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Abstract

In this paper we provide a unified methodology in order to conduct likelihood-based
inference on the unknown parameters of a general class of discrete-time stochastic volatil-
ity models, characterized by both a leverage effect and jumps in returns. Given the non-
linear/non-Gaussian state-space form, approximating the likelihood for the parameters is
conducted with output generated by the particle filter. Methods are employed to ensure
that the approximating likelihood is continuous as a function of the unknown parameters
thus enabling the use of Newton-Raphson type maximization algorithms. Our approach is
robust and efficient relative to alternative Markov Chain Monte Carlo schemes employed in
such contexts. The technique is applied to daily returns data for various stock price indices.
We find strong evidence in favour of a leverage effect in all cases. Jumps are an important
component in two out of the four series we consider.

DRAFT: Preliminary and Incomplete

1 Introduction:

The aim of this paper is to conduct likelihood-based inference on a general class of stochastic
volatility models using a ‘smooth’ particle filter. Stochastic volatility (SV) models have gained
considerable interest in theoretical options pricing and financial econometrics literature; in the
latter as an alternative to the well documented ARCH/GARCH-type models. The SV framework
allows variance to evolve according to some latent stochastic process.

In studying the relationship between volatility and asset price/return, a so-called “leverage
effect” refers to the increase in future expected volatility following bad news. The reasoning
underlying is that, bad news tends to decrease price thus leading to an increase in debt-to-
equity ratio (i.e. financial leverage). The firms are hence riskier and this translates into an
increase in expected future volatility as captured by a negative relationship between volatility
and price/return. In the finance literature empirical evidence supportive of a leverage effect
has been provided by Black (1976) and Christie (1982). The state-space form of SV model
that is studied in the bulk of the literature assumes that the measurement and state equation
disturbances are uncorrelated, thus ruling out leverage.

Another characteristic of financial data are “jumps” in the returns process. Jumps can basi-
cally be described as rare events; large, infrequent movement is returns which are an important
feature of financial markets (see Merton (1976)). These have been documented to be important
in characterizing the non-Gaussian tail-behaviour of conditional distributions of returns.

The case of SV with leverage has recently been considered by Christofferesen, Jacobs and
Minouni (2007). They analyse various specificiations of the stochastic volatility model with
leverage, e.g. the affine SQR model of Heston (1993) and also various non-affine models. They
demonstrate the generality and robustness of the smooth particle filter for purposes of parameter
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estimation ( See Pitt (2003)). We add to the literature by providing a very general methodol-
ogy for carrying out maximum likelihood estimation of the parameters of an SV model which
incorporates both leverage and jumps, within a particle filtering framework.

In the subsequent subsections we first describe how the state-space form of the vanilla SV
model can be adapted to allow for leverage, provide a brief literature survey. In Section (2)
we analyse the ‘smooth particle filter’ and describe how it can be used to carry out likelihood-
based inference of model parameters. Section (3) deals with a simulated examples of the SV
with leverage and SV with leverage and jumps model. We provide monte carlo evidence on the
performance of the estimator, in addition to a diagnostic check on filter performance. In Section
(5) we investigate empirical...

Section (6) concludes.

1·1 Stochastic Volatility with Leverage:

Given that the standard stochastic volatility model with uncorrelated measurement and state
equation disturbances is given by,

yt = εt exp(ht/2)
ht+1 = µ(1− φ) + φht + σηηt, t = 1, ...., T (1·1)

where, (
εt

ηt

)
v N(0,Σ) and Σ =

(
1 0
0 1

)
.

Here yt is the observed return, {ht} are the unobserved log-volatilities, µ is the drift in the state
equation, ση is the volatility of log-volatility and φ is the persistence parameter. Allowing for
the disturbances to be correlated implies the covariance matrix has the form,

Σ =
(

1 ρ
ρ 1

)

Furthermore, noting that the disturbances are conditionally Gaussian, we can write ηt = ρ εt +√
(1− ρ2)ξt, where ξt v N(0, 1). The state equation in (1.1) can be re-written as,

ht+1 = µ(1− φ) + φht + σηρεt + ση

√
(1− ρ2)ξt (1·2)

By substituting , εt = yt exp(−ht/2) into (1.2), the model adopts the following Gaussian non-
linear state-space form where the parameter ρ measures the leverage effect.

yt = εt exp(ht/2)
ht+1 = µ(1− φ) + φht + σηρ yt exp(−ht/2) + ση

√
(1− ρ2)ξt (1·3)

Alternatively we could have written εt = ρ ηt +
√

(1− ρ2)ζt, where ζt is again an independent
standard Gaussian. In which case, the stochastic volatility model with leverage is given by,
yt|ηt ∼ N(ρ exp(ht/2)ηt ; (1− ρ2) exp(ht)) where ht+1 = µ(1− φ) + φht + σηηt.

1·2 Stochastic Volatility with Leverage and Jumps

Modifying the stochastic volatility with leverage model to allow for a jumps in the returns
process would yield,

yt = εt exp(ht/2) + Jt$t

ht+1 = µ(1− φ) + φht + σηηt, t = 1, ...., T (1·4)
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(
εt

ηt

)
v N(0,Σ) and Σ =

(
1 ρ
ρ 1

)

Jt = j is the time-t jump arrival where j = 0, 1 is a Bernoulli counter with intensity p. $t v
N(0, σ2

J) dictates the jump size. The leverage effect is incorporated as before noting f(ηt|εt) =
N(ρεt; 1 − ρ2).In constrast to the case with just leverage, now the returns process can jump
with a certain probability. This necessitates simulating εt from the mixture density f(εt|ht, yt),
where,

f(εt|ht, yt) =
1∑

j=0

f(εt|Jt = j; ht, yt) Pr(Jt = j|ht, yt)

If the unconditional probability of a jump (intensity) is p, it follows that the corresponding
conditional probability is given by

Pr(Jt = 1|ht, yt) =
Pr(yt|J = 1)Pr(J = 1)

Pr(yt|J = 1) Pr(J = 1) + Pr(yt|J = 0) Pr(J = 0)

N(yt|0; exp(ht) + σ2
J)p

N(yt|0; exp(ht) + σ2
J)p + N(yt|0; exp(ht))(1− p)

hence, Pr(Jt = 0|ht, yt) = 1− Pr(Jt = 1|ht, yt).Given that,

f(εt|J = 1;ht, yt) ∝ f(yt|J = 1, ht, εt)f(εt)

we can reformulate the conditional density f(εt|J = 1; ht, yt) ∝ N( yt| εt exp(ht/2);σ2
J) ×

N(εt|0; 1) in logarithmic form as,

log f(εt|J = 1;ht, yt) = const− 1
2

(yt − εt exp(ht/2))2

σ2
J

− 1
2
ε2t

The resultant quardratic form facilitates completing the square to yield,

log f(εt|Jt = 1;ht, yt) = K − 1
2

(εt − υε1)
2

σ2
ε1

This implies that,

f(εt|Jt = 1;ht, yt) = N(υε1 , σ
2
ε1) where, υε1 =

yt exp(ht/2)
exp(ht) + σ2

J

and σ2
ε1 =

σ2
J

exp(ht) + σ2
J

Please refer to the appendix for derivation of these moments. If the process does not jump,
there is a dirac delta mass at the point,

f(εt|Jt = 0;ht, yt) =
yt

exp(ht/2)

Hence, our required denisty may be written as,

f(εt|ht, yt) = δ(
yt

exp(ht/2)
) Pr(Jt = 0|ht, yt) + N(υε1 , σ

2
ε1).Pr(Jt = 1|ht, yt).

