# **Stochastic Model Specification Search for Gaussian and Non-Gaussian State Space Models**

Sylvia Frühwirth-Schnatter and Helga Wagner Johannes Kepler Universität Linz

## **Non-regular Model Selection Problems**

Model selection for state space models often leads to testing problems which are non-regular from the view-point of classical statistics

• Observation equation for time series observation  $y_t$ ,  $t = 1, \ldots, T$ :

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right)$$

•  $\mu_t$  follows a random walk with a random drift:

$$\mu_{t} = \mu_{t-1} + a_{t-1} + \omega_{1t}, \qquad \omega_{1t} \sim \mathcal{N}(0, \theta_{1})$$
$$a_{t} = a_{t-1} + \omega_{2t}, \qquad \omega_{2t} \sim \mathcal{N}(0, \theta_{2}),$$

### Non-regular Model Selection Problems

- Is the drift  $a_t$  fixed or random? Testing  $\theta_2 = 0$  versus  $\theta_2 > 0$ : the null hypothesis lies on the boundary of the parameter space
- Is the drift term  $a_t$  significant? Testing the null hypothesis  $a_0 = a_1 = \cdots = a_T = 0$  (local level model) versus a local trend model is a non-regular problem: size of the hypothesis increases with the number of observations

No standard likelihood-ratio tests.

The Bayesian approach is, in principle, able to deal with non-regular testing problems

Assign a prior probability  $p(\mathcal{M}_k)$  to each model (e.g. uniform distribution over all models)

Compute the posterior probability distribution  $p(\mathcal{M}_k|\mathbf{y})$  for each model using Bayes rule

 $p(\mathcal{M}_k|\mathbf{y}) \propto p(\mathbf{y}|\mathcal{M}_k)p(\mathcal{M}_k),$ where  $p(\mathbf{y}|\mathcal{M}_k)$  is the marginal likelihood for model  $\mathcal{M}_k$ .

Posterior probabilities are not easily computed:

- Marginal Likelihoods: Computing the posterior probabilities p(M<sub>k</sub>|y) by Bayes rule requires computation of the marginal likelihood p(y|M<sub>k</sub>) for each model. As the integration may be high-dimensional this is a numerical challenge: importance sampling (Zellner and Rossi, 1984; Frühwirth-Schnatter, 1995), Chib's estimator (Chib, 1995), bridge sampling (Frühwirth-Schnatter, 2004), auxiliary mixture sampling (Frühwirth-Schnatter and Wagner, 2008a)
- Model-space MCMC methods sample jointly the model indicator and the unknown parameters
  - reversible jump MCMC (Green, 1995)
  - variable selection approach (George and McCulloch, 1993, 1997)

### The Variable Selection Approach for Regression Models

For regression models the variable selection approach aims at identifying non-zero regression effects by indicators:

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N} \left( 0, \sigma_{\varepsilon}^2 \right), \quad i = 1, \dots, N$$
  
$$\beta_j = 0, \qquad \text{iff } \delta_j = 0,$$
  
$$\beta_j \text{ unconstrained}, \quad \text{iff } \delta_j = 1.$$

Each restricted regression model may be represented by a certain realization of  $\delta = (\delta_1, \dots, \delta_d)'$ , e.g. d = 5:

$$y_i = x_{i1}\beta_1 + x_{i4}\beta_4 + \beta_5 + \varepsilon_i$$
  
=  $\delta_1 x_{i1}\beta_1 + \delta_2 x_{i2}\beta_2 + \delta_3 x_{i3}\beta_3 + \delta_4 x_{i4}\beta_4 + \delta_5\beta_5 + \varepsilon_i,$   
 $\boldsymbol{\delta} = (\delta_1, \delta_2, \delta_3, \delta_4, \delta_5)' = (1, 0, 0, 1, 1)'.$ 

