
Stochastic Model Specification Search
for Gaussian and Non-Gaussian State Space Models
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Non-regular Model Selection Problems

Model selection for state space models often leads to testing problems which
are non-regular from the view-point of classical statistics

• Observation equation for time series observation yt, t = 1, . . . , T :

yt = µt + εt, εt ∼ N (
0, σ2

ε

)

• µt follows a random walk with a random drift:

µt = µt−1 + at−1 + ω1t, ω1t ∼ N (0, θ1)

at = at−1 + ω2t, ω2t ∼ N (0, θ2) ,
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Non-regular Model Selection Problems

• Is the drift at fixed or random? Testing θ2 = 0 versus θ2 > 0: the null
hypothesis lies on the boundary of the parameter space

• Is the drift term at significant? Testing the null hypothesis
a0 = a1 = · · · = aT = 0 (local level model) versus a local trend model is
a non-regular problem: size of the hypothesis increases with the number of
observations

No standard likelihood-ratio tests.
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The Bayesian Approach

The Bayesian approach is, in principle, able to deal with non-regular testing
problems

Assign a prior probability p(Mk) to each model (e.g. uniform distribution over
all models)

Compute the posterior probability distribution p(Mk|y) for each model using
Bayes rule

p(Mk|y) ∝ p(y|Mk)p(Mk),

where p(y|Mk) is the marginal likelihood for model Mk.
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Challenges with the Bayesian Approach

Posterior probabilities are not easily computed:

• Marginal Likelihoods: Computing the posterior probabilities p(Mk|y) by Bayes
rule requires computation of the marginal likelihood p(y|Mk) for each model.
As the integration may be high-dimensional this is a numerical challenge:
importance sampling (Zellner and Rossi, 1984; Frühwirth-Schnatter, 1995),
Chib’s estimator (Chib, 1995), bridge sampling (Frühwirth-Schnatter, 2004),
auxiliary mixture sampling (Frühwirth-Schnatter and Wagner, 2008a)

• Model-space MCMC methods – sample jointly the model indicator and the
unknown parameters

– reversible jump MCMC (Green, 1995)
– variable selection approach (George and McCulloch, 1993, 1997)
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The Variable Selection Approach for Regression Models

For regression models the variable selection approach aims at identifying non-zero
regression effects by indicators:

yi = xiβ + εi, εi ∼ N (
0, σ2

ε

)
, i = 1, . . . , N

βj = 0, iff δj = 0,

βj unconstrained, iff δj = 1.

Each restricted regression model may be represented by a certain realization of
δ = (δ1, . . . , δd)′, e.g. d = 5:

yi = xi1β1 + xi4β4 + β5 + εi

= δ1xi1β1 + δ2xi2β2 + δ3xi3β3 + δ4xi4β4 + δ5β5 + εi,

δ = (δ1, δ2, δ3, δ4, δ5)′ = (1, 0, 0, 1, 1)′.
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The Variable Selection Approach for Regression Models

• Joint estimation of δ = (δ1, . . . , δd), β and σ2
ε by a simple MCMC scheme

• Feasible, even if the total number of possible models is rather large; attractive
alternative to computing marginal likelihoods also for a small set of models

• Feasible for non-Gaussian data (Tüchler, 2008) using auxiliary mixture
sampling (Frühwirth-Schnatter and Wagner, 2006; Frühwirth-Schnatter and
Frühwirth, 2007)

• It is useful far beyond the common problem of selecting covariates and allows

– covariance selection in random effects models (Chen and Dunson, 2003;
Frühwirth-Schnatter and Tüchler, 2008).