It is evident from the description of the components of f(εt|ht, yt) that this density with be
characterized by mass at a unique point, yt exp(−ht/2), but continuous elsewhere, and governed
by the moments of N(υε1 , σ

2
ε1). This associated distribution function, F (εt|ht, yt) can be split

into three regions with boundaries delineated as follows1.
1 The continuous component is indicative of fact that identifying whether a jump has actually occured is

confounded by the presence of noise.
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• Pr(Jt = 1|ht, yt).
∫ εt

−∞ f(εt|Jt = 1, ht, yt)dεt for εt < yt exp(−ht/2)

• Pr(Jt = 1|ht, yt).
∫ yt exp(−ht/2)
−∞ f(εt|Jt = 1, ht, yt)dεt + (1 − Pr(Jt = 1|ht, yt)) for εt =

yt exp(−ht/2)

• Pr(Jt = 1|ht, yt).
∫ yt exp(−ht/2)
−∞ f(εt|Jt = 1, ht, yt)dεt + (1− Pr(Jt = 1|ht, yt))

+Pr(Jt = 1|ht, yt).
∫ +∞
εt

f(εt|Jt = 1, ht, yt)dεt for εt > yt exp(−ht/2)

1·3 Survey of the Literature

Primary contributions in modelling leverage within an ARCH/GARCH framework have been
made by Nelson(1991), Glosten, Jagannathan and Runkle (1994) and Engle and Ng (1993).
Asymmetric models put forth in this regard, such as TARCH and EGARCH make conditional
variance a function of the sign in addition to the size of returns.

Amongst the earliest contributions to modelling leverage in the stochastic volatility literature
was made by Harvey and Shephard (1996). The authors extend the Quasi Maximum Likelihood
(QML) technique used in parameter estimation in SV models (see Harvey, Ruiz and Shephard
(1994)) to handle correlation between disturbances. Recognizing that information on correlation
is lost as result of squaring the observations in the process of linearizing the model; the technique
developed by Harvey and Shephard (1996) allows the information to be recovered by carrying out
inference conditional on the signs of observations, i.e. by relating these to filtered volatilities. A
problem with the QML approach is that log ε2t is a poor approximated by the normal distribution
yielding a quasi-likelihood estimator with poor finite sample properties. When applied to daily
CRSP (Centre for Research in Security Prices) and SP30 (Standard and Poors), the authors
find evidence of a leverage effect.

In order to correct for this Kim, Shephard and Chib (1998) the develop an alternative
approach for analysis of SV models employing Markov chain Monte Carlo techniques to provide
a likelihood-based framework. The Kim et al. approach revolves around approximating log ε2t
by a mixture of seven normal densities which in turn facilitates the state-space representation
associated with the Kalman Filter. Omori, Chib, Shephard and Nakajima (2007) extend this
approach to handle leverage in SV models. Following Omori et al. (2007), they specify dt =
sign(yt) = I(εt > 0)−I(εt ≤ 0), y∗t = log y2

t = ht +ςt where ςt = log ε2t and yt = dt exp(y∗t /2). In
the case where ρ = 0, the signs of y = (y1,...,yT )′ and y∗ = (y∗1,...,y

∗
T )′ are independent hence we

can neglect d = (d1,...,dT )′, hence y∗ is a linear process. When ρ 6= 0 the situation is complicated
given that now, dt can not be ignored since, ηt|dt, ςt v N(dtρσ exp(ςt/2), σ2(1 − ρ2)) (equation
(5) in Omori et al). Their approach relies on approximating the bivariate conditional density
f(ςt, ηt|dt) = f(ςt)f(ηt|dt, ςt) using a ten-component mixture of bivariate normal distributions.
They apply this approach to fit a model to daily returns of TOPIX and find evidence of leverage.

Jacquier, Polson and Rossi (1994) also propose a Bayesian MCMC method in order to
construct a Markov chain that can be used to draw directly from the posterior distributions of
the model parameters and unobserved volatilities. In contrast to, for example, Kim, Shephard
and Chib (1998) and Omori et al. (2007), the method advocated by these authors deals with
basic SV model, i.e. not linearized by log-squared transformation.

Jacquier, Polson and Rossi (2004) build upon the MCMC approach put forth in JPR (1994)
to conduct inference in an extended SV model, i.e. to allow for both leverage effect but also
fat-tails in the measurement equation disturbances, where evidence supportive of the latter has
been uncovered by Gallant et al. (1998) and Gweke (1992), amongst others2. Application of

2Jacquier et al assume εt =
√

λtzt where zt is a standard normal variate and λt is distributed as i.i.d. inverse
gamma, whereby the marginal distribution is student-t.

The fat-tailed extension is also explored in Harvey, Ruiz and Shephard (1994) and Kim et al (1998).
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their model to weekly CRSP, daily S&P 500 data as well as a few daily exchange rate series’
yields evidence supportive of the extensions.

Meyer and Yu (2000) also employ a Gibbs sampling approach to perform posterior compu-
tations on an asymmetric SV model and find evidence of a leverage effect in daily Pound/Dollar
exchange rate series. Yu (2005) documents the two main specifications for modelling leverage
in the literature, and notes an important difference between the two which becomes apparent
when the two specifications are written in a gaussian nonlinear state-space form. Whereas, Kim
et al. (1998) and Omori et al. (2007) work with the Euler-Maruyuma approximation for the
continuous time asymmetric SV model. Yu notes that the timing of the variables makes it dif-
ficult to interpret the leverage effect in the Jacquier et al.(2004) specification given we can not
obtain the relationship between E(ht+1|yt) and yt in analytical form. For further discussion, we
refer the reader to Yu (2005, pg 6). He concludes that from an empirical stand point having
tested both specifications on daily S&P 500 and CRSP data, that the specification of the basic
model as used in Shephard et al. (1996, 1998, 2004) is preferred.

Jumps have been documented to be important in characterizing the non-Gaussian tail-
behaviour of conditional returns distributions. In order to characterize this feature of returns,
the approach of estimating SV models with student-t errors have been employed by, for exam-
ple, Chib, Nedari and Shephard (2002) and Sandmann and Koopman (1998). For the same
purposes, an alternative approach employed by Durham (2008) is to use a mixture of Gaussians
for the measurement equation disturbance, εt. This paper uses simulated maximum likelihood
approach to conduct inference.

