Forecasting with a model of data revisions

Jana Eklund,¹ George Kapetanios^{1,2} & Simon Price^{1,3}

¹Bank of England

²Queen Mary University of London

³City University (London)

Modelling and Forecasting Economic and Financial Time Series with State Space Models Sveriges Riksbank, 17 October 2008

Eklund, Kapetanios & Price

2 State Space Model

Eklund, Kapetanios & Price

Data uncertainty

- Published data are estimates rather than perfect measures
- Measurement errors due to incomplete samples or proxies
- Statistical agencies revise their estimates larger samples or better proxies
- State space modelling usual approach to extracting signals
- Model the cumulative impact of revisions

Eklund, Kapetanios & Price

United Kingdom real GDP

Real-time published estimates from 1993

Conclusions

Revisions in the United Kingdom

Across a range of macroeconomic variables revisions have tended to be

- Large relative to the variance in published data
- Occur several years after the first release Chart
- Initial estimates tend to be revised upwards
- Revisions to quarterly growth rates tend to be partially offsetting from one quarter to the next (negative serial correlation)

Eklund, Kapetanios & Price

Conclusions

Extract From the Real-time Database

Quarterly Growth of Whole Economy Investment

			Rel	ease o	late	
		2003 Q1	$2003~\mathrm{Q2}$		$2006~\mathrm{Q3}$	$2006~\mathrm{Q4}$
date	2002 Q4	-0.15	0.16		3.51	3.51
	2003 Q1	1	-1.13		-3.18	-3.18
Reference	:			۰.	:	:
fer	$2006~\mathrm{Q2}$				1.31	1.21
${ m Re}$	$2006~\mathrm{Q3}$					1.32

Eklund, Kapetanios & Price

Stylised Real-time Database - Maturity of Observations

			Rel	ease c	late	
	60.	$2003 \ Q1$	$2003~\mathrm{Q2}$		$2006~\mathrm{Q3}$	$2006~\mathrm{Q4}$
date	2002 Q4 2003 Q1	1	2		15	16
	$2003~\mathrm{Q1}$		1		14	15
eference	:			·	1	:
fer	2006 Q2 2006 Q3				1	2
${ m R}_{ m C}$	$2006~\mathrm{Q3}$					1

Eklund, Kapetanios & Price

Policy implications

- Policymakers need to know what the state of the economy in order to set policy appropriately: understanding revisions process may help this
- Policy often seen as a forward looking exercise
- Forecasts also summarise dynamic impact of shocks and policy
- Possible likely? that better nowcasts would help forecast process

Conclusions

Modelling assumptions

- Official data improve with maturity
- Latest release subsumes earlier vintages
 - Does not forecast specific ONS releases

Eklund, Kapetanios & Price

Conclusions

The model of the published data

$$y_t^{t+n} = y_t + c^n + v_t^{t+n}$$

- y_t^{t+n} an estimate of y_t published at time t+n, $n = 1, \dots, T-t$
- y_t the true data
- c^n bias at maturity n
- v_t^{t+n} measurement error associated with the published estimate

Eklund, Kapetanios & Price

Conclusions

The model for the true data y_t

$$y_t = \mu + \sum_{i=1}^q \alpha_i y_{t-i} + \epsilon_t,$$

Assumptions:

- Stationarity of y_t suitable for differenced or detrended data
- Linear functional form

Eklund, Kapetanios & Price

Conclusions

Modelling choices

Bias

$$c^n = c^1 (1+\lambda)^{n-1}$$

c¹ - initial bias in published data
−1 ≤ λ ≤ 0 - rate at which bias decays as data become more mature

2 Serial correlation with respect to time

$$v_t^{t+n} = \sum_{i=1}^p \beta_i v_{t-i}^{t+n} + \varepsilon_t^{t+n}$$

is a finite AR process with maturity invariant parameter
 E (ε_t^{t+n})² = σ_{εⁿ}²

Eklund, Kapetanios & Price

Conclusions

Modelling choices

Bias

$$c^n = c^1 (1+\lambda)^{n-1}$$

- c^1 initial bias in published data
- $-1 \leq \lambda \leq 0$ rate at which bias decays as data become more mature
- Serial correlation with respect to time

$$v_t^{t+n} = \sum_{i=1}^p \beta_i v_{t-i}^{t+n} + \varepsilon_t^{t+n}$$

• is a finite AR process with maturity invariant parameters • $E(\varepsilon_t^{t+n})^2 = \sigma_{\varepsilon^n}^2$

