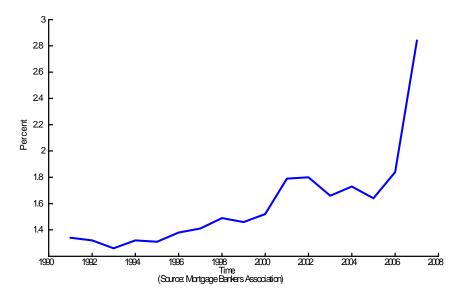
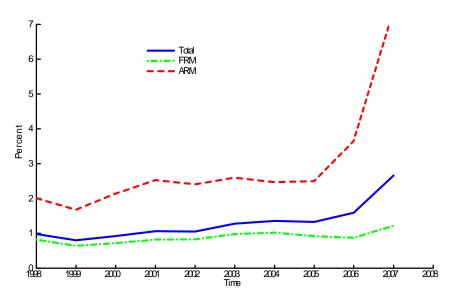
House Prices, Foreclosures, and Bailouts

Carlos Garriga, FRB of St. Louis Don Schlagenhauf, Florida State University


September 19, 2008

Garriga and Schlagenhauf (2008)

Foreclosures and House Prices


September 19, 2008 1 / 27

Evolution of Foreclosures U.S.: 1990-2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Foreclosures by Loan Type U.S.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Objective of the paper is to contruct a model capable of saying somethings about:

- The determinants of foreclosure (i.e. how many, who's, etc...)
- Understand the levels of foreclosure across loan products
- Maybe to say something about the observed spike in foreclosures and its composition across loans.
- The cost and effects associated to bailouts in the mortgage industry

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Ownership: We want to have the right amount of owners

- Approximately 2/3 of US households own the home they occupy.
- Renters are skewed towards young and poor households.
- House size:
 - The average size rental-occupied 1/2 owner-occupied.
 - The average size of a house changes over the life-cyle.
- Home purchase:
 - Most home are purchased with long-term mortgage only 5 percent are purchased cash.
 - 1/3 of the homes are owned free and clear
- Foreclosures: Large for loans with high LTV and adjustable payments.

Some relevant housing literature

- Housing (short-term loans): Ortalo-Magne and Rady, Davis and Heathcote (2006), Díaz and Luengo (2005), Nakajima (2004), Ríos-Rull and Sánchez-Marcos (2008), Kiyotaki, Michaelides, and Nikolov (2007), Carroll and Li (2008).
- Default with unsecured lending: Athreya (2002), Li and Sarte (2006), Livshits, MacGee, and Tertilt (2007), Chatterjee, Corbae, Nakajima, and Ríos-Rull (2005), Chatterjee, Corbae, and Ríos-Rull (2006), Athreya, Tam, and Young (2008), Sánchez (2008), Drozd and Nosal (2008), Nakajima (2008), Mateos-Planas and Ríos-Rull (2008).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ = のへで

• Housing and default with short-term mortgages: Jeske and Krueger (2005)

- Housing (short-term loans): Ortalo-Magne and Rady, Davis and Heathcote (2006), Díaz and Luengo (2005), Nakajima (2004), Ríos-Rull and Sánchez-Marcos (2008), Kiyotaki, Michaelides, and Nikolov (2007), Carroll and Li (2008).
- Default with unsecured lending: Athreya (2002), Li and Sarte (2006), Livshits, MacGee, and Tertilt (2007), Chatterjee, Corbae, Nakajima, and Ríos-Rull (2005), Chatterjee, Corbae, and Ríos-Rull (2006), Athreya, Tam, and Young (2008), Sánchez (2008), Drozd and Nosal (2008), Nakajima (2008), Mateos-Planas and Ríos-Rull (2008).
- Housing and default with short-term mortgages: Jeske and Krueger (2005)

 \Rightarrow This paper extends the framework developed in Chambers, Garriga, and Schlagenhauf (2005) with **housing and long-term mortgages** to include a **default option.**

• Anti-Deficiency Law

- The mortgage holder **is not** responsible for the deficit between the proceeds from the selling of the property and the outstanding loan balance on the purchase money mortgage.
- Anti-Deficiency Law does not provide protection for secondary mortgages, home equity lines, or mortgages on non primary residents

DQC.

• Anti-Deficiency Law

- The mortgage holder **is not** responsible for the deficit between the proceeds from the selling of the property and the outstanding loan balance on the purchase money mortgage.
- Anti-Deficiency Law does not provide protection for secondary mortgages, home equity lines, or mortgages on non primary residents

Deficiency Law

• The mortgage holder **is** responsible for the deficit between the proceeds from the sales of the property and the outstanding loan balance.