– Model selection for state space models (Frühwirth-Schnatter and Wagner,
2008b)
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Time Series of Road Accidents of Children

killed or injured pedestrians, Children (aged 6-10) in Linz (Austria) (left) and
number of children in this age (right), monthly data January 1987 - December
2005
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A legal intervention intended to increase road safety became effective on October
1,1994: increased priority for pedestrians
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Time Series of Road Accidents of Children

Basic structural model (Harvey and Durbin, 1986):

yt ∼ P (etλt) ,

log λt = µt + st,

µt = µt−1 + at−1 + ω1t, ω1t ∼ N (0, θ1)

at = at−1 + ω2t, ω2t ∼ N (0, θ2) ,

st = −st−1 − · · · − st−11 + ω3t, ω3t ∼ N (0, θ3)

Modification of trend component for time of intervention, t = tint:

µt = µt−1 + at−1 + ∆ + ω1t
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Time Series of Road Accidents of Children

Unrestricted model: intervention effect not significant!?
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Figure 1: Posterior density of the intervention effect ∆ (October 1,1994) in
comparison to the prior (unrestricted basic structural model)
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Stochastic model specification search for state space models

• How to introduce binary indicators for model selection?

• How to choose the priors?

• How to run MCMC?

Discuss Frühwirth-Schnatter and Wagner (2008b)
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The Parsimonious Local Trend Model

Introduce three binary indicator δ, γ1 and γ2 in a noncentred version of the
model:

µ̃t = µ̃t−1 + ω̃1t, ω̃1t ∼ N (0, 1) , (1)

ãt = ãt−1 + ω̃2t, ω̃2t ∼ N (0, 1) , (2)

Ãt = Ãt−1 + ãt−1, (3)

yt = µ0 + δta0 + γ1

√
θ1µ̃t + γ2

√
θ2Ãt + εt, εt ∼ N (

0, σ2
ε

)
, (4)

with µ̃0 = ã0 = Ã0 = 0. µ0 and a0 are the initial values for the level and the
drift component and θ1 and θ2 are equal to the variances in the dynamic linear
trend model.
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The Parsimonious Local Trend Model

8 different models:

• δ = 1, γ1 = 1, γ2 = 1 leads to the local trend model

• δ = 0, γ2 = 0, γ1 = 1 leads to the local level model

• γ1 = 0, γ2 = 0, δ = 1 leads to a regression model with linear trend

• 5 additional models
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Identifiability

The sign of
√

θj and µ̃t, Ãt is not identified, because it may be changed without
changing the likelihood function, e.g.:

yt = . . . +
√

θ1µ̃t + . . . + εt = . . . + (−
√

θ1)(−µ̃t) + . . . + εt.

Similarly, the sign of
√

θ2 and the sequences {ãt}T
1 and {Ãt}T

1 may be changed
without changing the distribution of y1, . . . , yT .

To make this unidentifiability transparent we write the observation equation as:

yt = µ0 + δ1ta0 + γ1(±
√

θ1)µ̃t + γ2(±
√

θ2)Ãt + εt. (5)

All 4 parameters ϑ = (±√θ1,±
√

θ2, σ
2
ε, µ0, a0) define the same integrated

likelihood. As a consequence, the likelihood function p(y|ϑ) is symmetric around
0 in the direction of

√
θ1 and

√
θ2 and therefore multimodal.
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Identifiability

If the true variances θtrue
1 and θtrue

2 are positive, then the likelihood function
concentrates around four modes.
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Figure 2: Contour and surface plots of the (scaled)
profile likelihood l(

√
θ1,
√

θ2)/ max(l(
√

θ1,
√

θ2)), where
l(
√

θ1,
√

θ2) = p(y|√θ1,
√

θ2, σ
2,true
ε , µtrue

0 , atrue
0 ) for simulated data

(T = 1000) with (θtrue
1 , θtrue

2 ) = (0.15, 0.02)
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Identifiability

If one the true variances θtrue
1 and θtrue

2 is equal to 0 while the other is positive,
two of those modes collapse and the likelihood is bimodal with an increasing
number of observations T .
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Figure 3: Contour and surface plots of the (scaled) profile likelihood for
simulated data (T = 1000) with (θtrue

1 , θtrue
2 ) = (0.15, 0)
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Identifiability
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Figure 4: Contour and surface plots of the (scaled) profile likelihood for
simulated data (T = 1000) with (θtrue

1 , θtrue
2 ) = (0, 0.02)
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Identifiability