### The Variable Selection Approach for Regression Models

- Joint estimation of  $\delta = (\delta_1, \dots, \delta_d)$ ,  $\beta$  and  $\sigma_{\varepsilon}^2$  by a simple MCMC scheme
- Feasible, even if the total number of possible models is rather large; attractive alternative to computing marginal likelihoods also for a small set of models
- Feasible for non-Gaussian data (Tüchler, 2008) using auxiliary mixture sampling (Frühwirth-Schnatter and Wagner, 2006; Frühwirth-Schnatter and Frühwirth, 2007)
- It is useful far beyond the common problem of selecting covariates and allows
  - covariance selection in random effects models (Chen and Dunson, 2003; Frühwirth-Schnatter and Tüchler, 2008).
  - Model selection for state space models (Frühwirth-Schnatter and Wagner, 2008b)

killed or injured pedestrians, Children (aged 6-10) in Linz (Austria) (left) and number of children in this age (right), monthly data January 1987 - December 2005



A legal intervention intended to increase road safety became effective on **October 1,1994**: increased priority for pedestrians

Basic structural model (Harvey and Durbin, 1986):

$$y_t \sim \mathcal{P}\left(e_t \lambda_t\right),$$
  

$$\log \lambda_t = \mu_t + s_t,$$
  

$$\mu_t = \mu_{t-1} + a_{t-1} + \omega_{1t}, \qquad \omega_{1t} \sim \mathcal{N}\left(0, \theta_1\right)$$
  

$$a_t = a_{t-1} + \omega_{2t}, \qquad \omega_{2t} \sim \mathcal{N}\left(0, \theta_2\right),$$
  

$$s_t = -s_{t-1} - \dots - s_{t-11} + \omega_{3t}, \qquad \omega_{3t} \sim \mathcal{N}\left(0, \theta_3\right)$$

Modification of trend component for time of intervention,  $t = t_{int}$ :

$$\mu_t = \mu_{t-1} + a_{t-1} + \Delta + \omega_{1t}$$

Unrestricted model: intervention effect not significant!?



Figure 1: Posterior density of the intervention effect  $\Delta$  (October 1,1994) in comparison to the prior (unrestricted basic structural model)

## Stochastic model specification search for state space models

- How to introduce binary indicators for model selection?
- How to choose the priors?
- How to run MCMC?

Discuss Frühwirth-Schnatter and Wagner (2008b)

### The Parsimonious Local Trend Model

Introduce three binary indicator  $\delta$ ,  $\gamma_1$  and  $\gamma_2$  in a noncentred version of the model:

$$\tilde{\mu}_t = \tilde{\mu}_{t-1} + \tilde{\omega}_{1t}, \qquad \tilde{\omega}_{1t} \sim \mathcal{N}(0, 1), \qquad (1)$$

$$\tilde{a}_t = \tilde{a}_{t-1} + \tilde{\omega}_{2t}, \qquad \tilde{\omega}_{2t} \sim \mathcal{N}(0, 1),$$
(2)

$$\tilde{A}_t = \tilde{A}_{t-1} + \tilde{a}_{t-1},\tag{3}$$

$$y_t = \mu_0 + \delta t a_0 + \gamma_1 \sqrt{\theta_1} \tilde{\mu}_t + \gamma_2 \sqrt{\theta_2} \tilde{A}_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^2\right), \quad (4)$$

with  $\tilde{\mu}_0 = \tilde{a}_0 = \tilde{A}_0 = 0$ .  $\mu_0$  and  $a_0$  are the initial values for the level and the drift component and  $\theta_1$  and  $\theta_2$  are equal to the variances in the dynamic linear trend model.

