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1 Introduction

Does purchasing power parity (PPP) hold in the long run? Are real exchange

rates mean-reverting? Evidence of long-run PPP is often found if one applies

unit-root tests to real exchange rate data spanning long periods of time (say,

close to a century or more), see, e.g., Frankel 1986, Abuaf and Jorion 1990 and

Lothian and Taylor 1996. However, when examining the recent post-Bretton

Woods period of floating exchange rates conventional unit-root tests do not, in

general, find evidence of PPP. Nor do studies using the multivariate maximum

likelihood cointegration method to analyze long-run PPP using post-Bretton

Woods data. Cheung and Lai (1993), Kugler and Lenz (1993), Johansen and

Juselius (1992), MacDonald (1993) and Edison, Gagnon and Melick (1997) ex-

amined PPP in trivariate systems with a nominal exchange rate and two price

indices, whereas Nessén (1996) estimated a larger model for three countries.

The typical result in these studies is that evidence of cointegration is found, but

that the cointegrating relations fail to comply with the restrictions implied by

PPP.

The inadequate power associated with pure time series testing for unit roots

and cointegration subsequently guided PPP-research towards panel data appli-

cations. Unit roots in real exchange rates have been examined in panels of

post-Bretton Woods data by, i.a., Frankel and Rose (1996), O’Connell (1998),

Oh (1996), Papell (1997) and Wu (1996), again with mixed results. Following

Pedroni (1995, 1996, and 1997) a number of panel data applications test for

cointegration between nominal exchange rates and prices; Chinn (1997), Obst-

feld and Taylor (1996), and Taylor (1996). As in the case of multivariate time

series applications the results suggest cointegration between these variables, but

not according to PPP.

The purpose of this paper is to re-examine the issue of PPP. Our analysis

is based on the recent approach to testing for cointegration in heterogenous

panel data models suggested by Larsson, Lyhagen, and Löthgren (2001). Their

approach extends the likelihood inference for cointegrated vector autoregressive

models developed by Johansen (1988, 1991, 1995) into a panel data setting.

This means that the model benefits from the generality and flexibility of max-

imum likelihood cointegration analysis, as well as the advantage of a vastly

enlarged information set offered by a panel data approach. However, the model
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in Larsson et al. (2001) is not immediately applicable for testing hypotheses

about PPP; for that purpose it is too restrictive. The Larsson et al. (2001)

model assumes complete independence between the panels as reflected by block

diagonal long-run, short-run, and covariance matrices. Groen and Kleibergen

(1999) relax the assumption of a block diagonal covariance matrix. In a sub-

sequent paper, Larsson and Lyhagen (1999), all block diagonal restrictions are

relaxed except for the matrix containing the cointegrating vectors. However,

the interdependent nature of the foreign exchange markets suggest that a block

diagonal cointegration matrix is inappropriate, i.e., the PPP hypothesis implies

that long-run relations between prices and exchange rates in different countries

are indeed related. Lyhagen (2000) shows that discarding this dependence in a

standard panel unit root test in the context of PPP gives rise to invalid inference,

i.e., the size of the test tends to unity as the number of countries increases. This

is due to the presence of a commonly shared common trend that is not taken

into account of when calculating the critical values. The Larsson and Lyhagen

(1999) model needs to be adjusted in order to reflect the PPP-dependence and,

as a consequence, new results for the limit distributions of the test statistics

have to be derived.

The empirical analysis in this paper is carried out with one important issue

in mind, namely the problem of test size distortion, i.e., the erroneous rejection

of a true null hypothesis due to inappropriate critical values. There is reason

to believe that the usefulness of multivariate maximum likelihood cointegration

analysis can be severely hampered by the curse of dimensionality arising from a

large number of parameters in relation to a small number of observations. One

undesirable effect is that asymptotic distributions provide poor approximations

in small-sample applications and yield inference plagued by size distortions.

This has been empirically verified in Jacobson, Vredin and Warne (1998). Gre-

denhoff and Jacobson (2001) have confirmed the presence and examined the

nature of size distortion for likelihood ratio tests of linear restrictions on cointe-

grating vectors. In this paper, asymptotic tests are augmented with parametric

bootstrap analogues, whereby we reduce, if not eliminate, the size distortions

due to the small-sample effect.

We examine monthly data for the post-Bretton Woods years 1974-1999 for

France, Germany, Italy and the United Kingdom, and the results suggest the

following. We do find evidence of cointegration between nominal exchange rates
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and prices; in fact the number of cointegrating vectors is precisely what PPP

predicts, namely one. Moreover, we cannot reject the hypothesis that the panel

individual cointegrating vectors are identical. But the final test for PPP fails

in that the coefficients in the cointegrating vectors are not compatible with the

theoretical PPP-relationship. However, although we reject PPP, it is interesting

to note that the estimated unrestricted relationship is found to be remarkably

close to the theoretical one, with coefficient estimates (1, -1.5, 0.9) compared

with (1, -1, 1). This can be interpreted as support for the view that purchasing

power parity is, after all, a reasonable approximation.

We discuss these results in the concluding Section 6. Prior to that, Section

2 explains how a multivariate cointegration panel data model can be formulated

for investigating the existence of PPP. Section 3 presents asymptotic results for

the hypothesis tests in the statistical model, whereas proofs of the theorems

are spelled out in the Appendix. Section 4 contains the empirical analysis. In

Section 5 we undertake Monte Carlo simulations in order to disclose the small-

sample properties of the proposed asymptotic tests.

2 PPP and linear restrictions on prices and ex-

change rates

We examine long-run PPP between four large European economies in a multi-

variate panel setting. The purpose of this section is to show how such a system

can be set up and to identify the restrictions implied by long-run PPP.

Denote the natural logarithm of the nominal British pound exchange rate

of country i (that is, the number of currency i per unit British pound) by eit .

Further, let pit be the natural logarithm of the price level in country i. Further,

let p∗t denote the price level in our numeraire country, the United Kingdom.