There have been a several recent contributions in estimating SV models with jumps, albeit
mostly within a ‘Bayesian’ framework. Amongst the earliest are Bates(1996) and Bakshi, Cao
and Chen (1997), which deal with models involving jumps in returns and parameter estimation
carried out via a non-linear generalized least squares/Kalman filtration methodology. This is
extended in Bates(2000) which employs a the same estimation methodolgy for two-factor SV
models with jumps in returns.

Eraker, Johannes and Polson (2003) provide an MCMC strategy for conducting inference
on stochastic volatility models incorporating jumps in returns and also in the volatility pro-
cess,(initially introduced by Duffie et al.(2000)). They conduct empirical analysis on S&P500
and Nasdaq 100 index returns and find strong evidence of jumps in volatility.

2 The Smooth Particle Filter

This paper is concerned with evaluation of state-space models via particle filter. We model
time series {yt, t = 1, ....., T} using state space framework with the state {ht} assumed to be
Markovian. The problem of state estimation within a filtering ‘context’ can be formulated as
the evaluation of the density, f(ht|Yt,), t = 1, ..., T , where Yt = (y1, ....., yt) is contemporane-
ously available information. In linear gaussian state space models the density is Gaussian at
every iteration of the filter and the Kalman filter relations propagate and update the mean and
covariance of the distribution. In nonlinear and/or Non-Gaussian state space models we can
not obtain a closed form expression for the required conditional density and particle filters are
employed in order to recursively generate (an approximation to) the state density.

There is has been considerable work done on the development of simulation based meth-
ods to perform filtering nonlinear gaussian state space models. Leading contributions to the
literature are by Gordon, Salmond and Smith (1993), Kitagawa (1996), Isard and Blake(1996),
Muller(1991) and Shephard and Pitt (1997), Pitt and Shephard (1999) and reviewed by Doucet
et al. (2000). Most of the literature revolves around on-line filtering of the states with very little
work done in the parameter estimation within this framework; see Pitt (2003).
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We begin by providing a description of a particle filter assuming fixed parameters, as put
forth in the seminal paper by Gordon et al. (1993) and then describe how this framework can
be adapted for parameter estimation.

2·1 Particle filtering

2·1.1 Preliminaries:

We assume a known ‘measurement’ density f(yt|ht) and the ability to simulate from the ‘transi-
tion’ density f(ht+1|ht). Particle filters involve using simulation to carry out on-line filtering, i.e.
to learn about the state given contemporaneously available information. Suppose we have a set of
random samples, ‘particles’, h1

t , ....., h
M
t with associated discrete probability masses λ1

t , ...., λ
M
t ,

drawn from the density f(ht|Yt). The principle of Bayesian updating implies that the density
of the state conditional on all available information can be constructed by combining a prior
with a likelihood; recursive implementation of which forms the basis for particle filtering. The
particle filter is hence an algorithm to propagate and update these particles in order to obtain
a sample which is approximately distributed as f(ht+1|Yt+1); the true filtering density,

f(ht+1|Yt+1) ∝ f(yt+1|ht+1)
∫

f(ht+1|ht)dF (ht|Yt) (2·1)

Prediction step :Passing these particles,
{
hi

t

}
, i = 1, ..., M, through the transition density

will yield the prior ‘empirical’ density of the state i.e. hi
t+1 v f(ht+1|hi

t). The state evolution is
initialized by some density f(h0).

Updating step :The prior is combined the likelihood f(yt+1|ht+1) in order to update. This
step relies on a result by Smith and Gelfand (1992) which states that Bayes theorem can be
implemented as a weighted bootstrap, (see also Rubin (1987)).

Theorem 2.1 Following Smith and Gelfand (1992), suppose that our required density is pro-
portional to L(x)G(x), for example, and that we have samples xi v G(x), i = 1, ....,M. If L(x) is
a known function then, the theorem states that the discrete distribution over xi with probability
mass L(xi)/ΣL(xi) on xi tends in distribution to the required density as M →∞.

This is the basis for the updating step, in that on receiving the measurement yt+1, we evaluate
the likelihood at each prior sample hi

t+1.We proceed to calculate normalized weights,

λi
t+1 =

f(yt+1|hi
t+1)∑M

i=1 f(yt+1|hi
t+1)

and hence we obtain a discrete distribution over hi
t+1 with probability mass λi

t+1, i =
1, ...., M. The weighted bootstrap (Rubin (1998) refers to this as SIR; Sampling Importance
Resampling) involves resampling hi

t+1, N times using weights λi
t+1 will yield an approximation

of the desired posterior density, f(ht+1|Yt+1). This prediction-updating procedure is iterated
through the data to in order to produce empirical filtering densities,

f̂(ht+1|Yt+1) ∝ f(yt+1|ht+1)
M∑

i=1

λi
tf(ht+1|hi

t+1) (2·2)

for each time step.It is worth noting that we need to know f(yt+1|ht+1) only up to a propor-
tionality.

Next we look at how this SIR particle filter framework can be exploiting and modified in
order to carry out likelihood evaluation for parameter estimation.
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2·1.2 Likelihood evaluation:

We now assume the model is indexed, possibly in both state and measurement equations, by a
vector of fixed parameters, θ. In order to carry out parameter estimation we need to estimate
the likelihood function, which in log terms is given by;

log L(θ) = log f(y1,....,.yT |θ)

=
T∑

t=1

log f(yt+1|θ;Yt)

via prediction decompostion (e.g. see Harvey(1993)). In order to estimate this function, we
exploit the relationship,

f(yt+1|θ; Yt) =
∫

f(yt+1|ht+1; θ)f(ht+1|Yt; θ)dht+1 (2·3)

The particle filter delivers samples from f(ht|Yt; θ), and we can sample from the transition
density f(ht+1|ht; θ) in order to estimate the integral. The resampling step is crucial. We have
weights (discrete probabilities),

• f(yt+1|hi
t+1)when consdering the stochastic volatility with leverage, or

• f(yt+1|hi
t+1, σ

2
J)3 in the case of stochastic volatility with leverage and jumps,

associated with proposals hi
t+1, i = 1, ...,M. The SIR technique as employed in the Gordon

et al. (1993) algorithm works by replicating those particles with large weights and removes those
with negligible weights. This allows the resultant particles to be more concentrated in domains
of higher posterior probability.

As noted in Pitt (2003), if particles hi
t, i = 1, ..., M drawn from the filtering density f(ht|Yt; θ)

are slightly altered then the proposal samples, hi
t+1, i = 1, ...,M will also alter only slightly, as

in the case of a highly persistent transition function, for example. But on the other hand, the
discrete probabilities associated with these proposals will change as well, the implication of which
is that the even if we generate the same uniforms at each time step, the resampled particles will
not be close. Hence, the conventional weighted bootstrap methods are not ‘smooth’, in the sense
of yielding an estimator of the likelihood which is not continuous as a function of the parameters
θ. This has huge implications for using gradient based maximization and computation of standard
errors using conventional techniques since the likelihood surface will not be smooth.

