Forecasting with a model of data revisions

Jana Eklund, ${ }^{1}$
George Kapetanios ${ }^{1,2}$
\& Simon Price ${ }^{1,3}$
${ }^{1}$ Bank of England
${ }^{2}$ Queen Mary University of London
${ }^{3}$ City University (London)
Modelling and Forecasting Economic and Financial Time Series with State Space Models
Sveriges Riksbank, 17 October 2008

(1) Introduction
(2) State Space Model
(3) Forecasting
(4) Conclusions

Data uncertainty

- Published data are estimates rather than perfect measures
- Measurement errors due to incomplete samples or proxies
- Statistical agencies revise their estimates - larger samples or better proxies
- State space modelling - usual approach to extracting signals
- Model the cumulative impact of revisions

United Kingdom real GDP

Real-time published estimates from 1993

Revisions in the United Kingdom

Across a range of macroeconomic variables revisions have tended to be

- Large relative to the variance in published data
- Occur several years after the first release © Chart
- Initial estimates tend to be revised upwards
- Revisions to quarterly growth rates tend to be partially offsetting from one quarter to the next (negative serial correlation)

Extract From the Real-time Database

Quarterly Growth of Whole Economy Investment

		Release date			
		2003 Q1	2003 Q2	2006 Q3	2006 Q4
$\stackrel{0}{0}$	2002 Q4	-0.15	0.16	3.51	3.51
-	2003 Q1		-1.13	-3.18	-3.18
\%	\vdots			!	!
边	2006 Q2			1.31	1.21
	2006 Q3				1.32

Stylised Real-time Database - Maturity of Observations

		Release date			
		2003 Q1	2003 Q2	2006 Q3	2006 Q4
$\stackrel{\square}{0}$	2002 Q4	1	2	15	16
-	2003 Q1		1	14	15
	\vdots			!	!
$\stackrel{\square}{4}$	2006 Q2			1	2
	2006 Q3				1

Policy implications

- Policymakers need to know what the state of the economy in order to set policy appropriately: understanding revisions process may help this
- Policy often seen as a forward looking exercise
- Forecasts also summarise dynamic impact of shocks and policy
- Possible - likely? - that better nowcasts would help forecast process

Modeling assumptions

- Official data improve with maturity
- Latest release subsumes earlier vintages
- Does not forecast specific ONS releases

The model of the published data

$$
y_{t}^{t+n}=y_{t}+c^{n}+v_{t}^{t+n}
$$

- y_{t}^{t+n} - an estimate of y_{t} published at time $t+n$, $n=1, \ldots, T-t$
- y_{t} - the true data
- c^{n} - bias at maturity n
- v_{t}^{t+n} - measurement error associated with the published estimate

The model for the true data y_{t}

$$
y_{t}=\mu+\sum_{i=1}^{q} \alpha_{i} y_{t-i}+\epsilon_{t}
$$

Assumptions:

- Stationarity of y_{t} - suitable for differenced or detrended data
- Linear functional form

Modelling choices

(1) Bias

$$
c^{n}=c^{1}(1+\lambda)^{n-1}
$$

- c^{1} - initial bias in published data
- $-1 \leq \lambda \leq 0$ - rate at which bias decays as data become more mature
(2) Serial correlation with respect to time

Modelling choices

(1) Bias

$$
c^{n}=c^{1}(1+\lambda)^{n-1}
$$

- c^{1} - initial bias in published data
- $-1 \leq \lambda \leq 0$ - rate at which bias decays as data become more mature
(2) Serial correlation with respect to time

$$
v_{t}^{t+n}=\sum_{i=1}^{p} \beta_{i} v_{t-i}^{t+n}+\varepsilon_{t}^{t+n}
$$

- is a finite AR process with maturity invariant parameter
- $\mathrm{E}\left(\varepsilon_{t}^{t+n}\right)^{2}=\sigma_{\varepsilon^{n}}^{2}$

Modelling choices

(3) Heteroscedasticity with respect to maturity

$$
\sigma_{\varepsilon^{n}}^{2}=\sigma_{\varepsilon^{1}}^{2}(1+\delta)^{n-1}
$$

- $\sigma_{\varepsilon^{1}}^{2}$ - initial variance in published data
- $-1 \leq \delta \leq 0$ - rate at which variance decays as data become more mature
(1) Correlation between errors
$\operatorname{cov}\left(\epsilon_{t}, \varepsilon_{t}^{n}\right)=\rho_{\epsilon \varepsilon} \sigma_{\epsilon} \sigma_{\varepsilon^{n}}$