Define

Xit =

·
eit
pit

¸
and then

Xt =



e1t
p1t
...
eNt
pNt
p∗t


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where N is the number of countries except the base country, in our case three.

Now, if long-run bilateral PPP holds then the real exchange rates between

all pairs of countries are stationary, or integrated of order 0, I(0). This may be

expressed as

qit ≡ eit − pit + p∗t ∼ I(0) i = 1, ...N

where qit is the real exchange rate between country i and the United Kingdom.

These N equations can be summarized as:
q1t
q2t

...

qNt

 ≡

1 −1 0 0 . . . 0 0 1
0 0 1 −1 . . . 0 0 1
...
...

. . .
...

0 0 0 0 · · · 1 −1 1




e1t
p1t
...
eNt
pNt
p∗t

 ∼ I(0) (1)

It is easily recognized that the choice of base country is arbitrary. Pre-

multiplying the relationship with the matrix

1 0 · · · −1 · · · 0
0 1 −1 · · · 0
...

. . .
...

...
0 0 · · · −1 · · · 0
...

...
. . .

...
0 0 · · · −1 · · · 1


where the column of −1 is in the position of the new base country, gives the
desired result. Note that the eigenvalues are N − 1 ones and the last is minus
one so the new relationships span the same space as the original one.

The equations in (1) can be evaluated in a vector error correction model on

the form

∆Xt = αβ0Xt−1 +
m−1X
j=1

Γj∆Xt−j + µ+ εt, (2)

where α0⊥µ 6= 0, with α⊥ such that α0⊥α = 0 and (α,α⊥) has full rank. (This

means that µ is not restricted to the cointegration space.) Moreover, α and β

are Np ×Nr, where Np ≡ Np+ 1 and β is given by

β =


β1 0 . . . 0

0
. . .

. . .
...

...
. . . 0

0 . . . 0 βN
βN+1,1 . . . βN+1,N

 , (3)
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where for i = 1, ..., N , the βi are p× r and the βN+1,i are 1× r. No restrictions
are imposed on the α, Γj (Np ×Np) and Ω (Np ×Np) matrices, the latter being
the covariance matrix of εt (Np × 1). Assume that observations are taken at
t = 1, ..., T . Note that this model is similar to the one in Larsson and Lyhagen

(1999) with the addition of the last row in the β matrix, and the estimation

procedures follow those outlined there.

If PPP holds, we have p = 2, r = 1 and
£
β0i,β

0
N+1,i

¤
= [1,−1, 1]. This is a

restriction in model (2) that we will test in three steps. First, we will estimate

r, using the sequential testing procedure due to Johansen (1995), i.e., first test

if r = 0 against r = p, then if the null hypothesis is rejected test if r = 1, and

so on, until the null hypothesis cannot be rejected. This null hypothesis then

gives us the estimated r. If the estimated r turns out to be 1, we will go on

and test if all
£
β0i,β

0
N+1,i

¤0
span the same (cointegration) space. Finally, if the

hypothesis of a common cointegration space is not rejected, we will test that all£
β0i,β

0
N+1,i

¤
= ci [1,−1, 1], where the ci are constants.

The limit distributions of these tests are considered in the next section. The

asymptotic results are general, and can be used in other contexts with the same

model structure.

3 Asymptotic results

The hypotheses to be discussed in this section are

H4: rank (Π) ≤ Np+ 1,
H3: Π = αβ0 where α and β are (Np+ 1) × Nr as above, but with no

restrictions on β,

H2: as H3 but where β is as in (3),
H1: as H2 but where all

¡
β0i,β

0
N+1,i

¢0
span the same space,

H0: as H1 but where all
¡
β0i,β

0
N+1,i

¢0
= Hiψi, where the Hi are known

(p+ 1) × s matrices and the ψi are s × r, unknown and span the same space.
Obviously, H0 ⊂ H1 ⊂ H2 ⊂ H3 ⊂ H4. For i < j, we will denote the maxi-

mum likelihood ratio between Hi and Hj by Qij . The theorems will give the

asymptotic distributions of, in turn, −2 logQ24, −2 logQ12 and −2 logQ01.
We will need the following assumption, which is typical for this kind of

theory. (The matrix β⊥ is defined in a similar fashion as α⊥ above.) This

assumption guarantees that Xt is an I (1) process (c.f. Johansen, 1995, p.49).
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Assumption A The roots of the characteristic equation corresponding to

(2) have modulus > 1 or are equal to 1, and α0⊥Γβ⊥ has full rank, where

Γ = INp −
Pm−1
i=1 Γi.

We now turn to the asymptotics of the test for cointegrating rank, which is

used for the sequential rank estimation procedure. This is the test of H2 against
H4. The main idea is to write Q24 = Q23Q34, implying

−2 logQ24 = −2 logQ23 − 2 logQ34.

The result is that, as T →∞, −2 logQ23 converges weakly to the χ2 variate V ,
while −2 logQ34 tends to U which has a Dickey-Fuller type distribution as given
in the formulation of the theorem. Furthermore, −2 logQ23 and −2 logQ34 are
asymptotically independent. Observe that if r = 0, the χ2 variate disappears,

and we have the usual Johansen trace test. Moreover, observe the short-hand

notation of integrals, i.e.
R
FF 0 =

R 1
0
F (t)F (t)

0
dt, etcetera.

Theorem 1 Under H2, assumption A and if α0⊥µ 6= 0 and r > 0, we have

that as T →∞, the maximum likelihood ratio test of cointegrating rank r, Q24,

satisfies

−2 logQ24 w→ U + V,

where, defining B (t) to be an {N (p− r) + 1}-dimensional standard Wiener
process (with mean zero and identity covariance matrix),

U = tr

(Z
dBF 0

µZ
FF 0

¶−1 Z
FdB0

)
,

and where V is χ2 with N (N − 1) (p− r) r degrees of freedom, independent of
U . The process F is {N (p− r) + 1}-dimensional with components

Fi (u) ≡
½
Bi (u)−

R 1
0
Bi (t) dt, i = 1, ..., N (p− r) ,

u− 1
2 , i = N (p− r) + 1,

where the Bi (t) are components of B (t).