2·1.3 Smooth bootstrapping:

This procedure works by replacing the discrete cumulative distribution function (cdf) given by
one that is smooth, thus providing particles from the filter which are smooth as a function of θ.
Let us begin by assuming that we need have a 1×M vector of elements hi sorted in ascending
order, with associated discrete probabilities, λi. The time subscript is suppressed for notational
convenience. The discrete cdf used in SIR is given by Ĝ(h) =

∑M
i=1 λiI(h < hi) approximates

the true cdf G(h). In order to obtain a continuous interpolation for, Ĝ(h) we proceed as follows..
We construct partitions of the sample space for h by defining region.i, Si = [hi, hi+1], i =

1, ..., M − 1. Next we assign Pr(i)=1
2(λi + λi+1), Pr(1)=1

2(2λ1 + λ2) and Pr(M − 1)=1
2(λM−1 +

3The exact form of these weights will be provided in the subseqent section. Recall, these weights are normalized
before resampling .
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2λM ), such that these probabilities sum to unity. Within each region we have conditional
densities given by,

g(h|i) =
1

hi + hi+1
, h ∈ Si, i = 2, ...., M − 2

g(h|1) =

{
λ1

2λ1+λ2 , when h = h1

λ1+λ2

2λ1+λ2
1

(h2−h1)
, when h ∈ S1

}

g(h|M − 1) =

{
λM

λM−1+2λM , when h = hM

λ1+λ2

λ1+2λ2
1

(hM−hM−1)
, when h ∈ SM−1

}

By following the above procedure we attain a continuous interpolation for the discrete cdf
, and this ‘continuous’ cdf G̃(h) will pass through the mid-point of each step. As M → ∞,
Ĝ(h) → G̃(h) ⇀ G(h). We sample from the continuous density by selecting region i with Pr(i)
and sample from g(h|i). We detail the resampling procedure below.

Once we obtain the continuous empirical cdf we the task is to implement smooth sampling,
which will yield an ordered sample of particles, say, h∗1, ....., h∗M .We use a stratified sampling
scheme for purposes of this paper. Stratification reduces sample impoverishment and has been
suggested by Kitagawa (1996), Carpenter et al. (1999) and Liu and Chen (1998). In an extreme
case, after a certain amount of updates, the particle system may collapse to a single point
resulting in a poor approximation to the required density4. In contrast to SIR which involves
generating uniforms u1 , ...., uM v UID(0, 1), stratified sampling will require us to generate a
single random variate u v UID(0, 1) from which we can propagate sorted uniforms given by
uj = (j − 1)/M + u/M, j = 1, ....,M.

If Pr(i) = λ̃i = 1
2(λi + λi+1), then the cumulative probability is given by λ

i =
∑i

s=1 λ̃s,
where i = 1, ..., M − 1. Next we define the interval corresponding to region i as,

(
i−1∑

s=1

λ̃s ,
i∑

s=1

λ̃s

]

and the uniform(s) falling within the interval by,

u∗j =
uj − (

∑i−1
s=1 λ̃s)

λ̃i

We can now sample conditional upon that region, i.e. from g(h|i) using the corresponding
uniform(s) u∗j . Since g(h|i) is uniform, the sampled particles can be backed-out as5,

h∗i = (hi +1 − hi)× u∗j + hi

4In the less extreme case, a few particles may survive, but as noted by Carpenter et al (1999), the high degree of
internal correlation yields summary statistics reflective of a substantially smaller sample. In order to compensate
a very large number of particle will need to be generated.

5The algorithm given below samples the index corresponding to the region which are stored as, r1, r2....., rM

and also the uniforms u∗1, ....., u
∗
M .

Smooth resampling Algorithm:
set s=0,j=1;
for (i=1 to M -1)
{
s=s+λ̃i;
while (uj ≤ s AND j ≤ M)
{

rj = i;
u∗j = ( uj − (s− λ̃i )) / λ̃i;
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2·1.4 Constructing the likelihood function:

Once we are able to resample in a smooth manner, the log-likelihood function associated with
the particle filtering scheme used in this paper becomes straight forward to construct. See Pitt
(2002) for a detailed discussion of other possible schemes. We record at each time step the Monte
Carlo estimator of the empirical prediction density, i.e. in the case of stochastic volatility
with leverage,

l̂Lt+1 = log f̂(yt+1|θ; Yt) =
1
M

M∑

i=1

log f(yt+1|hi
t+1) (2·4)

where the non-normalized weights have the following Gaussian form,

f(yt+1|hi
t+1) =

1√
2π exp(hi

t+1)
exp

(
−1

2
y2

t+1

exp(hi
t+1)

)
(2·5)

For stochastic volatility with leverage and jumps,

l̂lJt+1 = log f̂(yt+1|θ;Yt) =
1
M

M∑

i=1

log f(yt+1|hi
t+1, σ

2
J) (2·6)

where the non-normalized weights6 take the form,

f(yt+1|hi
t+1, σ

2
J) =


 1√

2π exp(hi
t+1)

exp
(
−1

2
y2

t+1

exp(hi
t+1)

)
 (1− p)

+


 1√

2π(exp(hi
t+1) + σ2

J

exp
(
−1

2
y2

t+1

exp(hi
t+1) + σ2

J

)
 (p) (2·7)

After running through time we calculate7,

log L̂(θ) =
T∑

t=1

l̂t+1 (2·8)

As long as the transition and measurement densities are continuous in ht+1 and θ, we can
sufficiently ensure log L̂(θ) will be continuous in θ.

3 Simulation Experiments:

3·1 Stochastic Volatility with Leverage

We initialize the states using unconditional density f(h1) v N(µ,
σ2

η

1−φ2 ). After running the
smooth particle filter we maximise the estimated log-likelihood function with respect to θ =

j = j + 1;
}

}

6Observe that setting the jumps compnents σ2
J = p = 0, we recover the stochastic volatility with leverage (or

without leverage) specification for the weights.
7Superscripts L and LJ on l̂t+1 specifiying either case are suppressed for notational convenience.
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(µ, φ, σ2
η, ρ). The associated variance estimates are obtained by taking the negative of the inverse

of the hessian for θ at the mode.
Standard approaches involved in specification analysis of time-series models is to investigate

the properties of residuals in terms of their dynamic structure and unconditional distributions.
This is infeasible given the latent dimension of the model under consideration. Alternatively
therefore, in order to test the hypothesis that the prior and model are true, we write the distri-
bution function as,

ut = F (yt|Yt−1) =
∫

F (yt|ht)f(ht|Yt−1)dht

This cdf can be estimated by;

ût =
1
M

M∑

i=1

F (yt|hi
t) where i = 1, ...., M (3·1)

If the prior and model were true, then the estimated distribution functions, ût v UID(0, 1), for
t = 1, ...., T, as M →∞. (Rosenblatt (1952)).