Eklund, Kapetanios & Price

Conclusions

Modelling choices

Iteroscedasticity with respect to maturity

$$\sigma_{\varepsilon^n}^2 = \sigma_{\varepsilon^1}^2 \left(1 + \delta\right)^{n-1}$$

• $\sigma_{\varepsilon^1}^2$ - initial variance in published data

• $-1 \le \delta \le 0$ - rate at which variance decays as data become more mature

Correlation between errors

$$\operatorname{cov}\left(\epsilon_{t},\varepsilon_{t}^{n}\right)=\rho_{\epsilon\varepsilon}\sigma_{\epsilon}\sigma_{\varepsilon^{n}}$$

Eklund, Kapetanios & Price

Conclusions

Modelling choices

Iteroscedasticity with respect to maturity

$$\sigma_{\varepsilon^n}^2 = \sigma_{\varepsilon^1}^2 \left(1 + \delta\right)^{n-1}$$

- $\sigma_{\varepsilon^1}^2$ initial variance in published data
- $-1 \le \delta \le 0$ rate at which variance decays as data become more mature

Orrelation between errors

$$\operatorname{cov}\left(\epsilon_{t},\varepsilon_{t}^{n}\right)=\rho_{\epsilon\varepsilon}\sigma_{\epsilon}\sigma_{\varepsilon^{n}}$$

Eklund, Kapetanios & Price

The model

$$y_t^T = c^n + y_t + v_t^T$$

$$y_t = \mu + \sum_{i=1}^q a_i y_{t-i} + \epsilon_t$$

$$v_t^T = \sum_{i=1}^p b_i v_{t-i}^T + \varepsilon_t^T$$

Eklund, Kapetanios & Price

Revisions

$$w_t^{j,n} = y_t^{t+n+j} - y_t^{t+n}$$

- $\bullet\,$ Can obtain matrix ${\bf W}$ of revisions
 - rows contain revisions of a specific maturity
 - columns contain revisions within a single release

Eklund, Kapetanios & Price

Two-step approach

Using only the latest release - does not mean that past releases are uninformative

1 Using revisions to estimate

- bias (λ, c^1)
- heteroscedasticity $(\delta, \sigma_{\varepsilon^1}^2)$
- serial correlation (b_i)
- correlation with economic activity $(\rho_{\epsilon\varepsilon})$
- **2** Estimate remaining parameters (a_i) using Kalman filter

Eklund, Kapetanios & Price

Conclusions

Reasons for two-step approach

- For $N \to \infty$
 - GMM estimates are \sqrt{NT} consistent
 - ML estimates \sqrt{T} consistent
- More data in the first step lower variability in the estimates
- In practice: variability not taken into account in the second step

Eklund, Kapetanios & Price

Conclusions

Growth for five National Accounts variables

- GDP
- Household consumption
- Whole economy investment
- Economic exports
- Economic imports

Eklund, Kapetanios & Price

Conclusions

Evaluation setup

- Estimation over 1993Q2 2003Q1 releases
- Evaluation period 1998Q2 2003Q1
- \bullet Two subsamples 1998 Q2 - 2000 Q3 and 2000 Q4 - 2003 Q1
- Excluding revisions: 1998Q3 for all variables (ESA 1995) • Revisions
- Comparing forecast from the state space model with published data 16 periods later
- Comparing simple AR forecast based on contemporaneous data with release 16 periods later

Eklund, Kapetanios & Price

Conclusions

Evaluation setup

- Estimation over 1993Q2 2003Q1 releases
- Evaluation period 1998Q2 2003Q1
- \bullet Two subsamples 1998Q2 2000Q3 and 2000Q4 2003Q1
- Excluding revisions: 1998Q3 for all variables (ESA 1995) • Revisions
- Comparing forecast from the state space model with published data 16 periods later
- Comparing simple AR forecast based on contemporaneous data with release 16 periods later