If both variances θtrue
1 and θtrue

2 are equal to zero, then the likelihood function
will be unimodal with an increasing number of observations T .
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Figure 5: Contour and surface plots of the (scaled) profile likelihood for
simulated data (T = 1000) with (θtrue

1 , θtrue
2 ) = (0, 0)
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The non-centered parameterization

Observation equation of the non-centered parameterization:

yt = µ0 + δ1ta0 + γ1(±
√

θ1)µ̃t + γ2(±
√

θ2)Ãt + εt. (6)

• Extension to other state space models: introduce separate indicators for the
fixed and the really dynamic part

• Natural conjugate prior for β = (µ0, a0,±
√

θ1,±
√

θ2) in (4) is a normal
distribution

• Conditional on the state vector (µ̃t, Ãt), standard variable selection problem
in regression model (4)

• State equation independent of model parameters, full conditional Gibbs
sampling more efficient than for the usual (centered) parameterization
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Extension to the basic structural model

Initial (unknown) seasonal pattern s0 = (s−S, . . . , s0) with s−S + . . . + s0 = 0.

Additional binary indicators δ2 and γ3 for the fixed and the really dynamic part
of the seasonal pattern:

• δ2 = 1, γ3 = 1 time-varying seasonal pattern

• δ2 = 1, γ3 = 0 fixed seasonal pattern

• δ2 = 0, γ3 = 0 no seasonal pattern

Introduce the indicators into the non-centered parameterization
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The non-centered parameterization

For the seasonal component, the non-centered parameterization is based on
following stochastic difference equation:

s̃t = −s̃t−1 − · · · − s̃t−S+1 + ω̃3t, ω̃3t ∼ N (0, 1) , (7)

where s̃−S+1 = . . . = s̃0 = 0. Combine state equation (7) with the state
equations (1) to (3) and following observation equation:

yt = µ0 + δ1ta0 + δ2sj(t) (8)

+γ1(±
√

θ1)µ̃t + γ2(±
√

θ2)Ãt + γ3(±
√

θ3)s̃t + εt, εt ∼ N (
0, σ2

ε

)
.

sj(t) is the initial seasonal component corresponding to time t.
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Choosing the prior

Example: local level model

yt = µt + εt, εt ∼ N (
0, σ2

ε

)

µt = µt−1 + ω1t, ω1t ∼ N (0, θ) .

Prior on the variance θ may be influential when testing θ = 0 versus θ > 0, if the
true value is close to 0. Compare:

• the standard conditional conjugate prior, θ ∼ G−1 (c0, C0)

• a normal prior on the signed square root, ±
√

θ ∼ N (0, B0)

±
√

θ is the signed square root of the variance
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Choosing the prior

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

16

18

posterior: inverse gamma prior

 

 
C

0
=0.75

C
0
=0.15

C
0
=0.015

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100

110
posterior: inverse gamma prior

 

 
C

0
=0.75

C
0
=0.15

C
0
=0.015

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

16

18

posterior: normal prior

 

 
B

0
=1

B
0
=10

B
0
=100

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100

110
posterior: normal prior

 

 
B

0
=1

B
0
=10

B
0
=100

Figure 6: Posterior density for ±
√

θ under different priors; top:
θ ∼ G−1 (0.5, C0), bottom: ±

√
θ ∼ N (0, B0); left: dynamic model

with θ = 0.01; right: static model with θ = 0; σ2
ε = 1, T = 100
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Choosing the prior for the basic structural model

Use a hierarchical prior for σ2
ε: σ2

ε ∼ G−1 (c0, C0) and C0 ∼ G (g0, G0).