# **The Parsimonious Local Trend Model**

8 different models:

- $\delta = 1, \gamma_1 = 1, \gamma_2 = 1$  leads to the local trend model
- $\delta = 0, \gamma_2 = 0, \gamma_1 = 1$  leads to the local level model
- $\gamma_1 = 0, \gamma_2 = 0, \delta = 1$  leads to a regression model with linear trend
- 5 additional models

The sign of  $\sqrt{\theta_j}$  and  $\tilde{\mu}_t, \tilde{A}_t$  is not identified, because it may be changed without changing the likelihood function, e.g.:

$$y_t = \dots + \sqrt{\theta_1} \tilde{\mu}_t + \dots + \varepsilon_t = \dots + (-\sqrt{\theta_1})(-\tilde{\mu}_t) + \dots + \varepsilon_t.$$

Similarly, the sign of  $\sqrt{\theta_2}$  and the sequences  $\{\tilde{a}_t\}_1^T$  and  $\{\tilde{A}_t\}_1^T$  may be changed without changing the distribution of  $y_1, \ldots, y_T$ .

To make this unidentifiability transparent we write the observation equation as:

$$y_t = \mu_0 + \delta_1 t a_0 + \gamma_1 (\pm \sqrt{\theta_1}) \tilde{\mu}_t + \gamma_2 (\pm \sqrt{\theta_2}) \tilde{A}_t + \varepsilon_t.$$
 (5)

All 4 parameters  $\vartheta = (\pm \sqrt{\theta_1}, \pm \sqrt{\theta_2}, \sigma_{\varepsilon}^2, \mu_0, a_0)$  define the same integrated likelihood. As a consequence, the likelihood function  $p(\mathbf{y}|\vartheta)$  is symmetric around 0 in the direction of  $\sqrt{\theta_1}$  and  $\sqrt{\theta_2}$  and therefore multimodal.

Sylvia Frühwirth-Schnatter

If the true variances  $\theta_1^{true}$  and  $\theta_2^{true}$  are positive, then the likelihood function concentrates around four modes.



Figure 2: Contour and surface plots of the (scaled) profile likelihood  $l(\sqrt{\theta_1}, \sqrt{\theta_2}) / \max(l(\sqrt{\theta_1}, \sqrt{\theta_2}))$ , where  $l(\sqrt{\theta_1}, \sqrt{\theta_2}) = p(\mathbf{y}|\sqrt{\theta_1}, \sqrt{\theta_2}, \sigma_{\varepsilon}^{2, \text{true}}, \mu_0^{\text{true}}, a_0^{\text{true}})$  for simulated data (T = 1000) with  $(\theta_1^{\text{true}}, \theta_2^{\text{true}}) = (0.15, 0.02)$ 

If one the true variances  $\theta_1^{\text{true}}$  and  $\theta_2^{\text{true}}$  is equal to 0 while the other is positive, two of those modes collapse and the likelihood is bimodal with an increasing number of observations T.



Figure 3: Contour and surface plots of the (scaled) profile likelihood for simulated data (T = 1000) with ( $\theta_1^{\text{true}}, \theta_2^{\text{true}}$ ) = (0.15,0)



Figure 4: Contour and surface plots of the (scaled) profile likelihood for simulated data (T = 1000) with ( $\theta_1^{\text{true}}, \theta_2^{\text{true}}$ ) = (0, 0.02)

If both variances  $\theta_1^{\text{true}}$  and  $\theta_2^{\text{true}}$  are equal to zero, then the likelihood function will be unimodal with an increasing number of observations T.



Figure 5: Contour and surface plots of the (scaled) profile likelihood for simulated data (T = 1000) with ( $\theta_1^{\text{true}}, \theta_2^{\text{true}}$ ) = (0,0)

### The non-centered parameterization

Observation equation of the non-centered parameterization:

$$y_t = \mu_0 + \delta_1 t a_0 + \gamma_1 (\pm \sqrt{\theta_1}) \tilde{\mu}_t + \gamma_2 (\pm \sqrt{\theta_2}) \tilde{A}_t + \varepsilon_t.$$
 (6)