Proof. See the appendix.

The next theorem gives the asymptotic distribution of Q12.

Theorem 2 Under H1, assumption A and if α0⊥µ 6= 0 and r > 0, we have

that as T → ∞, the maximum likelihood ratio test of common cointegrating

space, Q12, fulfills that −2 logQ12 is asymptotically χ2 with (N − 1) (p+ 1− r) r
degrees of freedom.
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Proof. See the appendix.

In particular, in the PPP case, −2 logQ12 is asymptotically χ2 with 2 (N − 1)
degrees of freedom.

Our final object is to test if, given cointegrating rank r = 1 and p = 2, the

cointegrating relation is
¡
β0i,β

0
N+1,i

¢
= ci (1,−1, 1) for all i and constants ci.

This is a special case of H0 with r = s = 1, all Hi = (1,−1, 1)0 and all ψi = ci.

Theorem 3 Under H0, assumption A and if α0⊥µ 6= 0 and r > 0, we have that
as T →∞, the maximum likelihood ratio test of the restriction

¡
β0i,β

0
N+1,i

¢0
=

Hiψi for all i, where the Hi are known (p+ 1)× s matrices and the ψi are s× r
and unknown, against the hypothesis of common cointegrating space, Q01, fulfills

that −2 logQ01 is asymptotically χ2 with (p+ 1− s) r degrees of freedom.

Proof. See the appendix.

Note that in the PPP case, −2 logQ01 is asymptotically χ2 (2).

4 The empirical analysis

Our database contains monthly observations of consumer prices and nominal

exchange rates (versus the British pound) for Germany, France, and Italy for

the years 1974 - 2000, i.e., N = 3 and T = 314. The Appendix contains a

fuller description of the data and sources, as well as Figures 1-3, that show the

consumer price series, the exchange rates, and the real exchange rates for these

countries.

In the subsequent sections we use the framework outlined in previous sections

in the following way: We begin by testing for the number of cointegrating

relations in the 3 panels in a model that satisfies standard specification tests.

We then carry on by testing hypotheses about the cointegration vectors; first

by testing if the panel-specific cointegrating vectors span the same space, and

if so, if the theoretical PPP-relationship holds for this space.

4.1 Specification and mis-specification analysis

The number of lags is specified using the information criterion proposed by

Schwarz (1978), where an upper limit of five lags is pre-specified. The results

suggest that k = 2 is appropriate. Moreover, multivariate residual-based mis-

specification tests with respect to serial correlation and non-Normality are found
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r = 0 1 2
Test stat. 217 69.5 0.467
Crit. value 135 70.8 7.31

Table 1: Test statistics for cointegratin rank and bootstrapped critical values

using 1,000 replicates for 5 % nominal test size.

Germany France Italy
βix 1.00 1.00 1.00
βip -5.12 9.87 -2.25
βib 0.671 -8.78 0.528

Table 2: Normalized unrestricted estimates of the cointegrating vectors.

to be insignificant at the 1%-level. The first-order Lagrange multiplier and the

Box Ljung tests yield p-values of 0.181 and 0.027, and the Normality test a

p-value of 0.05. Since these specification-tests are asymptotic and presumably

affected by size-distortions in small-sample applications (c.f., Jacobson, Jansson,

Vredin, and Warne (2001)), inference at the 1%-level rather than the usual 5%-

level can be justified. Also, even if ARCH type errors are present in the data,

asymptotic inference in cointegration models is robust, see Dennis, Hansen and

Rahbek (2002). Given a lag-length of 2, the likelihood ratio tests for the three

null hypotheses r = 0, 1, 2 are calculated against the alternative hypothesis of

full rank. Complementary to the use of asymptotic distributions, we apply

the method discussed above, i.e., a parametric bootstrap, as it was used in

Gredenhoff and Jacobson (2001). By generating the bootstrap samples using

the estimated empirical model (with the null hypothesis imposed) the resulting

inference is robust with respect to parameter uncertainty. A nominal size of

5% is used and the number of bootstrap replicates is 1,000. The test statistics

and corresponding critical values are given in Table (1) .We find that the null of

r = 0 is rejected, while the null of r = 1 is not, hence, we conclude that there

is one cointegrating relationship in each panel. The normalized cointegrating

vectors are displayed in Table (2).

4.2 Testing linear restrictions

Having found support for the necessary condition for PPP, we now turn to

the sufficient conditions. The multivariate setup used in this paper actually

enables us to test for PPP in different ways. First, we test whether all three
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bilateral PPP relations span the same space, i.e., the three countries share

the same economic laws but not necessarily the one outlined above. The test

statistic is 17.4 with a bootstrapped critical value of 21.6 at a 5% nominal

test level, and hence, we do not reject the null of a common cointegrating

space. The normalized (with respect to βix) common cointegrating vector is

[1.00,−1.52, 0.885]0 and has the correct signs and is thus remarkably close to the
relationship implied by PPP. To test if PPP holds a likelihood ratio test with the

cointegrating vector [1,−1, 1]0 as the null hypothesis is tested against common
cointegrating space. The test statistic is found to be 60.8 with a bootstrapped

critical value of 12.0, and thus we reject the null.

In summary, we have found support for our hypothesis that the variables in

Xt can be characterized by an error correction model like equation (2). This im-

plies that they are driven by a limited number of common stochastic trends and

therefore are tied together in the long run. All three panels are characterized

by one long-run, cointegrating, relation. However, although these long-run rela-

tions span the same cointegrating space and the estimated relationship is close

to the theoretical one, a formal test rejects the hypothesis that they coincide.