Use normal priors for µ0, a0, and s0 as usual

We do not use the usual inverted Gamma prior for θ1, . . . , θ3. The parameters
±√θ1,±

√
θ2 and ±√θ3 are coefficients in a regression model, use a normal prior:

• partially proper prior where p(µ0) ∝ constant, useN (0, B0) for all unrestricted
parameters

• fractional prior (O’Hagan, 1995) for all unrestricted parameters including µ0

Assume a prior distribution for the indicators δ = (δ1, δ2) and γ = (γ1, γ2, γ3)
(e.g. uniform distribution).
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MCMC estimation

Gibbs sampling scheme:

1. Sampling of the indicators δ and γ from p(δ, γ|x,y) using the regression model
(8) conditional on the state vector x = (x1, . . . ,xT ), xt = (µ̃t, ãt, Ãt, s̃t)
(closed form expression because the model is conditionally normal given β);

2. Conditional on δ, γ and x, sampling of the unrestricted initial values µ0, a0,
s0 and the unrestricted variances ±√

θj using the regression model (6)

3. Sampling of x from the non-centered state space model using forward-filtering-
backward-sampling (Frühwirth-Schnatter, 1994; Carter and Kohn, 1994; De
Jong and Shephard, 1995; Durbin and Koopman, 2002)

4. Perform independent random sign switch for: ±√θ1 and {µ̃t}T
t=1; ±

√
θ2 and

{ãt, Ãt}T
t=1; ±

√
θ3 and {s̃t}T

t=1
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Example: UK coal consumption data

UK coal consumption Harvey (1989): quarterly data from 1/1960 to 4/1986
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Figure 7: UK coal consumption 1960-1986 (log scale)
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Comparing the Centered and the Non-centered Parameterization

Influence of the prior; no variable selection (δ = 1 and γ = 1)
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Figure 8: Histograms for ±√θ1 (left), ±√θ2 (middle) and ±√θ3 (right);
top: N (0, 1) prior for ±√θi; bottom: G−1

(−0.5, 10−7
)
-prior for θi
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Comparing the Centered and the Non-centered Parameterization
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Variable Selection

Table 1: The two most frequently visited models (40000 MCMC iterations)
prior δ δ3 γ1 γ2 γ3 frequency

p(µ0) ∝ 1, B0 = 1 0 1 0 1 0 20331

1 1 1 0 0 7032

p(µ0) ∝ 1, B0 = 100 0 1 0 1 0 26454

0 1 1 0 0 11870

b = 10−3 0 1 0 1 0 25647

0 1 1 1 0 4173

b = 10−4 0 1 0 1 0 34364

1 1 0 1 0 1799

b = 10−5 0 1 0 1 0 37012

1 1 0 1 0 1150
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Variable Selection

Table 2: Coal data; marginal posterior probability of selecting each indicator
under various priors

Prior δ δ3 γ1 γ2 γ3

p(µ0) ∝ 1, B0 = 1 0.2375 1.0000 0.4131 0.6192 0.0597

p(µ0) ∝ 1, B0 = 100 0.0315 1.0000 0.3246 0.6728 0.0051

b = 10−3 0.1845 1.0000 0.2048 0.9295 0.0698

b = 10−4 0.0647 1.0000 0.0765 0.9694 0.0214

b = 10−5 0.0347 1.0000 0.0386 0.9792 0.0078

Fixed seasonal pattern (δ3 = 1, γ3 = 0), random drift (γ2 = 0) with a0 = 0
(δ = 0) and θ1 = 0(γ1 = 0)

Sylvia Frühwirth-Schnatter Modeling and Forecasting Economic Time Series, Stockholm, October 17–18, 2008 30



Model Selection for Non-Gaussian State Space Models

Variable selection approach developed for Gaussian state space model may be
extended to nonnormal state space models using auxiliary mixture sampling
(Frühwirth-Schnatter and Wagner, 2006; Frühwirth-Schnatter and Frühwirth,
2007):

• state space modelling of binary time based on the logit transform

• state space modelling of categorical time based on the logit transform

• state space modelling of times of small counts based on the Poisson distribution

Illustrative application to two time series
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Auxiliary Mixture Sampling for Count Data

Frühwirth-Schnatter and Wagner (2006):

• For each yt ∼ P (λt) introduce the hidden inter-arrival times τtj, j =
1, . . . , (yt + 1) in the interval [0,1] of a Poisson process with intensity λt as
missing data

• The inter-arrival times τtj are E (λt) = E (1) /λt, therefore:

− log τtj = log λt + εtj, j = 1, . . . , (yt + 1)

where εtj = − log E (1)