We now investigate the performance of our maximum likelihood estimator for the SV
with leverage case. First we simulate two time series of length 1000 and 2000 with parameter
values θ = (µ, φ, σ2

η, ρ) = (0.5, 0.975, 0.02,−0.8) and run the smooth particle filter 50 times
using different random number seeds for each run, maximizing the resulting estimated log-
likelihood estimates with respect to θ for each run. This is carried out for M =300 and 600.
The average of 50 maximum likelihood estimates( MLs)and 50 variance estimates (V ar)along
with the variance for the sample of maximum likelihood estimates (V ar(MLs)),are reported for
each case considered. The variance estimates are are obtained by taking the negative of the
inverse of the hessian matrix for θ at the mode. Results are given in Table1.

M=300, T=1000
MLs V ar × 100 V ar(MLs)× 100

µ 0.5447 0.6491 0.01832
φ 0.9770 0.0033 0.00004
σ2

η 0.0143 0.0015 0.00002
ρ -0.7938 0.1867 0.00931

M=600, T=1000
MLs V ar × 100 V ar(MLs)× 100

µ 0.5461 0.6792 0.00534
φ 0.9767 0.0034 0.000016
σ2

η 0.0144 0.0016 0.0000098
ρ -0.7946 0.1868 0.00392

M=300, T=2000
MLs V ar × 100 V ar(MLs)× 100

µ 0.4087 0.3848 0.0066
φ 0.9766 0.0022 0.00003
σ2

η 0.0153 0.0010 0.000009
ρ -0.8166 0.1106 0.00247

M=600, T=2000
MLs V ar × 100 V ar(MLs)× 100

µ 0.4095 0.4181 0.00322
φ 0.9765 0.0023 0.000012
σ2

η 0.0154 0.0011 0.000004
ρ -0.8175 0.1178 0.00150

Table 1: Fixed dataset. Performance of the smooth particle filter for the stochastic volatility
with leverage model for two cases, T=1000 and 2000; considering M=300, 600 for each case.

It is informative to consider the ratio of the variance of the ML estimates in Table 1 to
the variance of each parameter with respect to the data. These are, for M = 300, T = 1000
: (0.0281, 0.0124, 0.0095, 0.0497); M = 600, T = 1000:(0.0078, 0.0046, 0.0062, 0.0192) and
M = 300, T = 2000 : ( 0.0171, 0.0142, 0.0094, 0.0223) and M = 600, T = 2000 :( 0.00757,
0.00489, 0.00393, 0.01186). There is a substantial reduction in these ratios as M increase which
is illustrated by kernel density estimates in Appendix (Fig: 1 and 2).
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M=200
MLs V ar × 100 V ar(MLs)× 100

µ 0.5107 0.6045 2.3506
φ 0.9726 0.0062 0.0073
σ2

η 0.0206 0.0043 0.0045
ρ -0.7859 0.2248 0.6067

M=500
MLs V ar × 100 V ar(MLs)× 100

µ 0.5154 0.6744 2.3482
φ 0.9728 0.0051 0.0057
σ2

η 0.0204 0.0033 0.0044
ρ -0.7895 0.1569 0.5722

M=3000
MLs V ar × 100 V ar(MLs)× 100

µ 0.5164 0.6824 2.353
φ 0.9728 0.0056 0.0053
σ2

η 0.0205 0.0034 0.0040
ρ -0.7911 0.2126 0.5627

Table 2: 50 different datasets. Analysis of the maximum likelihood estimator for stochastic
volatility with leverage model for cases, M=200, 500 and 3000. T=1000 in all cases.

Next, we generated 50 different time series each of length T = 1000, with fixed values of
parameters θ = (µ, φ, σ2

η, ρ) = (0.5, 0.975, 0.02,−0.8) as before. Keeping the random num-
ber seed fixed and running the smooth particle filter in turn for each of the time series,we
maximize the estimated log-likelihoods with respect to θ for each run. The average of 50 max-
imum likelihood estimates (MLs)and 50 variance estimates (V ar) along with mean squared
errors (V ar(MLs)) are reported in Table 2 for each of three cases considered. The histograms
in the Appendix (Fig 3,4 and 5) indicate that the distribution of the parameters is not too
far from normality. In all cases we find that biases are not significantly different from zero8

and the true values of the parameters lie well within their 95% confidence limits. The proce-
dure does not throw up any outliers and we have no problem with convergence to the mode.

3·2 Stochastic Volatility with Leverage and Jumps

In comparison to the SV with leverage case, the incorporation of a jumps in the returns pro-
cess requires our procedure to include an additional step, i.e. simulating εi

t v f(εi
t|hi

t, yt),
i = 1, ....., M . The method for obtaining the required sample is detailed in the Appendix. Once
these samples are obtained we can evaluate the integral f(ηt|yt,ht) =

∫
f(ηt|εt)f(εt|yt,ht)dεt

where f(ηt|εt) = ρ εt +
√

(1− ρ2)ξt, and ξt v N(0, 1). The states are again intialized using

unconditional density f(h1) v N(µ,
σ2

η

1−φ2 ). We run the smooth particle filter9 and maximize the

8E(θ̂)− θ = Bias v N(0, MSE
50

) where the mean squared error (MSE) is E[(θ̂ − θ)2] .
9Our implementation of the particle filter in the context of the leverage and jumps case allows us to estimate

the posterior probability of a jump, Pr(Jt = 1|Yt−1) =
∫

Pr(Jt = 1|yt; ht)f(ht|Yt−1)dht by

P̂r(Jt = 1|Yt−1) =
1

M

M∑
i=1

Pr(Jt = 1|yt, h
i
t)
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estimated log-likelihood with respect to the parameter vector θ = (µ, φ, σ2
η, ρ, σ2

J , p). In order to
test the hypothesis that the prior and model are true in the case of SV with leverage and jumps we
estimate the distribution function for this case, i.e. uJ

t = F (yt|Yt−1) =
∫

F (yt|ht)f(ht|Yt−1)dht

as,

ûJ
t =

(
1
M

M∑

i=1

F (yt|hi
t)

)
(1− p)+

(
1
M

M∑

i=1

F (yt|hi
t + σ2

J)

)
(p) , i = 1, ....,M (3·2)

and proceed to test if ûJ
t v UID(0, 1), t = 1, ...., T.