(日) (문) (문) (문) (문)

DQC

Housing Model with Default

- Economy with global capital markets
- Life Cycle Households
 - Idiosyncratic income risk, and uncertain life expectancy
 - Borrowing constraints, no annuity markets
 - Decisions: Consumption, savings, housing, foreclosures
- Production of Goods
- Construction Sector: Manufactures new homes and housing investment

・ロト ・母ト ・ヨト ・ヨー うへで

- Mortgage Brokers: Provide housing finance
- Government: Social security and bailouts

- Lumpy with minimum size <u>h</u> > 0.
- Consumption/Investment good that generate service flows d = g(h')
- Rental market for housing services R(h' d).
- Homes maintenance depends on utilization, $\varphi(h', d)$
- Selling a house is subject to an i.i.d. capital gains shock $p\xi h$ where $E(\xi) = 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Non-convex adjustment costs $\kappa(h' \neq h, h) > 0$

Housing Finance: Long-term contracts with default option

- Finite set of mortgage loans available, $z \in Z$.
- Lender is commited to the loan a finite number of periods, N.
- Mortgage loans differ by downpayment $\chi(z)$, repayment structure m(n), interest rate, r(z)
- Initial loan amount

 $D(N) = (1 - \chi(z))ph'$

• Default option is exercised at time of sale

 $max(\Pi_{\xi}, 0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $\Pi_{\xi} = (1 - \phi_s) p \xi h - D(n, z)$

- Mortgage brokers use capital market to finance mortgage lending.
- We assume a competitive lending sector that maximizes expected profits per mortgage contract, *z*.
- The mortgage rate charged is given by $r^* + \varrho(z)$, where $\varrho(z)$ is a loan specific premium.
- Profit condition for mortgage contract z

 $M_{r^*+\varrho(z)}(z) - rRP' + FL = 0$

where

 $M_{r^*+\varrho(z)}(z) =$ Mortgage interest payments RP' =Beginning of next period Outstanding Principal FL =Proceedings from selling foreclosed properties

Structure of household's decisions: Renters (h=0)

 $v(x) = \max\{v^r, v^o\}$

where $x = (a, h, n, z, \epsilon, j)$

 $\begin{bmatrix} \text{Rent: } v^{r}(x) = \max_{(c,d,a')} u(c,d) + \beta_{j+1} E_{\epsilon} v(x') \\ s.t. \quad c+a' + Rd = y(x) \end{bmatrix}$ $\text{Own: } v^{o}(x) = \max_{(c,d,a',h',z')} u(c,d) + \beta_{j+1} E_{\epsilon} v(x'), \\ s.t. \quad c+a' + [\phi_{b} + \chi(z')] ph' + m(z') = y(x) \end{bmatrix}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Structure of household's decisions: Owners (h>0)

 $v(x) = \max\{v^s, v^c, v^r\}$

Stay:
$$v^{m}(x) = \max_{(c,d,a')} u(c,d) + \beta_{j+1} E_{\varepsilon} v(x')$$

s.t. $c + a' + m(z) = y(x)$
Change: $v^{c}(x) = \max_{(c,d,a',h',z')} E_{\xi,\varepsilon} [u(c,d,\varphi I_{f}) + \beta_{j+1} v(x')],$
s.t. $c + a' + [\phi_{b} + \chi(z')]ph' + m(z') = y(x) + \max(\Pi_{\xi}, 0)$
i) Repay $(I_{f} = 0)$: $\Pi_{\xi} = (1 - \phi_{s})p\xi h - D(x) \ge 0$
ii) Foreclosure $(I_{f} = 1)$: $\Pi_{\xi} = (1 - \phi_{s})p\xi h - D(x) < 0$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□▶

Construction Sector

- Manufactures new homes and housing investment using a linear reversible technology, $I_H = C_H / \theta$,
- Optimization problem competitive firm

 $\max_{H,C_H} pI_H - C_H$ s.t. $I_H = C_H/\theta$

• Equilibrium house price satisfies

 $p = \theta$

• The aggregate law of motion for housing investment is

$$I_{H} = (1+\rho)H' - H + \varkappa(H, \delta_{o}, \delta_{r}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Mapping the Model and the Data (I)

• Preferences:

$$U(c, d) = \gamma rac{c^{1-\sigma_1}}{1-\sigma_1} + (1-\gamma) rac{d^{1-\sigma_2}}{1-\sigma_2}$$

• Technology:

 $F(K,L) = K^{\alpha}L^{1-\alpha}$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のQで

Statistic	Target	Model
Ratio of capital to GDP (K/Y)	2.54	2.54
Ratio of housing to capital stock (H/K)	0.48	0.43
Housing investment to housing stock (x_H/H)	0.04	0.04
Ratio housing services to consumption (Rd/c)	0.24	0.23
Ratio capital investment to GDP $(\delta K / Y)$	0.14	0.14
Capital Income Share	0.29	0.29
Homeownership rate	66.3	66.5
Default rate (Non FRM)	0.02	0.02