- Extension to other state space models: introduce separate indicators for the fixed and the really dynamic part
- Natural conjugate prior for  $\beta = (\mu_0, a_0, \pm \sqrt{\theta_1}, \pm \sqrt{\theta_2})$  in (4) is a normal distribution
- Conditional on the state vector  $(\tilde{\mu}_t, \tilde{A}_t)$ , standard variable selection problem in regression model (4)
- State equation independent of model parameters, full conditional Gibbs sampling more efficient than for the usual (centered) parameterization

Sylvia Frühwirth-Schnatter

## **Extension to the basic structural model**

Initial (unknown) seasonal pattern  $s_0 = (s_{-S}, \ldots, s_0)$  with  $s_{-S} + \ldots + s_0 = 0$ .

Additional binary indicators  $\delta_2$  and  $\gamma_3$  for the fixed and the really dynamic part of the seasonal pattern:

- $\delta_2 = 1, \gamma_3 = 1$  time-varying seasonal pattern
- $\delta_2 = 1, \gamma_3 = 0$  fixed seasonal pattern
- $\delta_2 = 0, \gamma_3 = 0$  no seasonal pattern

Introduce the indicators into the non-centered parameterization

### The non-centered parameterization

For the seasonal component, the non-centered parameterization is based on following stochastic difference equation:

$$\tilde{s}_{t} = -\tilde{s}_{t-1} - \dots - \tilde{s}_{t-S+1} + \tilde{\omega}_{3t}, \qquad \tilde{\omega}_{3t} \sim \mathcal{N}(0, 1), \qquad (7)$$

where  $\tilde{s}_{-S+1} = \ldots = \tilde{s}_0 = 0$ . Combine state equation (7) with the state equations (1) to (3) and following observation equation:

$$y_{t} = \mu_{0} + \delta_{1} t a_{0} + \delta_{2} s_{j(t)}$$

$$+ \gamma_{1} (\pm \sqrt{\theta_{1}}) \tilde{\mu}_{t} + \gamma_{2} (\pm \sqrt{\theta_{2}}) \tilde{A}_{t} + \gamma_{3} (\pm \sqrt{\theta_{3}}) \tilde{s}_{t} + \varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N} \left( 0, \sigma_{\varepsilon}^{2} \right).$$

$$(8)$$

 $s_{j(t)}$  is the initial seasonal component corresponding to time t.

# **Choosing the prior**

Example: local level model

$$y_{t} = \mu_{t} + \varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)$$
$$\mu_{t} = \mu_{t-1} + \omega_{1t}, \qquad \omega_{1t} \sim \mathcal{N}\left(0, \theta\right).$$

Prior on the variance  $\theta$  may be influential when testing  $\theta = 0$  versus  $\theta > 0$ , if the true value is close to 0. Compare:

- the standard conditional conjugate prior,  $\theta \sim \mathcal{G}^{-1}(c_0, C_0)$
- a normal prior on the signed square root,  $\pm\sqrt{ heta}\sim\mathcal{N}\left(0,B_{0}
  ight)$

 $\pm \sqrt{\theta}$  is the signed square root of the variance

# **Choosing the prior**



Figure 6: Posterior density for  $\pm\sqrt{\theta}$  under different priors; top:  $\theta \sim \mathcal{G}^{-1}(0.5, C_0)$ , bottom:  $\pm\sqrt{\theta} \sim \mathcal{N}(0, B_0)$ ; left: dynamic model with  $\theta = 0.01$ ; right: static model with  $\theta = 0$ ;  $\sigma_{\varepsilon}^2 = 1$ , T = 100

### Choosing the prior for the basic structural model

Use a hierarchical prior for  $\sigma_{\varepsilon}^2$ :  $\sigma_{\varepsilon}^2 \sim \mathcal{G}^{-1}(c_0, C_0)$  and  $C_0 \sim \mathcal{G}(g_0, G_0)$ .