5 Small-sample properties

Although we have used bootstrap based inference in the empirical section above,

it is important to examine how the asymptotic distributions function in small

samples. To analyze this a Monte Carlo simulation is performed. The data

generating process (DGP) is the empirical model estimated in the previous

section. We are interested in five different null hypotheses. The first three

consider the rank: r = 0, 1 or 2, and the remaining two are tests on the

cointegrating space: test of common space and test that the cointegrating vector

is the theoretical PPP relationship, [1,−1, 1]0. The alternative for the first

three models is the usual full rank model and for the last two an unrestricted

cointegrating model with rank one. For the very last model the alternative of a

common cointegrating space is also considered. The largest eigenvalues of the

DGP’s are displayed in Table (3). (See further the discussion below.)

The Monte Carlo setup is as follows. First we generate data according to

the model under the null, then we estimate the models under the null and the

alternative and calculate the likelihood ratio statistic. We then compare with the
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r = 0 1 2
1.00 1.00 1.00
1.00 1.00 0.991
1.00 1.00 0.974
1.00 1.00 0.974
1.00 0.991 0.896
1.00 0.966 0.890
1.00 0.966 0.890
0.827 0.403 0.455
0.398 0.403 0.407
0.301 0.242 0.302
0.288 0.242 0.302
0.288 0.281 0.262
0.203 0.281 0.218
0.156 0.141 0.218

Table 3: Absolute values of the eigenvalues of the compagnion matrix for r =

0, 1, 2.

Null\T 100 200 314 400 800 1600
r = 0 0.625 0.271 0.159 0.134 0.078 0.082
r = 1 0.578 0.534 0.454 0.423 0.311 0.213
r = 2 0.494 0.487 0.256 0.142 0.074 0.086
Common|r = 1 0.692 0.460 0.278 0.177 0.067 0.031
PPP|r = 1 vs unrestricted 0.648 0.363 0.237 0.179 0.101 0.072
PPP|r = 1 vs common 0.926 0.705 0.432 0.198 0.127 0.074

Table 4: Monte Carlo estimated test sizes for PPP related panel tests.

asymptotic critical value and note if the test rejects or does not reject the null.

This is repeated 1,000 times and the proportion of rejections is the estimated

size, which should be compared with a nominal size of 5%. The size adjusted

power, i.e., the power when the simulated small sample critical values are used,

is also of interest. For the null models with r = 0, 1 or 2, the DGP’s have r = 1,

2 and full rank respectively. Regarding the cointegrating space tests, the DGP

is the r = 1 model. We have also evaluated the power for a test of restrictions

on the common cointegrating space. That is, the null hypothesis is given by the

theoretical PPP-relationship, but the pseudo-data is generated from a model

with the empirical estimates of the common cointegrating space imposed. The

Monte Carlo simulations have been done for sample sizes T = 100, 200, 400, 800

and 1600, and the number of replicates is 1,000. The results are displayed in

Table (4) and Table (5).

The results demonstrate the well-known problem in cointegration analysis
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Null\T 100 200 314 400 800 1600
r = 0 0.688 0.999 1.000 1.000 1.000 1.000
r = 1 0.111 0.547 0.953 0.999 1.000 1.000
r = 2 0.018 0.022 0.168 0.404 0.921 0.988
Common|r = 1 0.050 0.241 0.700 0.936 1.000 1.000
PPP|r = 1 vs unrestricted 0.101 0.485 0.951 0.994 1.000 1.000
PPP|r = 1 vs common 0.083 0.662 0.981 1.000 1.000 1.000

Table 5: Monte carlo estimated size adjusted power for PPP related panel tests.

that for larger systems, involving many parameters, the small sample critical

values converge very slowly to the asymptotic ones (see e.g. Gredenhoff and

Jacobson (2001)). In a panel setting similar to the one in the present paper,

Larsson and Lyhagen (1999) obtain size problems for the test of cointegration

rank, but not for tests of restrictions on the cointegrating vector. Here, however,

in the rank-one model some eigenvalues of the companion matrix are very close

to one in absolute value (see table (3)), indicating “closeness” to I (2). This will

make size problems even more severe, even for the restriction tests. This result

clearly shows the need for some size-adjusting measure, such as a bootstrap

test. The power properties are quite satisfactory for the larger sample sizes,

T = 400, 800, 1, 600. Hence, there is reason to assume that the empirical tests

(based on T = 314) undertaken above do have reasonable power against the

alternatives.

6 Conclusions

Using a multivariate cointegration panel data model this paper re-examines the

evidence for PPP in post-Bretton Woods data for France, Germany, Italy and

the United Kingdom. We find that each panel is characterized by exactly one

cointegrating relation between nominal exchange rates and consumer prices,

sometimes labelled as weak PPP, or the necessary condition for PPP to hold.

Moreover, the panel-specific cointegrating vectors are found to span the same

cointegrating space. We interpret this as support for PPP to the extent that

the estimated long-run relations between exchange rates and consumer prices in

our panels are, if not identical, at least closely related. But, testing for strong

PPP, or the sufficient condition that the cointegrating space contains the vector

of PPP-coefficients (1,−1, 1), leads to rejection. It is, however, interesting to
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note that the over all panels estimated cointegrating vector is very close to

the theoretical one; (1,−1.5, 0.9), suggesting that PPP may, after all, be a

reasonably accurate approximation of how nominal exchange rates and price

levels evolve over time. This in turn suggests that it may not be important that

economic models for long-term analysis allow for shocks to the real exchange

rates with permanent effects.

