changing the likelihood function, e.g.:

Yo = oot e =+ (=01 (—fi) + ...+ e

Similarly, the sign of v/8 and the sequences {a;}7 and {A;}7 may be changed
without changing the distribution of 4, ..., yr.

To make this unidentifiability transparent we write the observation equation as:

Y+ = Mo+ 01tag + %(i\/a)ﬁt + 72(i\/@)121t + &¢. (5)

All 4 parameters ¥ = (&+/01,£/03,02, g, ag) define the same integrated
likelihood. As a consequence, the likelihood function p(y|¥) is symmetric around
0 in the direction of /0 and /05 and therefore multimodal.
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Identifiability

If the true variances 0{"™"¢ and 64"¢ are positive, then the likelihood function
concentrates around four modes.
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Figure 2: Contour and surface plots of the (scaled)

profile likelihood [(v/01,v/02)/ max(1(/01,/0)), where

[(vVO1,vV02) = ply|v0i,02,0%"0e plive gfue)  for simulated data
(T = 1000) with (8™, 4e) = (0.15,0.02)
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Identifiability

If one the true variances 6""¢ and 65'"¢ is equal to 0 while the other is positive,
two of those modes collapse and the likelihood is bimodal with an increasing
number of observations T
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Figure 3: Contour and surface plots of the (scaled) profile likelihood for
simulated data (7" = 1000) with (6™, #5™¢) = (0.15,0)
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Identifiability
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Figure 4. Contour and surface plots of the (scaled) profile likelihood for
simulated data (7" = 1000) with (6}, 65¢) = (0, 0.02)
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Identifiability

If both variances 6}™¢ and #5™¢ are equal to zero, then the likelihood function
will be unimodal with an increasing number of observations T'.
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Figure 5: Contour and surface plots of the (scaled) profile likelihood for
simulated data (7" = 1000) with (8%, #5™¢) = (0, 0)
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The non-centered parameterization

Observation equation of the non-centered parameterization:

Yi = o+ 01tag + ’h(i\/a)ﬁt T 72(:|:\/@)121t T Et. (6)

e Extension to other state space models: introduce separate indicators for the
fixed and the really dynamic part

e Natural conjugate prior for 3 = (ug, ag, =v/01,++/03) in (4) is a normal
distribution

e Conditional on the state vector (fi, A;), standard variable selection problem
in regression model (4)

e State equation independent of model parameters, full conditional Gibbs
sampling more efficient than for the usual (centered) parameterization
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Extension to the basic structural model

Initial (unknown) seasonal pattern sg = (s_g,...,50) with s_g+ ...+ 59 = 0.

Additional binary indicators d5 and 3 for the fixed and the really dynamic part
of the seasonal pattern:

e 0o = 1,73 = 1 time-varying seasonal pattern
e 0o = 1,73 = 0 fixed seasonal pattern

e 0o = (0,773 = 0 no seasonal pattern

Introduce the indicators into the non-centered parameterization
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The non-centered parameterization

For the seasonal component, the non-centered parameterization is based on
following stochastic difference equation:

~

St = —S¢_1 — +++ — S¢—8§4+1 + Wsa, w3t ~ N (0,1), (7)

~

where §_g11 = ... = §9 = 0. Combine state equation (7) with the state
equations (1) to (3) and following observation equation:

Yt = Mo+ O1tag + 028, (8)
+71(i\/a)ﬁt + VZ(i\/@)At + WB(i\/@)gt +et, e ~N <07 03) :

Sj(t) 1s the initial seasonal component corresponding to time .
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Choosing the prior

Example: local level model

Yt = [t T €, Et NN(Oa(T?)
Pt = pt—1 + Wi, Wit ~~ N((), 9) -

Prior on the variance 8 may be influential when testing 8 = 0 versus 6 > 0, if the
true value is close to 0. Compare:

e the standard conditional conjugate prior,  ~ G~ (cg, Cp)

e a normal prior on the signed square root, +v/6 ~ N (0, By)

++/6 is the signed square root of the variance
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Choosing the prior
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Choosing the prior for the basic structural model

Use a hierarchical prior for 02: 02 ~ G~ (co,Cy) and Cy ~ G (go, Go).
Use normal priors for g, ag, and sq as usual

We do not use the usual inverted Gamma prior for 61,...,03. The parameters
++/601, /05 and £=+/03 are coefficients in a regression model, use a normal prior:

e partially proper prior where p(1g) o constant, use N (0, By) for all unrestricted
parameters

e fractional prior (O'Hagan, 1995) for all unrestricted parameters including p

Assume a prior distribution for the indicators & = (d1,62) and v = (71, 72,73)
(e.g. uniform distribution).
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MCMC estimation

Gibbs sampling scheme:

1.