M=300, T=1000
MLs V ar × 100 V ar(MLs)× 100

µ 0.5595 3.0020 0.06023
φ 0.9648 0.0103 0.00021
σ2

η 0.0458 0.0186 0.00020
ρ -0.7072 1.0326 0.01629
σ2

J 10.176 813.98 6.9054
p 0.0769 0.0754 0.00120

M=600, T=1000
MLs V ar × 100 V ar(MLs)× 100

µ 0.5650 2.9623 0.03853
φ 0.9648 0.0103 0.00013
σ2

η 0.0461 0.0192 0.00012
ρ -0.7026 1.0333 0.00665
σ2

J 10.174 823.13 2.5625
p 0.0764 0.0771 0.00045

M=300, T=2000
MLs V ar × 100 V ar(MLs)× 100

µ 0.4770 1.2653 0.03098
φ 0.9680 0.00522 0.00013
σ2

η 0.0338 0.00661 0.000123
ρ -0.7419 0.7275 0.01352
σ2

J 7.7568 207.71 1.1959
p 0.11263 0.0659 0.00079

M=600, T=2000
MLs V ar × 100 V ar(MLs)× 100

µ 0.4830 1.2760 0.01097
φ 0.9681 0.0052 0.00005
σ2

η 0.0338 0.0067 0.00008
ρ -0.7394 0.7425 0.00622
σ2

J 7.7929 216.21 0.87021
p 0.1115 0.0667 0.00047

Table 3: Fixed dataset. Performance of the smooth particle filter for the stochastic volatility
model with leverage and jumps for two cases, T=1000 and 2000; considering M=300, 600 for
each case.

We again run the smooth particle filter 50 times keeping the dataset fixed, setting paramters
θ = (µ, φ, σ2

η, ρ, σ2
J , p) = (0.5, 0.975, 0.02,−0.8, 10, 0.10) and using a different random number

seed for the filter for each run. In Table 3, the average of 50 maximum likelihood estimates
(MLs)and 50 variance estimates (V ar), along with the variance for the sample of maximum
likelihood estimates (V ar(MLs)),are reported for different cases considered. We compute the
variance covariance matrix in using the variance of the scores, i.e. the outer product of gradients
(OPG) estimator.

We consider the ratio of the variance of the ML estimates to the variance of each parameter
with respect to the data. These are, for M = 300, T = 1000 : (0.0201, 0.0209, 0.0108, 0.01578,
0.0085, 0.0159); M = 600, T = 1000:(0.0131, 0.0132, 0.0062, 0.0064, 0.0032, 0.0059); M =
300, T = 2000 : (0.0245, 0.0251, 0.0186, 0.0186, 0.0058, 0.0121) and M = 600, T = 2000 :
(0.0086, 0.0095, 0.0121, 0.0084, 0.0040, 0.0070). These ratios suggest that the variance of the
simulated estimates is small in comparison to the variance induced by the data. The reduction in
the variance of the ML estimates ratios as M increases is illustrated by kernel density estimates
in Appendix (Fig: 6 and 7).
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Next, we generate 50 different time series each of length T = 1000, setting values of parame-
ters θ = (µ, φ, σ2

η, ρ, σ2
J , p) = (0.5, 0.975, 0.02,−0.8, 10, 0.10). Keeping the random number seed

fixed and run the smooth particle filter in turn for each of the time series, we maximize the
estimated log-likelihoods with respect to θ for each run. The average of 50 maximum likelihood
estimates (MLs) and 50 variance estimates (V ar) along with mean squared errors (V ar(MLs))
are reported in Table 4. for each of three cases considered. Variance estimates are computed
using the OPG estimator for the variance covanriance matrix.

M=200
MLs V ar × 100 V ar(MLs)× 100

µ 0.49151 2.0908 1.7937
φ 0.97101 0.013972 0.018073
σ2

η 0.022110 0.0086659 0.0071614
ρ -0.84684 1.3943 1.1835
σ2

J 9.8470 954.42 621.81
p 0.10458 0.13002 0.069915

M=500
MLs V ar × 100 V ar(MLs)× 100

µ 0.50006 2.2045 1.5714
φ 0.97186 0.015317 0.010667
σ2

η 0.022389 0.0097163 0.0064737
ρ 0.83714 1.4793 1.1215
σ2

J 9.8013 1018.7 637.60
p 0.10358 0.13667 0.063125

M=900
MLs V ar × 100 V ar(MLs)× 100

µ 0.49720 2.1724 1.6280
φ 0.97203 0.014559 0.0099983
σ2

η 0.022474 0.0090217 0.0075645
ρ -0.84500 1.5008 1.1664
σ2

J 9.8524 1007.0 648.20
p 0.10367 0.13505 0.065325

Table 4: 50 different dataset. Analysis of the maximum likelihood estimator for stochastic volatil-
ity with leverage model for cases, M=200, 500 and 900. T=1000 in all cases.

The corresponding histograms in Appendix (Figs.8,9 and 10) suggest convergence towards
the mode and we are not far from normality. In testing for bias we find very encouraging
results. We find that all parameters, except the leverage parameter ρ which is estimated with
slight bias, are either within, or on the boundary of their 95% confindence limits. The results
are stable across different values of M . We note that the settings for this experiment were one
of a large jump variance σ2

J with very arrival high intensity, p. One would expect the additional
noise induced by these setting to render the estimation of the stochastic volatility components
less accurate. Our findings suggest that inspite of having large jumps with high intensity, our
procedure delivers highly reliable estimates for all the parameters.

Next we investigate how the error in estimation is affected by varying the intensity and jumps
size.

The results in Table 5 suggest that having small jumps occuring with high intensity induces
a slight amount of bias is estimating of σ2

η, ρ and p. In contrast, if large jumps occur at a very
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Small Jump - High Intensity
MLs V ar × 100 V ar(MLs)× 100

µ 0.21240 3.4545 2.7098
φ 0.97290 0.0066247 0.0072527
σ2

η 0.029170 0.013178 0.014784
ρ -0.85636 0.70314 0.66880
σ2

J 0.63322 9516.9 60.103
p 0.23544 43614 6.8037

Table 5: 50 different dataset. Analysis of the maximum likelihood estimator for stochastic volatil-
ity with leverage and jumps model. We set parameter values; µ = 0.25, φ = 0.975, σ2

η = 0.025,
ρ = −0.8, σ2

J = 0.5 and p = 0.10. M=300 and T=1000 .

Large Jump - Low Intensity
MLs V ar × 100 V ar(MLs)× 100

µ 0.25359 1.9024 1.3926
φ 0.97293 0.0063159 0.0074348
σ2

η 0.026733 0.0066633 0.0070814
ρ -0.82253 0.55547 0.42255
σ2

J 9.6201 2162.1 3884.2
p 0.013252 0.075626 0.020192

Table 6: 50 different datasets. Analysis of the maximum likelihood estimator for stochastic
volatility with leverage and jumps model. We set parameter values; µ = 0.25, φ = 0.975,
σ2

η = 0.025, ρ = −0.8, σ2
J = 10 and p = 0.01. M=300 and T=1000 .
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low frequency, i.e.setting p = 0.01, the accuracy of our estimates is greatly enhanced (Table
6.). All parameters fall well within their 95% confidence limits with only moderate bias in the
estimate of leverage. See histograms in Appendix (Fig. 11 and 12).