These results have been estimated in a maximum likelihood cointegration

panel data model with a specific structure that allows for the long-run dynamics

implied by PPP. Specifically, the cointegrating matrix, β, is block diagonal with

non-zero elements corresponding to each included country’s nominal exchange

rate and consumer prices. The numeraire country’s consumer prices enter β

through an extra row of non-zero elements, one for each panel. This particular

structure requires new asymptotic results for the tests for cointegrating rank, a

common cointegrating space over the panels, and restrictions on cointegrating

vectors. Such limit distributions are derived in Section 3 and constitute the

paper’s main contribution. The results are extensions of the results of Johansen

(1995) to the type of restrictions on β considered in this paper. In particular, we

may note the asymptotic distribution of the test for cointegrating rank (Theorem

1), which is a sum of two independent variates, one being χ2 and the other being

Dickey-Fuller distributed. This result arises because we are testing reduced rank

within the restricted β setting. As expected, the two other tests (Theorems 2

and 3) are asymptotic χ2. These results follow as special cases of a theorem in

Johansen (1991) on smooth hypotheses on β.

By means of Monte Carlo simulation we find that the asymptotic approx-

imations are inadequate for smaller sample sizes, i.e., estimated test sizes are

far from the nominal one and convergence occurs for samples of sizes we seldom

have access to. The remedy for this size-distortion problem is a bootstrap test.

By generating bootstrap samples using the estimated model as a DGP, we may

estimate small-sample distributions. Now, whereas the bootstrap test can be

expected to be approximately correct in size, it should be noted that its power

will not be higher, nor lower, than the power of a size-adjusted asymptotic

test. This has been theoretically predicted for the general case by Davidson and

McKinnon (1996) and verified for the likelihood ratio test of linear restrictions

on cointegrating vectors by Gredenhoff and Jacobson (1998) using Monte Carlo

simulation. For this particular application we believe that the tests do have

13



reasonable power judging by the results on size-adjusted power in the Monte

Carlo experiments.
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Figure 1: Monthly CPI for the United Kingdom, Germany, France and Italy

A Appendix

A.1 Description of data

The database is comprised of three nominal exchange rates and four consumer

price indices. The frequency is monthly and the series run from 1974 to 1999,

1995 = 100. See Figures 1 -3. The exchange rates are given as the price of

British pounds in German marks, French francs and Italian lire respectively.

The consumer price indices are taken from row 63 in the IFS-tapes.

A.2 Omitted proofs

This section contains omitted proofs of Theorems 1-3. However, we start out by

proving a theorem about the distribution of the estimated cointegrating space.

This theorem and its proof is useful when proving Theorems 1-3. The proofs

follow closely the proof of Theorem C.1 in Johansen (1991), which gives the

corresponding result for any smooth hypothesis on β.
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Figure 3: Monthly real exchange rate for Germany, France and Italy using the

United Kingdom as the base country.
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At first, define the {N (p+ 1)} × (Np+ 1) matrix

R ≡


(Ip, 0) 0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0 (Ip, 0)
(0, 1) · · · (0, 1)



0

.

Then,

β =


β1 0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0 βN
βN+1,1 · · · βN+1,N

 = R0ϕ,

where

ϕ ≡ diag (ϕ1, ...,ϕN ) ,
with

ϕi ≡
µ

βi
βN+1,i

¶
,

which are (p+ 1)× r, for i = 1, ..., N . Thus, we may re-write (2) as

∆Xt = αϕ0RXt−1 +
m−1X
i=1

Γi∆Xt−i + µ+ εt.

In the limit results needed in the sequel, this formulation enables us to use

RXt−1 in place of Xt−1. Now, define C ≡ β⊥ (α0⊥Γβ⊥)
−1

α0⊥, where Γ ≡
Ip −

Pm−1
i=1 Γi. Granger’s representation theorem (theorem 4.2 of Johansen

(1995)) reads

Lemma 4 If assumption A holds, we have the representation

Xt = C

µt+ tX
j=1

εj

+ Yt,
where Yt is an I (0) process.

Because of the lemma, the dominating deterministic trend of RXt is τ ≡
RCµ, where Γ ≡ INp −

Pm−1
i=1 Γi. Hence, τ is N(p+ 1)× 1, and we may write

τ = (τ 01, ..., τ 0N )
0, where for i = 1, ...,N, τ i is (p+ 1)×1. Then, for each i, choose

γi orthogonal to ϕi and τ i. Then, γi is p × (p− r) and γ ≡ diag (γ1, ..., γN )
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is orthogonal to ϕ and τ . Moreover, let {W (t)} be a p-dimensional Wiener
process with expectation 0 and covariance matrix Ω. The modified version of

lemma A.2 of Johansen (1991) reads

Lemma 5 As T →∞, we have for u ∈ [0, 1] that

T−1/2γ0RX[Tu]
w→ γ0RCW (u) ,

T−1τ 0RX[Tu]
w→ u.

Now, put

eG1 (t) ≡ γ0RC
½
W (t)−

Z 1

0

W (u) du

¾
,

eG2 (t) ≡ t− 1
2
,

eG (t) ≡ n eG1 (t)0 , eG2 (t)o0, and V (t) ≡ α0Ω−1W (t) . Observe that the eG process
is defined in a slightly different way than the G process in Johansen (1991),

where there is no R matrix, and a bit different γ matrix. With this modification,

the same limit results hold here, and we do not re-iterate them. Furthermore,

define the matrix

S ≡
µ
H
(r)
1 ⊗ eeH1, ...,H

(r)
N ⊗ eeHN

¶
with, for i = 1, ...,N and n arbitrary,

H
(n)
i ≡ (0, ..., 0, In, 0, ..., 0)0 ,

which is a Nn × n matrix with In as the ith block, and the eN × (p+ 1− r)
matrix, wherefN ≡ N (p− r) + 1,

eeHi ≡
µ
H
(p−r)
i 0
0 1

¶
.

This means that S is Nr eN × κ, where κ ≡ N (p+ 1− r) r. We may now

formulate our theorem. (From now on, we use short-hand notation for our

integrals, i.e.
R eG eG0 instead of R 1

0
eG (t) eG (t)0 dt.)