Eklund, Kapetanios & Price

Ratio of RMSFE 1998Q2 to 2003Q1

Minimum in bold,^{*} indicates a significant DM statistic

(a) Fixed four lags for y_t

h	GDP	Consumption	Investment	Exports	Imports
1	0.9186	0.9738	0.8918	0.9083^{*}	0.8745^{*}
2	0.9425	0.9710	0.9444	0.9257^{*}	0.8813
3	0.8899	0.9848	1.0104	0.8766	0.9363
4	0.9400	0.9829	1.0009	0.9551^{*}	0.9685
	(b)	Lag order optin	nally selected	by HQIC	
h	GDP	Consumption	Investment	Exports	Imports
1	0.9186	0.9738	0.8878	0.9682	1.0270
2	0.9425	0.9710	0.9351	0.9313	1.0534
3	0.8899	0.9848	1.0472	0.9302	1.0116
4	0.9400	0.9829	0.9547	0.9860	0.9982

Eklund, Kapetanios & Price

Ratio of RMSFE 1998Q2 to 2000Q3

Minimum in bold,^{*} indicates a significant DM statistic

(a) Fixed four lags for y_t

h	GDP	Consumption	Investment	Exports	Imports
1	0.8183	0.9765	0.9433	0.8551	0.9058
2	0.8898	0.9621	0.9581	0.8586^{*}	0.8271
3	0.8210	0.9680	0.9868	0.6865	0.9461
4	0.8917	0.9712	0.9609	0.9086	1.0371
	(b)) Lag order optin	nally selected	by HQIC	
h	GDP	Consumption	Investment	Exports	Imports
1	0.8183	0.9765	0.9208	0.9575	0.9481
2	0.8898	0.9621	0.9458	0.8593	0.9707
3	0.8210	0.9680	1.0197	0.7962	0.8898
4	0.8917	0.9712	0.9147	0.9690	0.9185

Eklund, Kapetanios & Price

Ratio of RMSFE 2000Q4 to 2003Q1

Minimum in bold,^{*} indicates a significant DM statistic

(a) Fixed four lags for y_t

h	GDP	Consumption	Investment	Exports	Imports
1	1.0653	0.9667	0.8698	0.9323	0.8663
2	1.0641	1.0134	0.9343	0.9522	0.8979
3	1.0360	1.0870	1.0330	1.0039	0.9326^{*}
4	1.0488	1.0420	1.0308	0.9744	0.9328
	(b)) Lag order optin	nally selected	by HQIC	
h	GDP	Consumption	Investment	Exports	Imports
1	1.0653	0.9667	0.8731	0.9726	1.0529
2	1.0641	1.0134	0.9272	0.9600	1.0797
3	1.0360	1.0870	1.0736	1.0017	1.0732
4	1.0488	1.0420	0.9848	0.9925	1.0585

Conclusions

Conclusions

- Using state-space approach to obtain better estimates of the 'true' value
- Practical and parsimonious way of producing backcast series
- Only have short periods for estimation and evaluation
- In the majority of cases forecast performance is improved

Eklund, Kapetanios & Price

Successive estimates of GDP growth in 1993

United Kingdom real GDP

▲ Back

Ratio of RMSFE for simulated data $T = 500, a = 0.6, b = 0.6, r = 100, \delta = 0.5$

(a) Fixed 1 lag for y_t

h	Latest	Backcast	Data $+16Q$
1	0.8983	1.0124	1.2219
2	0.9606	1.0052	0.9708
3	0.9509	0.9933	0.9486
4	0.9730	0.9951	0.9886
(b) 1	ar order or	timally selec	tod by HOIC
(0)	Lag order of	selec	ted by IIQIC
h	Lag order op Latest	Backcast	Data +16Q
	•		
h	Latest	Backcast	Data +16Q
$\frac{h}{1}$	Latest 0.9049	Backcast 1.0172	$\begin{array}{r} \text{Data } +16\text{Q} \\ 1.2155 \end{array}$

Ratio of RMSFE for simulated data $T = 120, a = 0.6, b = 0.6, r = 100, \delta = 0.5$

h	Latest	Backcast	Data $+16Q$
1	0.9043	1.0037	1.2352
2	0.9461	1.0032	0.9643
3	0.9481	0.9900	0.9508
4	0.9662	0.9908	0.9860
(b)	Lag order op	timally selec	ted by HQIC
(b) h	Lag order op Latest	timally selec Backcast	ted by HQIC Data +16Q
h	Latest	Backcast	Data $+16Q$
$\frac{h}{1}$	Latest 0.8946	Backcast 0.9996	Data +16Q 1.2290

(a) Fixed 1 lag for y_t