4 Empirical examples:

We now employ our methodology to estimate the following models; (i) stochastic volatility (SV),
(ii) stochastic volatility with leverage (SVL) and (iii) stochastic volatility with leverage and jumps
(SVLJ) using daily returns data for four different price indices, namely S&P 500, FTSE100, Dow
Jones and Nasdaq. For each of the series’, the parameter estimates along with standard errors
and log-likelihood values for the three specifications are reported in Tables 7,8,9 and10

S&P 500
ML estimate Standard error

SV
µ 0.1717 0.1872
φ 0.9832 0.0056
σ2

η 0.0218 0.0048
Log-likelihood value = −3044.1

SVL
µ 0.2432 0.0983
φ 0.9739 0.0040
σ2

η 0.0307 0.0044
ρ -0.7944 0.0426
Log-likelihood value = −2996.4

SVLJ
µ 0.2498 0.1010
φ 0.9766 0.0041
σ2

η 0.0266 0.0048
ρ -0.8303 0.0444
σ2

J 5.2607 2.0453
p 0.0079 0.0026
Log-likelihood value = −2993.7

Table 7: Parameter estimates for S&P 500 daily returns data for period, 16/05/1995 -
24/04/2003. M=500.

The results reported indicate that the gain in likelihood points moving from the SVL to
SVLJ specification is small compared to the gain in points by incorporating only leverage in
the SV specification. Table 11. provided likelihood ratio statistics when comparing different
specifications.

For the time span of data considered we find that leverage is extremely important compo-
nent in modelling stochastic volatility whereas including jumps in addition to leverage yield a
statistically significant gain in the case Dow Jones and Nasdaq. Results of the diagnostic check
on the SVLJ specification reveal that the pior and model are true in all cases. See Appendix
(Fig 13,14,15 and 16).

15



FTSE 100
ML estimate Standard error

SV
µ 0.0751 0.2093
φ 0.9859 0.0052
σ2

η 0.0176 0.0046
Log-likelihood value = −3004.4

SVL
µ 0.1135 0.1257
φ 0.9842 0.0037
σ2

η 0.0201 0.0040
ρ -0.7825 0.0509
Log-likelihood value = −2972.8

SVLJ
µ 0.0638 0.1262
φ 0.9836 0.0038
σ2

η 0.0212 0.0042
ρ -0.8029 0.0584
σ2

J 1.4652 1.0376
p 0.0132 0.0229
Log-likelihood value = −2972.2

Table 8: Parameter estimates for FTSE 100 daily returns data for period, 01/07/1996 -
01/03/2004. M=500.
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Dow Jones
ML estimate Standard error

SV
µ -0.2379 0.1717
φ 0.9830 0.0061
σ2

η 0.0183 0.0043
Log-likelihood value = −2623.5

SVL
µ -0.1745 0.0963
φ 0.9805 0.0035
σ2

η 0.0213 0.0037
ρ -0.8282 0.0410
Log-likelihood value = −2586.7

SVLJ
µ -0.1557 0.0988
φ 0.9825 0.0034
σ2

η 0.0189 0.0036
ρ -0.8640 0.0451
σ2

J 18.706 12.43
p 0.0018 0.0014
Log-likelihood value = −2579.2

Table 9: Parameter estimates for Dow Jones Composite daily returns data for period,
01/05/2000 - 31/12/2007. M=500.
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Nasdaq
ML estimate Standard error

SV
µ 0.7193 0.5488
φ 0.9973 0.0016
σ2

η 0.0054 0..0156
Log-likelihood value = −3457.6

SVL
µ 0.4877 0.1834
φ 0.9942 0.0014
σ2

η 0.0077 0.0016
ρ -0.8291 0.0543
Log-likelihood value = −3429.3

SVLJ
µ 0.2615 0.1564
φ 0.9930 0.2284
σ2

η 0.0131 0.0016
ρ -0.8411 0.0034
σ2

J 0.4781 0.0503
p 0.5599 0.0848
Log-likelihood value = −3423.3

Table 10: Parameter estimates for Nasdaq Composite daily returns data for period, 01/05/2000
- 31/12/2007. M=500.

Likelihood Ratio Test Statistic
SV vs SVL SVL vs SVLJ

S&P 500 95.4** 5.4
FTSE 100 63.2** 1.2
Dow Jones 73.6** 15**
Nasdaq 56.6** 12**

Table 11: (*) indicates statistical significance at 5% critical level.
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5 Conclusion:
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6 Appendix

Computation of moments of f(εt|J = 1;ht, yt) :
We begin by noting that f(εt|J = 1;ht, yt) ∝ f(yt|J = 1, ht, εt)f(εt),

=⇒ f(εt|J = 1;ht, yt) ∝ N( yt| εt exp(ht/2);σ2
J)×N(εt|0; 1)

On taking logarithmic transformation of the conditional density f(εt|J = 1;ht, yt) we obtain,

= const− 1
2

(yt − εt exp(ht/2))2

σ2
J

− 1
2
ε2t

We need to complete squares on this expression to obtain the general form,

f(εt|Jt = 1;ht, yt) = K − 1
2

(εt − υε1)
2

σ2
ε1

In order to do this first collect the squared terms corresponding to −1
2ε2t ;

1
σ2

ε1

=
exp(ht)

σ2
J

+ 1 =
exp(ht) + σ2

J

σ2
J
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=⇒ σ2
ε1 =

σ2
J

exp(ht) + σ2
J

Next those corresponding to εt;
υε1

σ2
ε1

=
yt exp(ht/2)

σ2
J

=⇒ υε1 =
yt exp(ht/2)
exp(ht) + σ2

J

Therefore we establish that f(εt|J = 1;ht, yt) = N(υε1 , σ
2
ε1).

Sampling from the mixture density f(εt|ht, yt) :
In the context of the particle filter, the generation of hi

t, i = 1, ....., M particles each time
step, will give rise to densities, f(εi

t|hi
t, yt), i = 1, ..., M. The aim is thus to simulate ε1t , ....., ε

M
t ,

from corresponding densities f(ε1t |h1
t , yt), ....., f(εM

t |hM
t , yt). We shall illustrate the procedure to

simulate ε1t from density f(ε1t |h1
t , yt) =

∑1
j=0 f(ε1t |Jt = j;h1

t , yt) Pr(Jt = j|h1
t , yt). Given that

the density corresponding to particle h1
t is of the form,

f(ε1t |h1
t , yt) = δ(yt exp(−h1

t /2)). Pr(Jt = 0|h1
t , yt) + N(υ1

ε1 , σ
21

ε1 ). Pr(Jt = 1|h1
t , yt).

For notational simplicity we set x∗ = yt exp(−h1
t /2) and the conditional probability of a jump

to be PrJ = Pr(Jt = 1|h1
t , yt). The associated distribution function F (ε1t |h1

t , yt) is thus of the
form.

F (ε1t |h1
t , yt) = PrJ .