Modelling choices

(3) Heteroscedasticity with respect to maturity

$$
\sigma_{\varepsilon^{n}}^{2}=\sigma_{\varepsilon^{1}}^{2}(1+\delta)^{n-1}
$$

- $\sigma_{\varepsilon^{1}}^{2}$ - initial variance in published data
- $-1 \leq \delta \leq 0$ - rate at which variance decays as data become more mature
(9) Correlation between errors

$$
\operatorname{cov}\left(\epsilon_{t}, \varepsilon_{t}^{n}\right)=\rho_{\epsilon \varepsilon} \sigma_{\epsilon} \sigma_{\varepsilon^{n}}
$$

The model

$$
\begin{aligned}
y_{t}^{T} & =c^{n}+y_{t}+v_{t}^{T} \\
y_{t} & =\mu+\sum_{i=1}^{q} a_{i} y_{t-i}+\epsilon_{t} \\
v_{t}^{T} & =\sum_{i=1}^{p} b_{i} v_{t-i}^{T}+\varepsilon_{t}^{T}
\end{aligned}
$$

Revisions

$$
w_{t}^{j, n}=y_{t}^{t+n+j}-y_{t}^{t+n}
$$

- Can obtain matrix \mathbf{W} of revisions
- rows contain revisions of a specific maturity
- columns contain revisions within a single release

Two-step approach

Using only the latest release - does not mean that past releases are uninformative
(1) Using revisions to estimate

- $\operatorname{bias}\left(\lambda, c^{1}\right)$
- heteroscedasticity $\left(\delta, \sigma_{\varepsilon^{1}}^{2}\right)$
- serial correlation $\left(b_{i}\right)$
- correlation with economic activity $\left(\rho_{\epsilon \varepsilon}\right)$
(2) Estimate remaining parameters $\left(a_{i}\right)$ using Kalman filter

Reasons for two-step approach

- For $N \rightarrow \infty$
- GMM estimates are $\sqrt{N T}$ consistent
- ML estimates \sqrt{T} consistent
- More data in the first step - lower variability in the estimates
- In practice: variability not taken into account in the second step

Growth for five National Accounts variables

- GDP
- Household consumption
- Whole economy investment
- Economic exports
- Economic imports

Evaluation setup

- Estimation over 1993Q2-2003Q1 releases
- Evaluation period 1998Q2 - 2003Q1
- Two subsamples 1998Q2 - 2000Q3 and 2000Q4-2003Q1
- Excluding revisions: 1998Q3 for all variables (ESA 1995)
- Comparing forecast from the state space model with published data 16 nexieds later
- Comparing simple AR forecast based on contemporaneous data with releace 16 nerinds later

Evaluation setup

- Estimation over 1993Q2-2003Q1 releases
- Evaluation period 1998Q2 - 2003Q1
- Two subsamples 1998Q2-2000Q3 and 2000Q4-2003Q1
- Excluding revisions: 1998Q3 for all variables (ESA 1995)
- Comparing forecast from the state space model with published data 16 periods later
- Comparing simple AR forecast based on contemporaneous data with release 16 periods later

Ratio of RMSFE 1998Q2 to 2003Q1

Minimum in bold,* indicates a significant DM statistic
(a) Fixed four lags for y_{t}

h	GDP	Consumption	Investment	Exports	Imports
1	0.9186	0.9738	$\mathbf{0 . 8 9 1 8}$	0.9083^{*}	$\mathbf{0 . 8 7 4 5}^{*}$
2	0.9425	$\mathbf{0 . 9 7 1 0}$	0.9444	0.9257^{*}	0.8813
3	$\mathbf{0 . 8 8 9 9}$	0.9848	1.0104	$\mathbf{0 . 8 7 6 6}$	0.9363
4	0.9400	0.9829	1.0009	0.9551^{*}	0.9685