Use normal priors for  $\mu_0$ ,  $a_0$ , and  $s_0$  as usual

We do not use the usual inverted Gamma prior for  $\theta_1, \ldots, \theta_3$ . The parameters  $\pm \sqrt{\theta_1}, \pm \sqrt{\theta_2}$  and  $\pm \sqrt{\theta_3}$  are coefficients in a regression model, use a normal prior:

- partially proper prior where  $p(\mu_0) \propto {\rm constant},$  use  $\mathcal{N}\left(0,B_0\right)$  for all unrestricted parameters
- fractional prior (O'Hagan, 1995) for all unrestricted parameters including  $\mu_0$

Assume a prior distribution for the indicators  $\boldsymbol{\delta} = (\delta_1, \delta_2)$  and  $\boldsymbol{\gamma} = (\gamma_1, \gamma_2, \gamma_3)$  (e.g. uniform distribution).

Sylvia Frühwirth-Schnatter

Gibbs sampling scheme:

- 1. Sampling of the indicators  $\delta$  and  $\gamma$  from  $p(\delta, \gamma | \mathbf{x}, \mathbf{y})$  using the regression model (8) conditional on the state vector  $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_T)$ ,  $\mathbf{x}_t = (\tilde{\mu}_t, \tilde{a}_t, \tilde{A}_t, \tilde{s}_t)$ (closed form expression because the model is conditionally normal given  $\beta$ );
- 2. Conditional on  $\delta$ ,  $\gamma$  and  $\mathbf{x}$ , sampling of the unrestricted initial values  $\mu_0$ ,  $a_0$ ,  $\mathbf{s}_0$  and the unrestricted variances  $\pm \sqrt{\theta_j}$  using the regression model (6)
- 3. Sampling of x from the non-centered state space model using forward-filteringbackward-sampling (Frühwirth-Schnatter, 1994; Carter and Kohn, 1994; De Jong and Shephard, 1995; Durbin and Koopman, 2002)
- 4. Perform independent random sign switch for:  $\pm \sqrt{\theta_1}$  and  $\{\tilde{\mu}_t\}_{t=1}^T$ ;  $\pm \sqrt{\theta_2}$  and  $\{\tilde{a}_t, \tilde{A}_t\}_{t=1}^T$ ;  $\pm \sqrt{\theta_3}$  and  $\{\tilde{s}_t\}_{t=1}^T$

## **Example: UK coal consumption data**

UK coal consumption Harvey (1989): quarterly data from 1/1960 to 4/1986



Figure 7: UK coal consumption 1960-1986 (log scale)

### **Comparing the Centered and the Non-centered Parameterization**

Influence of the prior; no variable selection ( $\delta=1$  and  $\gamma=1$ )



Figure 8: Histograms for  $\pm \sqrt{\theta_1}$  (left),  $\pm \sqrt{\theta_2}$  (middle) and  $\pm \sqrt{\theta_3}$  (right); top:  $\mathcal{N}(0,1)$  prior for  $\pm \sqrt{\theta_i}$ ; bottom:  $\mathcal{G}^{-1}(-0.5, 10^{-7})$ -prior for  $\theta_i$ 

# **Comparing the Centered and the Non-centered Parameterization**



Figure 9: MCMC draws for  $\pm \sqrt{\theta_1}$  (left),  $\pm \sqrt{\theta_2}$  (middle) and  $\pm \sqrt{\theta_3}$  (right) for a  $\mathcal{N}(0,1)$ -prior for  $\pm \sqrt{\theta_i}$ , i = 1, 2, 3 (top) and draws of  $\theta_i$ , i = 1, 2, 3 under a  $\mathcal{G}^{-1}(-0.5, 10^{-7})$ -prior for  $\theta_i$ , i = 1, 2, 3 (bottom)