Sampling of the indicators § and v from p(d,«|x,y) using the regression model
(8) conditional on the state vector x = (x1,...,x7), X¢ = (fit, G, As, S¢t)
(closed form expression because the model is conditionally normal given 3);

. Conditional on 4§, v and x, sampling of the unrestricted initial values g, ao,

sp and the unrestricted variances £./6; using the regression model (6)

. Sampling of x from the non-centered state space model using forward-filtering-

backward-sampling (Frihwirth-Schnatter, 1994; Carter and Kohn, 1994; De
Jong and Shephard, 1995; Durbin and Koopman, 2002)

Perform independent random sign switch for: ++/6; and {ji;}/_;; /02 and
{a@r, Ac}{—1; £v/03 and {5},
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Example: UK coal consumption data

UK coal consumption Harvey (1989): quarterly data from 1/1960 to 4/1986

Y
estimated mean

Figure 7: UK coal consumption 1960-1986 (log scale)
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Comparing the Centered and the Non-centered Parameterization

Influence of the prior; no variable selection (6 =1 and v = 1)

1200

3000 3000+

1000 1000

Figure 8: Histograms for 4=1/0; (left), &/05 (middle) and £+/05 (right);
top: N (0,1) prior for ++/8;; bottom: G~ (—0.5,10~7)-prior for 6;
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Comparing the Centered and the Non-centered Parameterization
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Figure 9: MCMC draws for ++/60; (left), &1/02 (middle) and 4+/03 (right)
for a N (0,1)-prior for ++/0;,7 = 1,2,3 (top) and draws of 6;,7 = 1,2,3
under a G~ (—0.5,10~7)-prior for 6;,i = 1,2,3 (bottom)
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Variable Selection

Table 1: The two most frequently visited models (40000 MCMC iterations)

prior O O3 Y1 Y2 ~v3 | frequency
p(po) x 1,By =1 o 1 0 1 O 20331
1 1 1 0 0 7032
p(pp) x1,Bp=100 |0 1 0 1 O 26454
0 1 1 0 0 11870
b=10" 0o 1 0 1 o0 25647
0 1 1 1 0 4173
b=10"" 0 1 0 1 o0 34364
1 1 0 1 0 1799
=107° 0 1 0 1 O 37012
1 1 0 1 0 1150
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Variable Selection

Table 2: Coal data; marginal posterior probability of selecting each indicator

under various priors

Prior 0 03 98! V2 V3
p(po) x1,Bp=1 | 0.2375 1.0000 0.4131 0.6192 0.0597
p(po) < 1, Bp =100 | 0.0315 1.0000 0.3246 0.6728 0.0051
b=10"3 0.1845 1.0000 0.2048 0.9295 0.0698
b=10"4 0.0647 1.0000 0.0765 0.9694 0.0214
b=10"° 0.0347 1.0000 0.0386 0.9792 0.0078

Fixed seasonal pattern (63 = 1,3 = 0), random drift (v2 = 0) with ag = 0

(6 =0) and 61 = 0(y1 = 0)

Sylvia Frihwirth-Schnatter

Modeling and Forecasting Economic Time Series, Stockholm, October 17-18, 2008 30




Model Selection for Non-Gaussian State Space Models

Variable selection approach developed for Gaussian state space model may be
extended to nonnormal state space models using auxiliary mixture sampling

(Frihwirth-Schnatter and Wagner, 2006; Frithwirth-Schnatter and Frihwirth,
2007):

e state space modelling of binary time based on the logit transform
e state space modelling of categorical time based on the logit transform

e state space modelling of times of small counts based on the Poisson distribution

lllustrative application to two time series
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Auxiliary Mixture Sampling for Count Data