• The distribution of εtj is approximated by a mixture of normal distributions
with component indicator rtj and the auxiliary variables z = (z1, . . . , zT ),
where zt = (τtj, rtj, j = 1, . . . , yt + 1), are introduced.
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Auxiliary mixture sampling and variable selection

Introducing the auxiliary variables z = (z1, . . . , zT ), where zt = (τtj, rtj, j =
1, . . . , yt + 1), leads to a conditionally Gaussian state space model

− log τtj − log et = µt + δ2st,0 + γ3(st − δ2st,0) + mrtj
+ εt,

εt ∼ N
(
0, s2

rtj

)
. (9)

The remaining equations are the same as before. Markov chain Monte Carlo
estimation is easily extended:

1. Variable selection and estimation for the conditionally Gaussian state space
model (9) (conditional on the auxiliary variables z)

2. Sample the auxiliary variables z
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Time Series of Road Accidents of Children

killed or injured pedestrians, Children (aged 6-10) in Linz (Austria) (left) and
number of children in this age (right)
monthly data January 1987 - December 2005
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A legal intervention intended to increase road safety took place during the
observation period. An amendment increasing priority for pedestrians became
effective on October 1,1994: since then pedestrians who want to use a crosswalk
have to be granted crossing.
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MCMC for the non-centered model (δ = 1 and γ = 1)

MCMC in the centered version did not work
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Figure 10: MCMC draws (top) and histograms (bottom) for ±√θ1 (left),
±√θ2 (middle) and ±√θ3 (right) under the N (0, 1) prior for ±√θi
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Variable Selection

Table 3: Two most frequently visited models (40000 MCMC iterations)
prior δ δ3 δ4 γ1 γ2 γ3 frequency

p(µ0) ∝ 1, B0 = 1 0 1 1 0 0 0 37544

0 1 1 0 0 1 937

p(µ0) ∝ 1, B0 = 100 0 1 1 0 0 0 34874

0 1 0 0 0 0 4743

b = 10−2 0 1 1 0 0 0 9595

0 1 1 0 0 1 4154

b = 10−3 0 1 1 0 0 0 18528

1 1 0 0 0 0 4048

b = 10−4 0 1 1 0 0 0 24871

1 1 0 0 0 0 4717
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Variable Selection

Table 4: Marginal posterior probability of selecting each indicator

trend season intervention process variances

prior δ δ3 δ4 γ1 γ2 γ3

p(µ0) ∝ 1, B0 = 1 0.0047 1.0000 0.9798 0.0209 0.0005 0.0244

p(µ0) ∝ 1, B0 = 100 0.0019 1.0000 0.8767 0.0042 0.0001 0.0035

b = 10−2 0.3140 1.0000 0.7769 0.2872 0.2767 0.3015

b = 10−3 0.2152 1.0000 0.7094 0.1567 0.1576 0.1289

b = 10−4 0.1563 1.0000 0.7196 0.0772 0.0963 0.0501
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Variable Selection

Simple Poisson regression model (γ1 = γ2 = γ3 = 0)

• with fixed seasonal pattern (δ3 = 1, γ3 = 0)

• no trend (δ = γ2 = 0); fixed level before and after intervention (γ1 = 0)

• intervention effect significant (δ4 = 1)
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Variable Selection

Gain of statistical efficiency for the parameter of interest
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Figure 11: posterior density of the intervention effect ∆ in comparison to
the prior; left: unrestricted basic structural model, right: Poisson regression
model with seasonal pattern (selected model)
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Summary

Variable selection approach has been extended to state space models

Backbone of efficient MCMC is a non-centered parameterization in combination
with a normal prior on the signed square root of the process variances

For non-Gaussian state space models the variable selection approach is feasible
using auxiliary mixture sampling

Extension to other state space models (time-varying regression models, dynamic
factor models) is work in progress
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Frühwirth-Schnatter, S. (1995). Bayesian model discrimination and Bayes factors
for linear Gaussian state space models. Journal of the Royal Statistical Society,
Ser. B, 57:237–246.
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Sylvia Frühwirth-Schnatter Modeling and Forecasting Economic Time Series, Stockholm, October 17–18, 2008 44