### **Variable Selection**

| prior                           | δ | $\delta_3$ | $\gamma_1$ | $\gamma_2$ | $\gamma_3$ | frequency |  |
|---------------------------------|---|------------|------------|------------|------------|-----------|--|
| $p(\mu_0) \propto 1, B_0 = 1$   | 0 | 1          | 0          | 1          | 0          | 20331     |  |
|                                 | 1 | 1          | 1          | 0          | 0          | 7032      |  |
| $p(\mu_0) \propto 1, B_0 = 100$ | 0 | 1          | 0          | 1          | 0          | 26454     |  |
|                                 | 0 | 1          | 1          | 0          | 0          | 11870     |  |
| $b = 10^{-3}$                   | 0 | 1          | 0          | 1          | 0          | 25647     |  |
|                                 | 0 | 1          | 1          | 1          | 0          | 4173      |  |
| $b = 10^{-4}$                   | 0 | 1          | 0          | 1          | 0          | 34364     |  |
|                                 | 1 | 1          | 0          | 1          | 0          | 1799      |  |
| $b = 10^{-5}$                   | 0 | 1          | 0          | 1          | 0          | 37012     |  |
|                                 | 1 | 1          | 0          | 1          | 0          | 1150      |  |

Table 1: The two most frequently visited models (40000 MCMC iterations)

### Variable Selection

Table 2: Coal data; marginal posterior probability of selecting each indicator under various priors

| Prior                           | δ      | $\delta_3$ | $\gamma_1$ | $\gamma_2$ | $\gamma_3$ |
|---------------------------------|--------|------------|------------|------------|------------|
| $p(\mu_0) \propto 1, B_0 = 1$   | 0.2375 | 1.0000     | 0.4131     | 0.6192     | 0.0597     |
| $p(\mu_0) \propto 1, B_0 = 100$ | 0.0315 | 1.0000     | 0.3246     | 0.6728     | 0.0051     |
| $b = 10^{-3}$                   | 0.1845 | 1.0000     | 0.2048     | 0.9295     | 0.0698     |
| $b = 10^{-4}$                   | 0.0647 | 1.0000     | 0.0765     | 0.9694     | 0.0214     |
| $b = 10^{-5}$                   | 0.0347 | 1.0000     | 0.0386     | 0.9792     | 0.0078     |

Fixed seasonal pattern ( $\delta_3 = 1, \gamma_3 = 0$ ), random drift ( $\gamma_2 = 0$ ) with  $a_0 = 0$  ( $\delta = 0$ ) and  $\theta_1 = 0(\gamma_1 = 0)$ 

### Model Selection for Non-Gaussian State Space Models

Variable selection approach developed for Gaussian state space model may be extended to nonnormal state space models using auxiliary mixture sampling (Frühwirth-Schnatter and Wagner, 2006; Frühwirth-Schnatter and Frühwirth, 2007):

- state space modelling of binary time based on the logit transform
- state space modelling of categorical time based on the logit transform
- state space modelling of times of small counts based on the Poisson distribution

Illustrative application to two time series

## **Auxiliary Mixture Sampling for Count Data**

Frühwirth-Schnatter and Wagner (2006):

- For each  $y_t \sim \mathcal{P}(\lambda_t)$  introduce the hidden inter-arrival times  $\tau_{tj}$ ,  $j = 1, \ldots, (y_t + 1)$  in the interval [0,1] of a Poisson process with intensity  $\lambda_t$  as missing data
- The inter-arrival times  $\tau_{tj}$  are  $\mathcal{E}(\lambda_t) = \mathcal{E}(1) / \lambda_t$ , therefore:

$$-\log \tau_{tj} = \log \lambda_t + \varepsilon_{tj}, \quad j = 1, \dots, (y_t + 1)$$

where  $\varepsilon_{tj} = -\log \mathcal{E}(1)$ 

• The distribution of  $\varepsilon_{tj}$  is approximated by a mixture of normal distributions with component indicator  $r_{tj}$  and the auxiliary variables  $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_T)$ , where  $\mathbf{z}_t = (\tau_{tj}, r_{tj}, j = 1, \dots, y_t + 1)$ , are introduced.