∫ ε1t
−∞ f(εt|Jt = 1, ht, yt)dεt for ε1t < x∗

F (ε1t |h1
t , yt) = PrJ .

∫ x∗
−∞ f(ε1t |Jt = 1, h1

t , yt)dε1t + (1− PrJ) for ε1t = x∗

F (ε1t |h1
t , yt) = PrJ .

∫ x∗
−∞ f(ε1t |Jt = 1, h1

t , yt)dε1t + (1− PrJ) + PrJ .
∫ +∞
ε1t

f(ε1t |Jt = 1, h1
t , yt)dε1t for ε1t > x∗

As is evident from the form of F (ε1t |h1
t , yt), the height of this distribution function can be split

into three distinct regions. First generate a uniform random variate u1 v UID(0, 1), then record
within which region u1 falls. Conditional on the recorded region we then invert in accordance
with the following scheme.

If u1 ≤ Φ(
x∗−υ1

ε1
σ1

ε1

). PrJ , we sample ε1t = υ1
ε1 + σ1

ε1Φ
−1( u1

PrJ )

If Φ(
x∗−υ1

ε1
σ1

ε1

). PrJ < u1 ≤ Φ(
x∗−υ1

ε1
σ1

ε1

). PrJ +(1− PrJ), we sample ε1t = yt exp(−h1
t /2)

If u1 > Φ(
x∗−υ1

ε1
σ1

ε1

). PrJ +(1− PrJ), we sample ε1t = υ1
ε1 + σ1

ε1Φ
−1(u1−(1−PrJ )

PrJ )

Φ(.) denotes the standard normal distribution function. The above probablity integral tran-
form procedure is repeated for each of the generated uniforms u1,......, uM v UID(0, 1). in order
to obtain the sample εi

t v f(εi
t|hi

t, yt), i = 1, ....., M.
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Figure 1: Fixed dataset. Dotted line:Kernel density estimate of the ML estimator for θ =
(µ, φ, σ2

η, ρ), for SV with leverage model; T = 1000 and M = 300. Solid line: Kernel density
estimate of the ML estimator for θ = (µ, φ, σ2

η, ρ), for SV with leverage model; T = 1000 and
M = 600. True parameters, µ = 0.5, φ = 0.975, σ2

η = 0.02 and ρ = −0.8.
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Figure 2: Fixed dataset. Dashed line:Kernel density estimate of the ML estimator for θ =
(µ, φ, σ2

η, ρ), for SV with leverage model; T = 2000 and M = 300. Solid line: Kernel density
estimate of the ML estimator for θ = (µ, φ, σ2

η, ρ), for SV with leverage model; T = 2000 and
M = 600. True parameters, µ = 0.5, φ = 0.975, σ2

η = 0.02 and ρ = −0.8.
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Figure 3: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ), for SV with leverage model. True parameters, µ = 0.5, φ = 0.975, σ2
η = 0.02

and ρ = −0.8. M = 200 and T = 1000.
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Figure 4: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ), for SV with leverage model. True parameters, µ = 0.5, φ = 0.975, σ2
η = 0.02

and ρ = −0.8. M = 500 and T = 1000.
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Figure 5: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ), for SV with leverage model. True parameters, µ = 0.5, φ = 0.975, σ2
η = 0.02

and ρ = −0.8. M = 3000 and T = 1000.
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Figure 6: Fixed datasets. Dashed line:Kernel density estimate of the ML estimator for θ =
(µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model; T = 1000 and M = 300. Solid line:

Kernel density estimate of the ML estimator for θ = (µ, φ, σ2
η, ρ, σ2

J , p), for SV with leverage
and jumps model; T = 1000 and M = 600. True parameters, µ = 0.5, φ = 0.975, σ2

η = 0.02 and
ρ = −0.8., σ2

J = 10 and p = 0.10.
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Figure 7: Fixed datasets. Dashed line:Kernel density estimate of the ML estimator for θ =
(µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model; T = 2000 and M = 300. Solid line:

Kernel density estimate of the ML estimator for θ = (µ, φ, σ2
η, ρ, σ2

J , p), for SV with leverage
and jumps model; T = 2000 and M = 600. True parameters, µ = 0.5, φ = 0.975, σ2

η = 0.02 and
ρ = −0.8, σ2

J = 10 and p = 0.10.
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Figure 8: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model. True parameters, µ = 0.5, φ =

0.975, σ2
η = 0.02 and ρ = −0.8, σ2

J = 10 and p = 0.10. M = 200 and T = 1000.
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Figure 9: 50 different dataset. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model. True parameters, µ = 0.5, φ =

0.975, σ2
η = 0.02 and ρ = −0.8, σ2

J = 10 and p = 0.10. M = 500 and T = 1000.
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Figure 10: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model. True parameters, µ = 0.5, φ =

0.975, σ2
η = 0.02 and ρ = −0.8, σ2

J = 10 and p = 0.10. M = 900 and T = 1000.
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Figure 11: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model. True parameters, µ = 0.25, φ =

0.975, σ2
η = 0.025 and ρ = −0.8, σ2

J = 0.5 and p = 0.10. M = 300 and T = 1000.

32



−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

2

4

6 mu

0.95 0.96 0.97 0.98 0.99

25

50

phi

0.01 0.02 0.03 0.04 0.05

20

40

sigma

−0.95 −0.90 −0.85 −0.80 −0.75 −0.70 −0.65 −0.60

2.5

5.0

7.5 rho

0 10 20 30

0.025

0.050

0.075 sigmaJ

0.000 0.025 0.050 0.075 0.100

20

40

60 p

Figure 12: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model. True parameters, µ = 0.25, φ =

0.975, σ2
η = 0.025 and ρ = −0.8, σ2

J = 10 and p = 0.01. M = 300 and T = 1000.
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Figure 13: Filter diagnostics in the context of modelling stochastic volatility with leverage and
jumps using daily S&P 500 returns over the period 16/05/1995 - 24/04/2003.(Above) QQ-plot
of estimated distribution functions, ûJ

t . (Below) Correlogram of ûJ
t .M = 500.
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Figure 14: Filter diagnostics in the context of modelling stochastic volatility with leverage and
jumps using daily FTSE 100 returns over the period 01/07/1996 - 01/03/2004.(Above) QQ-plot
of estimated distribution functions, ûJ

t . (Below) Correlogram of ûJ
t . M = 500.
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Figure 15: Filter diagnostics in the context of modelling stochastic volatility with leverage and
jumps using daily Dow Jones Composite 65 Stock Av erage returns over the period 01/05/2000
- 31/12/2007.(Above) QQ-plot of estimated distribution functions, ûJ

t . (Below) Correlogram of
ûJ

t . M = 500.
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Figure 16: Filter diagnostics in the context of modelling stochastic volatility with leverage and
jumps using daily Nasdaq Composite returns over the period 01/05/2000 - 31/12/2007.(Above)
QQ-plot of estimated distribution functions, ûJ

t . (Below) Correlogram of ûJ
t . M = 500.
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