Theorem 6 As T →∞, the ML estimate of ϕ, bϕ, satisfies³
Tγ, T 3/2τ

´0
vec (bϕ− ϕ)

w→ S

½
S0
µ
α0Ω−1α⊗

Z eG eG0¶S¾−1 S0 vec½Z eG (dV )0¾ .
18



Proof: As a preparation, write ϕ = diag (ϕ1, ...,ϕN ), where ϕi =
³
ϕ
(1)0
i ,ϕ

(2)0
i

´0
,

where ϕ(1)i is r × r, for i = 1, ..., N . Then, it follows that αϕ0 = α∗ϕ∗0, where

α∗ ≡ α diag
³
ϕ
(1)0
1 , ...,ϕ

(1)0
N

´
and ϕ∗ ≡ diag (ϕ∗1, ...,ϕ

∗
N ) with ϕ∗i ≡

¡
Ir,ϑ

0
i

¢0
,

ϑi ≡ ϕ
(2)
i

n
ϕ
(1)
i

o−1
for i = 1, ..., N . (The ϑi are (p+ 1− r) × r.) Hence, re-

garding ϕ∗ = ϕ∗ (ϑ) as a matrix-valued function of the elements of the vector

ϑ ≡ vec (ϑ1,ϑ2, ...,ϑN ), the derivatives are, denoting the elements of ϑi by ϑjki ,
where j = 1, ..., p, k = 1, ..., r, and similarly for ϕ,

∂ϕ∗jkii
∂ϑlmi

= 1

if {(j, k) = (l,m)} , and 0 otherwise. (The derivatives of non diagonal block
elements of ϕ∗ w.r.t. any elements of ϑ are all zero.) Hence, the derivative in

the direction eu, where eu ≡ (u1, ..., uκ)0 is a vector of the same structure as ϑ,
i.e. κ × 1 where κ = N (p+ 1− r) r, is the block diagonal N (p+ 1− r) ×Nr
matrix Dϕ (eu) with elements

κX
s=1

us
∂ϕ∗jkii
∂ϑs

= us∗ ,

where s∗ is the s corresponding to element (j, k) of the matrix ϑii. In other

words, Dϕ (eu) has the same structure as ϕ∗, except that the Ir matrices are
replaced by 0.

Next, choose eu1, ..., euκ orthogonal in Rκ, such that τ 0Dϕ (eui) = 0 for i =

1, ...,κ1 and τ 0Dϕ (eui) 6= 0 for i = κ1 + 1, ...,κ. Furthermore, define the matrix

Deϕ with ith column given by
Deϕi = vec

©
(γ, 0)0Dϕ (eui)ª , i = 1, ...,κ1,

Deϕi = vec
©
(0, τ)

0
Dϕ (eui)ª , i = κ1 + 1, ...,κ.

Here, (γ, 0) and (0, τ) are Np× eN , and so, (γ, 0)0Dϕ (eui) and (0, τ)0Dϕ (eui) areeN ×Nr and Deϕ is Nr eN × κ. To understand the structure of Deϕ, write
vec

©
(γ, 0)0Dϕ (eui) INrª =

©
INr ⊗ (γ, 0)0

ª
vec {Dϕ (eui)} ,

vec
©
(0, τ)

0
Dϕ (eui) INrª =

©
INr ⊗ (0, τ)0

ª
vec {Dϕ (eui)} ,

so that

Deϕ = £©INr ⊗ (γ, 0)0ªL1,©INr ⊗ (0, τ)0ªL2¤ , (4)
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where

L1 ≡ [vec {Dϕ (eu1)} , ..., vec {Dϕ (euκ1)}] ,
L2 ≡ [vec {Dϕ (euκ1+1)} , ..., vec {Dϕ (euκ)}] .

Next, for i = 1, ...,N define H(r)
i as above, which is orthogonal to the Nr ×

(N − 1) r matrix

H
(r)
i⊥ =

Ã
Ir(i−1) 0r(i−1)×r(N−1−i)
0r×r(i−1) 0r×r(N−1−i)
0r(N−1−i)×r(i−1) Ir(N−1−i)

!
,

for i = 1, ..., N . Furthermore, let

eHi ≡ µ H
(p−r)
i
0

¶
,

which is eN × (p− r) , and

S⊥ ≡
³
H
(r)
1⊥ ⊗ eH1, ...,H(r)

N⊥ ⊗ eHN´ ,
which is Nr eN ×N (N − 1) (p− r) r and orthogonal to S defined above. Now,
we find via (4) that

S0⊥
©
INr ⊗ (γ, 0)0

ª
L1

=

 H
(r)0
1⊥ ⊗ eH 0

1 (γ, 0)
0

...
H
(r)0
N⊥ ⊗ eH 0

N (γ, 0)
0

 [vec {Dϕ (eu1)} , ..., vec {Dϕ (euκ1)}] ,

=


vec

³ eH 0
1 (γ, 0)

0Dϕ (eu1)H(r)
1⊥
´

· · · vec
³ eH 0

1 (γ, 0)
0Dϕ (euκ1)H(r)

1⊥
´

...
...

vec
³ eH 0

N (γ, 0)
0
Dϕ (eu1)H(r)

N⊥
´

· · · vec
³ eH 0

N (γ, 0)
0
Dϕ (euκ1)H(r)

N⊥
´
 = 0,

where the third equality follows since for all i and j, eH 0
i (γ, 0)

0
Dϕ (euj)H(r)

i⊥
picks out only non-diagonal blocks of (γ, 0)0Dϕ (euj), which are 0. Similarly,
S0⊥
©
INr ⊗ (0, τ)0

ª
L2 = 0. Now, let S be as above. Then, the identity

INr eN = SS0 + S⊥S0⊥
and (4) imply

Deϕ = ³SS0 + S⊥S0⊥´ £©INr ⊗ (γ, 0)0ªL1,©INr ⊗ (0, τ)0ªL2¤ = SM,
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where