#### Auxiliary mixture sampling and variable selection

Introducing the auxiliary variables  $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_T)$ , where  $\mathbf{z}_t = (\tau_{tj}, r_{tj}, j = 1, \dots, y_t + 1)$ , leads to a conditionally Gaussian state space model

$$-\log \tau_{tj} - \log e_t = \mu_t + \delta_2 s_{t,0} + \gamma_3 (s_t - \delta_2 s_{t,0}) + m_{r_{tj}} + \varepsilon_t,$$
  

$$\varepsilon_t \sim \mathcal{N}\left(0, s_{r_{tj}}^2\right). \tag{9}$$

The remaining equations are the same as before. Markov chain Monte Carlo estimation is easily extended:

- Variable selection and estimation for the conditionally Gaussian state space model (9) (conditional on the auxiliary variables z)
- 2. Sample the auxiliary variables  ${\bf z}$

killed or injured pedestrians, Children (aged 6-10) in Linz (Austria) (left) and number of children in this age (right) monthly data January 1987 - December 2005



A legal intervention intended to increase road safety took place during the observation period. An amendment increasing priority for pedestrians became effective on **October 1,1994**: since then pedestrians who want to use a crosswalk have to be granted crossing.

# MCMC for the non-centered model ( $\delta = 1$ and $\gamma = 1$ )

MCMC in the centered version did not work



Figure 10: MCMC draws (top) and histograms (bottom) for  $\pm \sqrt{\theta_1}$  (left),  $\pm \sqrt{\theta_2}$  (middle) and  $\pm \sqrt{\theta_3}$  (right) under the  $\mathcal{N}(0,1)$  prior for  $\pm \sqrt{\theta_i}$ 

| prior                           | δ | $\delta_3$ | $\delta_4$ | $\gamma_1$ | $\gamma_2$ | $\gamma_3$ | frequency |  |
|---------------------------------|---|------------|------------|------------|------------|------------|-----------|--|
| $p(\mu_0) \propto 1, B_0 = 1$   | 0 | 1          | 1          | 0          | 0          | 0          | 37544     |  |
|                                 | 0 | 1          | 1          | 0          | 0          | 1          | 937       |  |
| $p(\mu_0) \propto 1, B_0 = 100$ | 0 | 1          | 1          | 0          | 0          | 0          | 34874     |  |
|                                 | 0 | 1          | 0          | 0          | 0          | 0          | 4743      |  |
| $b = 10^{-2}$                   | 0 | 1          | 1          | 0          | 0          | 0          | 9595      |  |
|                                 | 0 | 1          | 1          | 0          | 0          | 1          | 4154      |  |
| $b = 10^{-3}$                   | 0 | 1          | 1          | 0          | 0          | 0          | 18528     |  |
|                                 | 1 | 1          | 0          | 0          | 0          | 0          | 4048      |  |
| $b = 10^{-4}$                   | 0 | 1          | 1          | 0          | 0          | 0          | 24871     |  |
|                                 | 1 | 1          | 0          | 0          | 0          | 0          | 4717      |  |

Table 3: Two most frequently visited models (40000 MCMC iterations)

Table 4: Marginal posterior probability of selecting each indicator

|                                 | trend  | season     | intervention | process variances |            |            |
|---------------------------------|--------|------------|--------------|-------------------|------------|------------|
| prior                           | δ      | $\delta_3$ | $\delta_4$   | $\gamma_1$        | $\gamma_2$ | $\gamma_3$ |
| $p(\mu_0) \propto 1, B_0 = 1$   | 0.0047 | 1.0000     | 0.9798       | 0.0209            | 0.0005     | 0.0244     |
| $p(\mu_0) \propto 1, B_0 = 100$ | 0.0019 | 1.0000     | 0.8767       | 0.0042            | 0.0001     | 0.0035     |
| $b = 10^{-2}$                   | 0.3140 | 1.0000     | 0.7769       | 0.2872            | 0.2767     | 0.3015     |
| $b = 10^{-3}$                   | 0.2152 | 1.0000     | 0.7094       | 0.1567            | 0.1576     | 0.1289     |
| $b = 10^{-4}$                   | 0.1563 | 1.0000     | 0.7196       | 0.0772            | 0.0963     | 0.0501     |