Housing Distributions: Model and Data

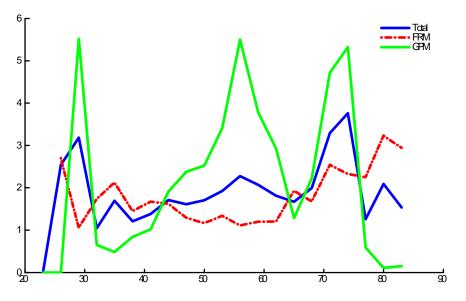
	Homeownership Rate					
by Age Cohorts	Total	20-34	35-49	50-64	65-74	75-89
Data 1998	66.3	39.3	75.8	80.1	79.1	77.4
Baseline	66.5	46.2	79.6	81.9	84.1	76.9
	Sqft. Owners ¹					
by Age Cohorts	Total	20-34	35-49	50-64	65-74	75-89
Data 1998	2,137	1,854	2,220	2,301	2,088	2,045
Baseline	2,228	1.957	2,185	2,392	2,463	2,377

Data source: American Housing Survey (AHS) and Current Population Survey (CPS)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 の�?

Foreclosures by Loan Type

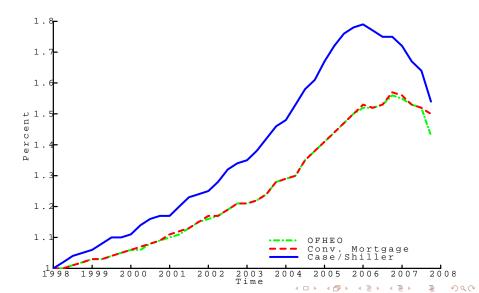
	Data (1998)	Model
Aggregate	1.5	1.8
by loan type		
FRM	0.8	1.7
GPM	2.0	2.0


▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Foreclosure Rates by Age (No data!!!)

by Age Cohorts	20-34	35-49	50-64	65-74	75-89
Level	1.6	1.5	1.9	2.5	2.1
Share	16.7	15.6	19.8	26.0	21.9

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで


Foreclosures (III): Distributions by Loan Type and Age

500 < D > < B

Rationalizing the Spike in Foreclosures

• Our mechanism is a sharp (unanticipated) decline in house prices

- We consider a one time unanticipated △θ that decline in the current house price, but σ_ξ same.
- Existing Homeowners face an equity loss, $p_0 > p_1$.
- The adjustment of the rental market (∇*R*) is **very important** to prevent an increase in participation.
- Lenders have short-term losses (△ increase in default rates and ∇ collateral value)

(日) (문) (문) (문) (문)

~ ~ ~ ~

• Government bails out firms to ensure zero profits.

Foreclosures by Loan Type (at t=1)

	Default Rate	Ownership	Rental Price (% \triangle)
Baseline	1.8	66.5	
⊽15%	2.7	66.3	-8.6%

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Foreclosures by Loan Type (at t=1)

	Data		Mod	el
	1998	2007	Baseline	⊽15%
Aggregate	1.5	2.8	1.8	2.7
by loan type				
FRM	0.8	1.22	1.7	2.2
GPM	2.0	7.4	2.0	4.0

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

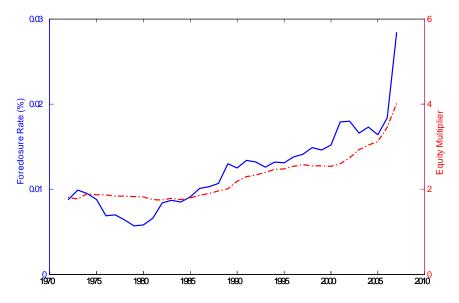
Driving Force of Foreclosure: Equity Multiplier

- A decline in house prices have a larger negative "multiplier effect" in homeowners' equity.
- The value of a property V_0 can be decomposed in

$V_0 = D_0 + E_0$

where D_0 =outstanding debt, and E_0 = home equity.

• A decline in the house value amplified by leverage and equity drops at a faster rate


$$e=\frac{1}{1-LTV}v.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $LTV = D_0 / V_0$.

• Our model suggests that leverage matters for default!!!

Evidence of the Equity Multiplier and Foreclosures

ロト 4回ト 4回ト 4回ト 回 うらぐ

- We have developed a quantitative model of secured long-term lending with default.
- Main findings
 - the model can generate sizeable default rates at the aggregate level and across mortgage types.
 - the models predicts that a decline in house prices can partially rationalize the spike in foreclosure rates.
 - the composition of default across loan products is harder to pin down. Mortgage rates include additional premiums.
 - aggregate leverage makes the economy more vunerable to house price risk

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで