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Abstract
A neglected aspect of the otherwise fairly well developed Bayesian analysis of cointegration
is the point estimation of the cointegration space. It is pointed out here that, due to the
well known non-identification of the cointegration vectors, the parameter space is not an inner
product space and conventional Bayes estimators therefore stand without their usual decision
theoretic foundation. We present a Bayes estimator of the cointegration space which takes
the curved geometry of the parameter space into account. Contrary to many of the Bayes
estimators used in the literature, this estimator is invariant to the ordering of the time series.
A dimension invariant overall measure of cointegration space uncertainty is also proposed. A
small simulation study shows that the Bayes estimator compares favorably to the maximum
likelihood estimator.
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1. Introduction

Building on the work of Kleibergen and van Dijk (1994), Bauwens and Lubrano (1996)
and Geweke (1996), the Bayesian analysis of cointegration has recently been developed by,
for example, Kleibergen and Paap (2002), Strachan (2003) and Villani (2003) into a fairly
complete alternative to the more established classical approaches in e.g. Phillips (1991) and
Johansen (1995).
The focus in the above mentioned works has been on developing suitable prior distributions

and deriving the corresponding posterior distributions. The efforts put into this activity have
diverted attention from other important aspects of the analysis. One such aspect is the topic
here: how to best summarize the posterior distribution of the cointegration vectors by a few
well chosen quantities, such as measures of location and spread. Since the cointegration vectors
are only identified up to arbitrary linear combinations, the parameter space is not an inner
product space and the usual measures, such as the posterior mode, mean and median, cannot
be given their usual decision theoretic motivation.
The paper is organized as follows. The next section discusses the geometry of the parameter

space of the cointegration vectors and the problem with the currently available Bayes estima-
tors. Section 3 proposes a new Bayes estimator of the cointegration space and the following
section gives corresponding measures of cointegration space variation. Section 5 contains an
empirical illustration and Section 6 a small simulation study where the new Bayes estimator is
compared with the maximum likelihood estimator in Johansen (1995). The last section gives
some concluding remarks.

2. The geometry of the parameter space in cointegration models

Following Johansen (1995), let β denote the p × r matrix of cointegration vectors and α
the p × r matrix of adjustment coefficients. It is well known that the likelihood function is
invariant under the class of transformations TQ : (α,β) → (αQ0−1,βQ), where Q is a non-
singular r × r matrix; this is usually phrased as: only the space spanned by the columns of
β, the cointegration space, is identified. In order to obtain a unique estimate of β some of its
elements have to be restricted to known values, usually zero or one, in such a way that the
mapping from the remaining unrestricted elements of β to the cointegration spaces is one-to-
one. A particularly simple set of restrictions is β0 = (Ir, B0), where B is the (p− r)× r matrix
of unrestricted elements.
It should be clear, however, that the use of identifying restrictions does not change the fact

that the real parameters of the model are not the unrestricted coefficients under a particular
identifying scheme, but rather the cointegration space as a whole. Thus, the parameter space
is not Euclidean, but the abstract space of all r-dimensional subspaces of Rp, the Grassman
manifold Gr,p−r (James, 1954). Gr,p−r is an (analytic) manifold of dimension r(p − r). The
current state of maximum likelihood analysis in cointegration models relies almost exclusively
on asymptotic analysis. The fact that the Grassman manifold is locally Euclidean justifies the
use of statistical theory for Euclidean spaces in the asymptotic analysis of β. Bayesian analysis,
on the other hand, claims to be applicable for all sample sizes and as such is concerned with
global properties for which we are no longer able to rely on theory developed for Euclidean
spaces.
Despite the non-Euclidean geometry of the parameter space, all Bayesian applications have

estimated the cointegration space by the posterior mean, mode or median of the unrestricted
elements of β inserted into β. The most common approach is to insert the posterior mode
or median of B into β0 = (Ir, B

0), the posterior mean of B does not exist (see Bauwens
and Lubrano, 1996 or Kleibergen and van Dijk, 1994, for a proof). These estimators are
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not invariant to the way the variables are ordered, even if the posterior distribution itself
exhibits this invariance property, which is illustrated empirically in Section 5. The estimator
in Strachan (2003) is based on the identifying scheme in Anderson (1951) and Johansen (1995),
which he terms the non-ordinal normalization. In the case of a single cointegrating relation,
the non-ordinal normalization restricts β to lie on a hemisphere with a fixed radius. Strachan
(2003) estimates the cointegration vector with the posterior mean of β, which exists in the
non-ordinal normalization. Strachan’s estimator is clearly invariant to the variable order, but,
as we illustrate in Section 3, may generate counterintuitive results.

3. The posterior mean cointegration space estimator

We shall assume that a posterior distribution p(β|D) for the matrix of cointegration vectors
is available, perhaps obtained from one of the algorithms proposed in the references in the in-
troduction. We may further assume, without loss of generality, that β0β = Ir. If the posterior
of β has been obtained using a different normalization, one may simply make the transfor-
mation β → β(β0β)−1/2. The posterior distributions in all Bayesian analyses of cointegration
to date have been evaluated numerically by sampling from the joint posterior distribution, so
the transformation to orthonormality is conveniently performed in each draw.
We shall now consider the question: given a (posterior) distribution of β, what single point

β̂ ∈ Gr,p−r is the, in some sense, best summary of this distribution? The solution to this
problem is given by

β̂
def
= argmin

β̃∈Gr,p−r
E[l(β, β̃)],

where E(·) denotes the posterior expectation with respect to p(β|D) and l(β, β̃) is a loss
function on Gr,p−r × Gr,p−r. Although there are many distances on the Grassman manifold
(Edelman et al., 1998) which may be used to construct a loss function, we shall in this note
restrict attention to the projective Frobenius distance

l(β, β̃) = ||ββ0 − β̃β̃
0||,

where ||A|| = tr(A0A)1/2 is the usual Frobenius norm for matrices. Note that ββ0 is the
projection matrix for the subspace spβ and recall that a subspace is uniquely determined by
the orthogonal projection on it. l(β, β̃) is therefore obtained by embedding the Grassman
manifold in the set of p× p projection matrices of rank r and then using the Frobenius norm.
The projective Frobenius distance is one of the most widely used distances between subspaces
and has the additional advantage of leading to a simple analytical expression for β̂, as the next
result shows. We will refer to β̂ under the projective Frobenius distance as the posterior mean
cointegration space (PMCS) estimator. The following theorem was proved independently by
Srivastava (2000) and Villani (2000).

Theorem 3.1. The posterior mean cointegration space estimator is

β̂= (v1, ..., vr),

where vi is the eigenvector of E(ββ0) corresponding to the ith largest eigenvalue.
A closed form expression for E(ββ0) may not be available, but a numerical approximation

may be used in its place. For example, importance sampling (Kloek and van Dijk, 1978) or
the Gibbs sampler (Tierney, 1994) can be used to generate N draws from the distribution
of β. These generated matrices can subsequently be made orthonormal and the following
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Figure 1. Illustration of the example in the text.

well-known result (Tierney, 1994) can be used to estimate E(ββ0)

1

N

NX
i=1

β(i)β(i)0 a.s.→ E(ββ0),

where β(i) denotes the ith sampled matrix after the transformation to orthonormality and a.s.→
denotes almost sure convergence.
We shall use a simple example for illustration where all posterior mass is distributed equally

on the two vectors β1 = (b,
√
1− b2)0 and β2 = (b,−√1− b2)0, where 0 ≤ b ≤ 1. Such a

posterior distribution would clearly not be encountered in practice, but it caricatures less
extreme situations that do occur in applications, at least when b is small. The situation
is depicted in Figure 1, where also the normalization β = (1, B)0 is illustrated. For small
values of b, we clearly have β1 ≈ (0, 1)0 and β2 ≈ (0,−1)0, which both say that the second
variable is stationary, since the sign of the second coefficient in β does not matter when the
first coefficient is zero. On the other hand, as b → 1, we have β1 → (1, 0)0 and β2 → (1, 0)0,
both implying that the first variable is stationary. It is easy to see that the mode, median
and mean plug-in estimators of β are all equal to (1, 0)0, using the usual convention to handle
ties. Strachan’s (2003) posterior mean estimate of β is (β1 + β1)/2 = (b, 0)0, which after
normalization becomes (1, 0)0. Thus, all previously suggested estimators estimates β with
(1, 0)0, regardless of b, which goes against intuition. The PMCS estimator tells a completely
different story. The two eigenvalues of E(ββ0) are 2(1 − b2) and 2b2, with corresponding
eigenvectors (0, 1)0 and (1, 0)0. Thus, β̂ = (0, 1)0 if b < 1/2 and β̂ = (1, 0)0 if b > 1/2, exactly
as suggested by intuition. The crux of the matter is of course that the previously proposed
estimators are based on distances for Euclidean spaces which fail to acknowledge that β1 and
β2 become arbitrarly close as b→ 0.

4. Measures of cointegration space variation

Although the usual measures of spread of the free coefficients in β are easily computed
numerically by sampling from the distribution of β, their motivation comes from Euclidean
space theory and may therefore be of limited value in assessing the variation of spβ, at least
for moderately informative distributions.
A quite different measure of variation suggests itself from Theorem 3.1. Let λ1 ≥ · · · ≥ λp

denote the eigenvalues of E(ββ0). Since λi measures the variation of spβ in the direction
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determined by vi, λ1, ...,λr can be used to assess the uncertainty regarding spβ. A natural
suggestion for an overall measure of variation of spβ to accompany the PMCS estimate is
given in the following definition.
Definition 4.1. The projective Frobenius span variation is defined as

τ2spβ
def
=
E[l2(β,β̂)]

r(p− r)/p,

where β̂ is the PMCS estimate of β and l(·, ·) is the projective Frobenius distance.
Lemma 4.1.

τ2spβ =
r −Pr

i=1 λi
r(p− r)/p ,

where λi is the ith largest eigenvalue of E(ββ0).

Proof. Follows from Proposition A.4 in Lütkepohl (1991, Section A.14). ¤
The following theorem shows that the lower and upper bound of τ spβ do not depend on

either the number of time series in the system or the cointegration rank, which facilitates
comparisons across studies. In addition, the maximal value of τ spβ is obtained under what is
usually referred to as the uniform distribution on the Grassman manifold (Mardia and Khatri,
1977).
Theorem 4.1. τ spβ satisfies

0 ≤ τ spβ ≤ 1
and the upper bound is obtained when sp(β) is distributed according to the (unique) invariant
Haar distribution on Gr,p−r.

Proof. The non-negativity of τ spβ follows directly from Definition 4.1 and the non-negativity
of the projective Frobenius distance. From Lemma 4.1, τ spβ is maximal when

Pr
i=1 λi is

minimal. Note that λ1, ...,λp are constrained to satisfy the equation
pX
i=1

λi = tr[E(ββ
0)] = E[tr(β0β)] = E[tr(Ir)] = r,

in addition to the order restriction. One immediate candidate as a minimizer of
Pr
i=1 λi is

λi =
r

p
, for i = 1, ..., r,

resulting in
Pr
i=1 λi = r2/p; we shall now prove that this is indeed the minimum by first

proving that
Pr
i=1 λi > r

2/p for all sequences λ1 ≥ ... ≥ λp of eigenvalues, where λr+1 6= r/p.
First, if λr+1 < r/p, then λi < r/p for i = r+2, ..., p, by the order restriction, with the result
that

Pr
i=1 λi = r−

Pp
i=r+1 λi > r−r(p−r)/p = r2/p. On the other hand, if λr+1 > r/p, then

λi > r/p for i = 1, ..., r, again using the order restriction, with the result that
Pr
i=1 λi > r

2/p.
Having established that λr+1 must equal r/p in the minimizing sequence, it follows that
λi = r/p, for i = 1, ..., r, minimizes

Pr
i=1 λi. The upper bound now follows from Lemma 4.1

max τ2spβ =
r −Pr

i=1 r/p

r(p− r)/p = 1.

In remains to be shown that the upper bound of τ spβ is obtained when sp(β) follows the Haar
invariant distribution on Gr,p−r. Mardia and Khatri (1977) shows that E(ββ0) = (r/p)Ip if
sp(β) follows the Haar invariant distribution on Gr,p−r and thus λi = r/p, for i = 1, ..., r,
which in turn implies that τ spβ = 1. ¤
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Figure 2. Posterior distribution of the cointegration vector β = (1,φ3,φ90,φ180).

5. Empirical illustration

The Australian interest rates data in Strachan (2003) will be used for illustration. The
data consist of 94 monthly observations on four Australian interest rates of different maturity
during the time period 1994:1-2001:10. Two of the rates are taken from the longer part of
the yield curve with 5 and 3 years to maturity (i5 and i3) and the other two are shorter rates
with 180 and 90 days to maturity (i180 and i90), respectively. Following Strachan (2003), we
condition our analysis on a single cointegration vector and two lagged differences in the error
correction model.
The posterior distribution of the unrestricted elements of β = (1,φ3,φ180,φ90)

0 was com-
puted using the Gibbs sampler in Villani (2003) under a flat prior. The results based on
200,000 draws ( excluding 10,000 burn-in iterations) are displayed i n Figure 2. Note how the
marginal posterior of φ180 and φ90 are nearly m irror images of e ach other, reflecting t hat the
two short rates most probably enter the cointegrating relation as a difference, but the coef-
ficient on this spread relative the longer rates is much less clearly determined in the data.
Table 1 gives the maximum likelihood and the PMCS estimates along with the median and
mode plug-in estimates (see Section 2); Strachan’s (2003) estimates are also presented. To
show the effects of a different order of the time series, the estimates for a reversed order of the
time series are also displayed. Although the PMCS estimator is invariant to the way variables
have been ordered, it has been computed under both orders to show the magnitude of numer-
ical error in the Gibbs sampling algorithm. The PMCS and maximum likelihood estimates
are very close to each other and far off the other three estimates. The plug-in estimates are
heavily dependent on the order of the variables, to the extent of completely over-turning the
inferences.
The projective Frobenius span variation is τ spβ = 0.4223, roughly half-way between the

degenerate and the uniform distribution on the Grassman manifold, implying a rather unin-
formative posterior distribution of the cointegration vector.
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Order i5, i3, i180, i90 Order i90, i180, i3, i5
Coefficient ML Strachan PMCS Median Mode PMCS Median Mode

φ3 -1.026 -1.100 -1.014 -1.174 -1.175 -1.011 -0.900 0.800
φ180 -2.022 -12.376 -2.174 -0.266 -0.240 -2.217 -3.712 -21.400
φ90 2.040 12.263 2.176 0.420 0.380 2.216 3.591 20.000

Table 1. Estimates of the cointegration vector normalized on i5.

6. Generalized likelihood estimators - a small simulation study

This section investigates the performance of the PMCS estimator in repeated sampling
by simulation methods. In order to attract the attention of practitioners with preferences
toward likelihood procedures, we will compute the expectation of E(ββ0) with respect to the
normalized likelihood function. The resulting PMCS estimator may be called the generalized
likelihood estimator or the mean likelihood estimator.
The data generating process is chosen to be the bivariate VAR(1) with a single cointegration

vector

∆x1t = α1(β1x1,t−1 + β2x2,t−1) + ε1t

∆x2t = α2(β1x1,t−1 + β2x2,t−1) + ε2t,

where ∆ is the difference operator and (ε1t, ε2t)0 independent bivariate normal vectors with
zero mean and covariance matrix

Σ =

µ
1 ρσ
ρσ σ2

¶
.

This simple process has two related advantages. First, the number of parameters is small
enough to cover a relatively large part of the parameter space. Second, the marginal normalized
likelihood function of the unrestricted elements of the cointegration vector is one-dimensional
and may therefore be evaluated numerically over a grid without having to recourse to more
advanced numerical procedures which would be prohibitively time-consuming in a simulation
study.
We consider three different orthonormal cointegration vectors in the simulations

β =

µ
cos θ

sin θ

¶
, − π/2 < θ ≤ π/2,

where θ = 0,π/4 and π/2, respectively. α1 takes values in the set {−.25,−.15,−.10,−.05},
α2 ∈ {−.25,−.15,−.10,−.05 , .00}, σ ∈ {.25, 1, 3} and ρ ∈ {−.7, 0, .7}, all in all 180 combina-
tions of parameters values. 50,000 data sets are s imulated for e ach par ameter sett ing and the
ML and PMCS estimates computed for each generated data set. Two different sample sizes,
n = 25 and n = 50 are used. These sample sizes are probably a fair representation of the
information typically available in empirical studies where the sample sizes are usually larger,
but the data much less ’tidy’ than those resulting from our generating models.
The efficiency of the PMCS estimator relative the maximum likelihood estimator is mea-

sured by

RE =
Mean distance between PMCS estimate and true cointegration vector
Mean distance between ML estimate and true cointegration vector

,

where the distance between an estimate of the cointegration vector and the true value is
measured by the arc length distance (Edelman et al., 1998). Other distances, including the
projective Frobenius distance, led to essentially the same results. RE < 1 indicates that the
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PMCS estimator outperforms the ML estimator and for RE > 1 the opposite holds. We will
only present the simulation results for the case ρ = 0; the results for ρ = −0.7 and ρ = 0.7
are qualitatively similar and may be obtained from the author by request. We shall let Figure
3 and 4 speak more or less for themselves and merely make a few comments on the results.
A general observation is that the PMCS estimator outperforms the ML estimator in a large
majority of the parameter settings, sometimes to the extent of a 50% improvement in RE.
Furthermore, in those cases where the ML estimator performs better than the PMCS estimator
the improvement is always modest. The differences between the two estimators diminishes
as the sample increases from 25 to 50 observations, but the PMCS estimator is substantially
better in some parameter settings even for the larger sample size.

7. Concluding remarks

It should be clear that the results here apply to any situation where a part of the para-
meter space is the Grassman manifold, e.g. subspace estimation problems. This includes of
course the reduced rank regression model in Anderson (1951), but also the common factor
model (Anderson, 1984) extensively used in psychometrics, the simultaneous equations model
(Kleibergen and van Dijk, 1998), and many other widely used models in multivariate analysis.
We have focused here on the just-identified case, which is the starting point of most analyses.

When the same over-identifying restrictions are imposed on all r cointegration vectors, the
parameter space of the remaining unrestricted elements is a Grassman manifold of smaller
dimension and the results here apply directly. This is a situation of substantial practical
interest; it covers all linear restrictions when r = 1, the frequently occurring case where one or
several variables are assumed not to enter any of the r cointegrating relations and many other
situations. It would of course be nice to extend the results to general linear over-identifying
restrictions, but this leads to complicated optimization problems which do not seem to have
a closed form solution. It should be kept in mind, however, that it is less important to take
the correct geometry into account when the cointegration vectors are heavily restricted.
It would be interesting to conduct the type of analysis presented here for other distance

measures on the Grassman manifold and compare the resulting estimators and variation mea-
sures; Edelman et al. (1998) lists six common distances, including the projective Frobenius,
but, at least in some cases, approximate or numerical solutions may be needed to solve the
optimization problems.
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