## Variable Selection

Simple Poisson regression model ( $\gamma_1 = \gamma_2 = \gamma_3 = 0$ )

- with fixed seasonal pattern ( $\delta_3 = 1, \gamma_3 = 0$ )
- no trend ( $\delta = \gamma_2 = 0$ ); fixed level before and after intervention ( $\gamma_1 = 0$ )
- intervention effect significant ( $\delta_4 = 1$ )

Gain of statistical efficiency for the parameter of interest



Figure 11: posterior density of the intervention effect  $\Delta$  in comparison to the prior; left: unrestricted basic structural model, right: Poisson regression model with seasonal pattern (selected model)

Sylvia Frühwirth-Schnatter

Variable selection approach has been extended to state space models

Backbone of efficient MCMC is a non-centered parameterization in combination with a normal prior on the signed square root of the process variances

For non-Gaussian state space models the variable selection approach is feasible using auxiliary mixture sampling

Extension to other state space models (time-varying regression models, dynamic factor models) is work in progress

- Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81:541–553.
- Chen, Z. and Dunson, D. (2003). Random effects selection in linear mixed models. Biometrics, 59:762–769.
- Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 90:1313–1321.
- De Jong, P. and Shephard, N. (1995). The simulation smoother for time series models. Biometrika, 82:339–350.
- Durbin, J. and Koopman, S. J. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89:603–615.
- Frühwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis, 15:183–202.
- Frühwirth-Schnatter, S. (1995). Bayesian model discrimination and Bayes factors for linear Gaussian state space models. Journal of the Royal Statistical Society, Ser. B, 57:237–246.

- Frühwirth-Schnatter, S. (2004). Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques. The Econometrics Journal, 7:143–167.
- Frühwirth-Schnatter, S. and Frühwirth, R. (2007). Auxiliary mixture sampling with applications to logistic models. Computational Statistics and Data Analysis, 51:3509–3528.
- Frühwirth-Schnatter, S. and Tüchler, R. (2008). Bayesian parsimonious covariance estimation for hierarchical linear mixed models. Statistics and Computing, pages 1–13.
- Frühwirth-Schnatter, S. and Wagner, H. (2006). Auxiliary mixture sampling for parameter-driven models of time series of small counts with applications to state space modelling. Biometrika, 93:827–841.
- Frühwirth-Schnatter, S. and Wagner, H. (2008a). Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling. Computational Statistics and Data Analysis, 52:4608–4624. CHECK.

Frühwirth-Schnatter, S. and Wagner, H. (2008b). Stochastic model specification

- search for Gaussian and non-Gaussian state space models. Research Report IFAS 2008-36, http://www.ifas.jku.at/.
- George, E. I. and McCulloch, R. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88:881–889. CHECK.
- George, E. I. and McCulloch, R. (1997). Approaches for Bayesian variable selection. Statistica Sinica, 7:339–373.
- Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711–732.
- Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge.
- Harvey, A. C. and Durbin, J. (1986). The effects of seat belt legislation on British road casualties: A case study in structural time series modelling. Journal of the Royal Statistical Society, Ser. A, 149:187–227. CHECK.
- O'Hagan, A. (1995). Fractional Bayes factors for model comparison (Disc: p118-138). Journal of the Royal Statistical Society, Ser. B, 57:99–118.
- Tüchler, R. (2008). Bayesian variable selection for logistic models using auxiliary

mixture sampling. Journal of Computational and Graphical Statistics, 17:76–94.

Zellner, A. and Rossi, P. E. (1984). Bayesian analysis of dichotomous quantal response models. Journal of Econometrics, 25:365–393. CHECK.