(b) Lag order optimally selected by HQIC

h	GDP	Consumption	Investment	Exports	Imports
1	0.9186	0.9738	$\mathbf{0 . 8 8 7 8}$	0.9682	1.0270
2	0.9425	$\mathbf{0 . 9 7 1 0}$	0.9351	0.9313	1.0534
3	$\mathbf{0 . 8 8 9 9}$	0.9848	1.0472	$\mathbf{0 . 9 3 0 2}$	1.0116
4	0.9400	0.9829	0.9547	0.9860	$\mathbf{0 . 9 9 8 2}$

Ratio of RMSFE 1998Q2 to 2000Q3

Minimum in bold,* indicates a significant DM statistic
(a) Fixed four lags for y_{t}

h	GDP	Consumption	Investment	Exports	Imports
1	$\mathbf{0 . 8 1 8 3}$	0.9765	$\mathbf{0 . 9 4 3 3}$	0.8551	0.9058
2	0.8898	$\mathbf{0 . 9 6 2 1}$	0.9581	0.8586^{*}	$\mathbf{0 . 8 2 7 1}$
3	0.8210	0.9680	0.9868	$\mathbf{0 . 6 8 6 5}$	0.9461
4	0.8917	0.9712	0.9609	0.9086	1.0371

(b) Lag order optimally selected by HQIC

h	GDP	Consumption	Investment	Exports	Imports
1	$\mathbf{0 . 8 1 8 3}$	0.9765	$\mathbf{0 . 9 2 0 8}$	0.9575	0.9481
2	0.8898	$\mathbf{0 . 9 6 2 1}$	0.9458	0.8593	0.9707
3	0.8210	0.9680	1.0197	$\mathbf{0 . 7 9 6 2}$	$\mathbf{0 . 8 8 9 8}$
4	0.8917	0.9712	0.9147	0.9690	$0.9185^{\text {EE }}$

Ratio of RMSFE 2000Q4 to 2003Q1

Minimum in bold,* indicates a significant DM statistic
(a) Fixed four lags for y_{t}

h	GDP	Consumption	Investment	Exports	Imports
1	1.0653	$\mathbf{0 . 9 6 6 7}$	$\mathbf{0 . 8 6 9 8}$	$\mathbf{0 . 9 3 2 3}$	$\mathbf{0 . 8 6 6 3}$
2	1.0641	1.0134	0.9343	0.9522	0.8979
3	$\mathbf{1 . 0 3 6 0}$	1.0870	1.0330	1.0039	0.9326^{*}
4	1.0488	1.0420	1.0308	0.9744	0.9328

(b) Lag order optimally selected by HQIC

h	GDP	Consumption	Investment	Exports	Imports
1	1.0653	0.9667	0.8731	0.9726	1.0529
2	1.0641	1.0134	0.9272	0.9600	1.0797
3	1.0360	1.0870	1.0736	1.0017	1.0732
4	1.0488	1.0420	0.9848	0.9925	1.0585^{5}

Conclusions

- Using state-space approach to obtain better estimates of the 'true' value
- Practical and parsimonious way of producing backcast series
- Only have short periods for estimation and evaluation
- In the majority of cases forecast performance is improved

Successive estimates of GDP growth in 1993

4 Back

United Kingdom real GDP

\triangleleft Back

Ratio of RMSFE for simulated data

$T=500, a=0.6, b=0.6, r=100, \delta=0.5$
(a) Fixed 1 lag for y_{t}

h	Latest	Backcast	Data +16 Q
1	0.8983	1.0124	1.2219
2	0.9606	1.0052	0.9708
3	0.9509	0.9933	0.9486
4	0.9730	0.9951	0.9886

(b) Lag order optimally selected by HQIC

h	Latest	Backcast	Data +16 Q
1	0.9049	1.0172	1.2155
2	0.9669	1.0080	0.9747
3	0.9564	0.9935	0.9535
4	0.9669	0.9944	0.9934

Ratio of RMSFE for simulated data

$T=120, a=0.6, b=0.6, r=100, \delta=0.5$
(a) Fixed 1 lag for y_{t}

h	Latest	Backcast	Data +16 Q
1	0.9043	1.0037	1.2352
2	0.9461	1.0032	0.9643
3	0.9481	0.9900	0.9508
4	0.9662	0.9908	0.9860

(b) Lag order optimally selected by HQIC

h	Latest	Backcast	Data +16 Q
1	0.8946	0.9996	1.2290
2	0.9409	1.0112	0.9546
3	0.9412	0.9890	0.9449
4	0.9664	0.9948	0.9926