M ≡ S0 £©INr ⊗ (γ, 0)0ªL1,©INr ⊗ (0, τ)0ªL2¤ ,
which is a κ×κ matrix. Now, ifM is non-singular, eq. (C.7) of Johansen (1991)

yields (with the Kronecker product twisted around, due to different notational

conventions),³
Tγ, T 3/2τ

´0
vec (bϕ− ϕ)

w→ Deϕ½Deϕ0µα0Ω−1α⊗ Z eG eG0¶Deϕ¾−1Deϕ0 vec½Z eG (dV )0¾
= SM

½
M 0S0

µ
α0Ω−1α⊗

Z eG eG0¶SM¾−1M 0S0 vec
½Z eG (dV )0¾

= S

½
S0
µ
α0Ω−1α⊗

Z eG eG0¶S¾−1 S0 vec½Z eG (dV )0¾ ,
as was to be shown. The non-singularity of M follows since

S0
©
INr ⊗ (γ, 0)0

ª
L1

=

 H
(r)0
1 ⊗ eH 0

1 (γ, 0)
0

...
H
(r)0
N ⊗ eH 0

N (γ, 0)
0

 [vec {Dϕ (eu1)} , ..., vec {Dϕ (euκ1)}] ,

=


vec

³ eH 0
1 (γ, 0)

0
Dϕ (eu1)H(r)

1

´
· · · vec

³ eH 0
1 (γ, 0)

0
Dϕ (euκ1)H(r)

1

´
...

...

vec
³ eH 0

N (γ, 0)
0Dϕ (eu1)H(r)

N

´
· · · vec

³ eH 0
N (γ, 0)

0Dϕ (euκ1)H(r)
N

´


which is a block diagonal matrix withNr diagonal blocks of dimension (p+ 1− r)×
(p+ 1− r) . For example, the first block is given by³

vec
³ eH 0

1 (γ, 0)
0
Dϕ (eu1)H(r)

1

´
, ..., vec

³ eH 0
1 (γ, 0)

0
Dϕ (eup+1−r)H(r)

1

´´
= (γ01, 0) (0, Ip+1−r)

0
.

Indeed, this is the form of the r uppermost blocks, then comes the block

(γ02, 0) (0, Ip+1−r)
0, etcetera. Similarly, S0

©
INr ⊗ (0, τ)0

ª
L2 is block diagonal

withNr diagonal blocks of dimension (p+ 1− r)×(p+ 1− r), given by (0, τ1) (0, Ip+1−r)0,
etcetera. Hence,

M (Iκ1 , Iκ−κ1)
0 =

£
S0
©
INr ⊗ (γ, 0)0

ª
L1, S

0 ©INr ⊗ (0, τ)0ªL2¤ (Iκ1 , Iκ−κ1)0
is block diagonal with Nr diagonal blocks of dimension (p+ 1− r)×(p+ 1− r),
given by (γ1, τ1) (0, Ip+1−r)

0, etcetera. Since these blocks are non-singular, it

follows that M (Iκ1 , Iκ−κ1)
0, and hence M , is non-singular.
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A.2.1 Proof of theorem 1

Consider the three hypotheses H4 : rank(Π) 6 Np, H3 : Π = αβ0 where α,β

are Np × Nr, of full rank and H2 : as H3 but where β is block-diagonal with
p × r-dimensional blocks. Denoting the maximum likelihood ratio between Hi
and Hj (Hi ⊂ Hj) by Qij , we then have Q24 = Q23Q34, i.e.

−2 logQ24 = −2 logQ23 − 2 logQ34.

Johansen (1995) has showed that the asymptotic distribution of −2 logQ34
equals the distribution of U as defined in the theorem. (The fact that β has the

specific form under our hypothesis under test, H2, does not affect this result.)
Now, to prove our theorem, our plan is

1) To show the convergence of −2 logQ23 to the χ2 distribution.
2) To show the asymptotic independence between −2 logQ23 and −2 logQ34.
1) It follows from theorem C.1 of Johansen (1991) that −2 logQ23 is as-

ymptotically χ2 (k − s), where k is the number of free parameters under the
alternative hypothesis H3, and where s is the number of free parameters under
the null hypothesis H2. In other words, k − s is the difference between the
numbers of free parameters of αβ0 under H3 and H2, respectively. Now, under

H2,

β =


β1 0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0 βN
βN+1,1 · · · βN+1,N

 =



Ã
β
(1)
1

β
(2)
1

!
0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0

Ã
β
(1)
N

β
(2)
N

!
βN+1,1 · · · βN+1,N


= eβ diag³β(1)1 , ...,β(1)N ´ ,
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where

eβ ≡


eβ1 0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0 eβNeβN+1,1 · · · eβN+1,N

 =



µ
Ir
ϑ1

¶
0 · · · 0

0
. . .

. . .
...

...
. . . 0

0 · · · 0

µ
Ir
ϑN

¶
ϑN+1,1 · · · ϑN+1,N


,

(5)

with ϑi ≡ β
(2)
i

n
β
(1)
i

o−1
and ϑN+1,i ≡ β

(2)
N+1,i

n
β
(1)
N+1,i

o−1
for i = 1, ...,N .

(The β
(1)
i are r × r and the β

(2)
i are (p− r) × r.) Then, αβ0 = eαeβ0, whereeα ≡ α diag

³
β
(1)0
1 , ...,β

(1)0
N

´
. Here, for each i, the numbers of free parameters ofeβi and eβN+1,i are (p− r) r and r, respectively. Consequently, under H2, the

number of free parameters of αβ0 is N2pr + N (p− r) r + Nr. Under H3, the
corresponding trick yields N2pr +N2 (p− r) r +Nr free parameters. Hence,

k − s =
©
N2pr +N2 (p− r) r +Nrª− ©N2pr +N (p− r) r +Nrª

= N (N − 1) (p− r) r,

as was to be shown.

2) Introduce the extra hypothesis H0 : Π = αβ0 where β is fixed. It follows

as above that

−2 logQ23 = −2 logQ03 − (−2 logQ02) .
Here, following Johansen (1991), p. 1576, we find as in the preceding proof that

−2 logQ02
w→ vec

½Z eG (dV )0¾0Deβ½Deβ0µα0Ω−1α⊗ Z eG eG0¶Deβ¾−1Deβ0 vec½Z eG (dV )0¾
= vec

½Z eG (dV )0¾0 SM ½
M 0S0

µ
α0Ω−1α⊗

Z eG eG0¶SM¾−1M 0S0 vec
½Z eG (dV )0¾

= vec

½Z eG (dV )0¾0 S½S0µα0Ω−1α⊗ Z eG eG0¶S¾−1 S0 vec½Z eG (dV )0¾ .
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As for −2 logQ03, we simply replace Deβ by an identity matrix, to obtain
−2 logQ03
w→ vec

½Z eG (dV )0¾0µα0Ω−1α⊗ Z eG eG0¶−1 vec½Z eG (dV )0¾
= vec

½Z eG (dV )0¾0µα0Ω−1α⊗ Z eG eG0¶−1 vec½Z eG (dV )0¾ .
Consequently,

−2 logQ23 w→ vec

½Z eG (dV )0¾0 P vec½Z eG (dV )0¾ , (6)

where

P ≡ J−1 − S (S0JS)−1 S0

with

J ≡ α0Ω−1α⊗
Z eG eG0.

Then, it follows that

P = J−1S⊥
¡
S0⊥J

−1S⊥
¢−1

S0⊥J
−1. (7)

Now, conditional on eG, vec³R eGdV 0´ is normal with expectation 0 and co-
variance matrix J , and so, S0⊥J

−1 vec
³R eGdV 0´ is normal with expectation 0

and covariance matrix S0⊥J
−1S⊥. Hence, by (7), the r.h.s. of (6) is χ2 (1),

conditional on eG. Moreover, since this distribution is independent of eG, this
property holds also unconditionally. Consequently, the quantity on right-hand

side of (6) is independent of eG, a fact that will be useful below. Furthermore,
from Johansen (1995), p. 158-160, we deduce the representation

−2 logQ34
w→ tr

(µZ
GG0

¶−1 Z
GdW 0α⊥ (α0⊥Ωα⊥)

−1
α0⊥

µZ
GdW 0

¶0)

= vec

µZ
GdW 0α⊥

¶0µ
α0⊥Ωα⊥ ⊗

Z
GG0

¶−1
vec

µZ
GdW 0α⊥

¶
(8)

where W is as above. The processes G and eG are defined in slightly different

ways, but the stochastic parts of them are the same. In fact, defining

Z (t) ≡
µ
W (t)

0 −
Z 1

0

W (u)
0
du, t− 1

2

¶0
,
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we have eG (t) = eAZ (t), where eA ≡ diag (γ0RC, 1). Similarly, G (t) = AZ (t),
where A is as eA, but with no R and a slightly different γ. Now, we need to show
that the right hand side terms of (6) and (8), M1 and M2 say, are independent.

To this end, let us condition on Z. Then,
R eG (dV )0 = eA R ZdW 0Ω−1α andR

GdW 0α⊥ = A
R
ZdW 0α⊥ are both normals, each with expectation zero, and

the covariance between them is

eAE(Z ZdW 0Ω−1α
µZ

ZdW 0α⊥

¶0)
A0 = 0,

showing that
R eG (dV )0 and R GdW 0α⊥ are conditionally independent given Z.

Hence, M1 and M2 must also be conditionally independent given Z. Further-

more, as we saw above, M1 is independent of G, hence also of Z. Thus we get,

denoting the densities for M1 and M2 by f1 and f2, their simultaneous density

by f1,2, the density of Z by fZ and the corresponding conditional densities by

f1|Z etcetera,

f1,2 =

Z
f1,2|ZfZ =

Z
f1|Zf2|ZfZ = f1

Z
f2|ZfZ = f1f2,

where the integrals are over the support of the Z density. This shows the

independence between M1 and M2, and we are done.

A.2.2 Proof of theorem 2

Again, the theorem is a special case of theorem C.1 of Johansen (1991). Hence,

the asymptotic distribution is χ2, and the number of degrees of freedom is the

difference between the number of free parameters of αβ0 under H2 and H1,
respectively. As we saw in the previous proof, the former number is N2pr +

N (p+ 1− r) r. Similar arguments lead to the corresponding number N2pr +

(p+ 1− r) r under H1. Consequently, the number of degrees of freedom for the

test is the difference, (N − 1) (p+ 1− r) r, as was to be shown.

A.2.3 Proof of theorem 3

As above, the asymptotic distribution is χ2. We need to find the number of

degrees of freedom. Now, under H0, we may without loss of generality assume

that all ψi are equal. Consequently, with ψ ≡ ¡ψ00,ψ01¢0 where ψ0 is r × r, we
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may write

β =



Ip 0
0 0
...

...
0 0
0 1


µ

β1
βN+1,1

¶
, ...,


0 0
...

...
0 0
Ip 0
0 1


µ

βN
βN+1,N

¶

=



Ip 0
0 0
...

...
0 0
0 1

H1, ...,


0 0
...

...
0 0
Ip 0
0 1

HN

½
IN ⊗

µ
Ir

ψ1ψ
−1
0

¶¾
(IN ⊗ ψ0)

≡ β∗ (IN ⊗ ψ0) ,

implying αβ0 = α∗β∗0, where α∗ ≡ α
¡
IN ⊗ ψ00

¢
. Here, β∗ has (s− r) r free

parameters, and so, the number of free parameters of αβ0 is N2pr + (s− r) r.
Hence, in the manner as in the previous proofs, the number of degrees of freedom

for the test of H0 against H1 is

N2pr + (p+ 1− r) r + r − ©N2pr + (s− r) rª = (p+ 1− s) r.
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