Frihwirth-Schnatter and Wagner (2006):

e For each y; ~ P(\;) introduce the hidden inter-arrival times 7;;, j =
1,...,(ys + 1) in the interval [0,1] of a Poisson process with intensity \; as
missing data

e The inter-arrival times 7;; are £ (\¢) = £ (1) /¢, therefore:
—log 1y =log A\ + &5, j=1,...,(ye +1)
where ¢4, = —log £ (1)

e The distribution of €;; is approximated by a mixture of normal distributions
with component indicator r;; and the auxiliary variables z = (z1,...,zr),
where z; = (74,745, = 1,...,y: + 1), are introduced.
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Auxiliary mixture sampling and variable selection

Introducing the auxiliary variables z = (z1,...,2z7), where z; = (74;,7¢5,] =
1,...,y: + 1), leads to a conditionally Gaussian state space model

—log 7y — log e, = g + 025¢.0 + 3(8¢ — 025¢,0) + My, + €t
o~ N (o, s,,%tj) . (9)

The remaining equations are the same as before. Markov chain Monte Carlo
estimation is easily extended:

1. Variable selection and estimation for the conditionally Gaussian state space
model (9) (conditional on the auxiliary variables z)

2. Sample the auxiliary variables z
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Time Series of Road Accidents of Children

killed or injured pedestrians, Children (aged 6-10) in Linz (Austria) (left) and
number of children in this age (right)
monthly data January 1987 - December 2005

eeeeeeeeeeeeeee

A legal intervention intended to increase road safety took place during the
observation period. An amendment increasing priority for pedestrians became
effective on October 1,1994: since then pedestrians who want to use a crosswalk
have to be granted crossing.
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MCMC for the non-centered model (6 =1 and v = 1)

MCMC in the centered version did not work

Figure 10: MCMC draws (top) and histograms (bottom) for 4+/0; (left),
++/05 (middle) and /03 (right) under the A/ (0, 1) prior for 4-1/0;
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Variable Selection

Table 3: Two most frequently visited models (40000 MCMC iterations)

prior O O3 b4 Y1 Y2 7y3 | frequency

p(po) x1,By =1 o 1 1 0 0 O 37544
0 1 1 0 0 1 937

p(uo) x1,Bp=100 |0 1 1 0 0 0 34874
0 1 0 0 0 0 4743

b=10"" 0 1 1 0 0 0 9595

0 1 1 0 0 1 4154

b=10"" 0 1 1 0 0 O 18528

1 1 0 0 0 0 4048

b=10"" 0 1 1 0 0 0 | 24871

1 1 0 0 0 0 4717
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Variable Selection

Table 4: Marginal posterior probability of selecting each indicator

trend  season intervention process variances
prior 0 03 04 71 V2 V3
p(po) x1,Bp=1 | 0.0047 1.0000 0.9798 0.0209 0.0005 0.0244
p(po) < 1, Bp =100 | 0.0019 1.0000 0.8767 0.0042 0.0001 0.0035
b=10""2 0.3140 1.0000 0.7769 0.2872 0.2767 0.3015
b=10"7 0.2152 1.0000  0.7094 | 0.1567 0.1576 0.1289
b=10""* 0.1563 1.0000  0.7196 | 0.0772 0.0963 0.0501
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Variable Selection

Simple Poisson regression model (y; = v2 = 3 = 0)

e with fixed seasonal pattern (63 = 1,73 = 0)
e no trend (§ = 2 = 0); fixed level before and after intervention (v; = 0)

e intervention effect significant (64 = 1)
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Variable Selection

Gain of statistical efficiency for the parameter of interest
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Figure 11: posterior density of the intervention effect A in comparison to
the prior; left: unrestricted basic structural model, right: Poisson regression
model with seasonal pattern (selected model)
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Summary

Variable selection approach has been extended to state space models

Backbone of efficient MCMC is a non-centered parameterization in combination
with a normal prior on the signed square root of the process variances

For non-Gaussian state space models the variable selection approach is feasible
using auxiliary mixture sampling

Extension to other state space models (time-varying regression models, dynamic
factor models) is work in progress
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