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Abstract

Policy rules that are consistent with in�ation targeting are examined in a small macro-
econometric model of the US economy. We compare the properties and outcomes of explicit
�instrument rules� as well as �targeting rules.� The latter, which imply implicit instrument
rules, may be closer to actual operating procedures of in�ation-targeting central banks. We
�nd that in�ation forecasts are central for good policy rules under in�ation targeting. Some
simple instrument and targeting rules do remarkably well relative to the optimal rule; others,
including some that are often used as representing in�ation targeting, do less well.

1. Introduction

In this paper, we use a small empirical model of the U.S. economy to examine the performance

of policy rules that are consistent with a monetary policy regime of in�ation targeting. In

the real world, explicit in�ation targeting is currently pursued in New Zealand, Canada, the

U.K., Sweden, Australia, and arguably also in Finland and Spain (although the participation of

the last two in the Exchange Rate Mechanism in the European Monetary System raises some

questions). In�ation targeting in these countries is characterized by (1) a publicly-announced

numerical in�ation target (either in the form of a target range, a point target, or a point

target with a tolerance interval), (2) a framework for policy decisions which involves comparing
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an in�ation forecast to the announced target, thus, providing an �in�ation-forecast targeting�

regime for policy where the forecast serves as an intermediate target (cf. Haldane [38], King [45],

and Svensson [71]), and (3) a higher-than-average degree of transparency and accountability.1

We model an in�ation-targeting policy regime using loss functions over policy goals. In our

loss functions, in�ation targeting always involves an attempt to minimize deviations of in�ation

from the explicit in�ation target. In addition, however, our in�ation targeting loss functions also

allow concerns about real output (or more precisely about the variability of output because the

natural rate hypothesis is assumed). That is, we would argue there is no necessary connection

between the speci�cation of the loss function (other than that in�ation variability must enter

with a non-negligible weight) and the speci�cation of an in�ation-targeting policy regime.2 For

support of this view, see, for example, the recent discussion by Fischer [29], King [46], Taylor [78]

and Svensson [70] in Federal Reserve Bank of Kansas City [28].3 Thus, we interpret in�ation

targeting as consistent with a conventional quadratic loss function, where in addition to the

variability of in�ation around the in�ation target there is some weight on the variability of the

output gap.4

In examining policy rules that are consistent with in�ation targeting, we consider two broad

classes of rules: instrument rules and targeting rules. An explicit instrument rule expresses the

monetary policy instrument as an explicit function of available information. We examine both

optimal unrestricted instrument rules (a tradition that goes back at least to Taylor [76]; recent

contributions include Blake and Westaway [8]) as well as optimal simple or restricted instrument

rules, which involve only a few parameters or arguments (for instance, current in�ation and

output as in Taylor�s [77] rule). However, no central bank, whether in�ation-targeting or not,

follows an explicit instrument rule (unrestricted or simple). Every central bank uses more

information than the simple rules are based on, and no central bank would voluntarily restrict

itself to react mechanically in a predescribed way to new information. The role of unrestricted

1 The rapidly increasing literature on in�ation targeting includes the conference volumes Leiderman and
Svensson [48], Haldane [36], Federal Reserve Bank of Kansas City [28], and Lowe [50]. See also the survey by
Bernanke and Mishkin [4].

2 One may argue, though, that the high degree of transparency and accountability serves to increase the
commitment to minimizing the loss function, and to ensure that any concern about the real economy is consistent
with the natural rate hypotheses and therefore reduces, or eliminates, any in�ation bias.

3 As discussed in Svensson [73], concerns about the stability of the real economy, model uncertainty, and
interest rate smoothing all have similar e¤ects under in�ation targeting, namely a more gradualist policy. Thus,
if in�ation is away from the in�ation target, it is brought back to target more gradually (��exible� rather than
�strict� in�ation targeting, the in�ation forecast hits the target at a horizon that is longer than the shortest
possible). Svensson [72] argues that all in�ation-targeting central banks in practice behave in this way, possibly
with di¤ering weights on the di¤erent reasons for doing so.

4 Because in�ation-targeting central banks, like other central banks, also seem to smooth interest rates, our
loss function also includes some weight on the variability of interest rate changes.
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or simple explicit instrument rules is at best to provide a baseline and comparison to the policy

actually followed.

A targeting rule may be closer to the actual decision framework under in�ation targeting.

It is represented by the assignment of a loss function over deviations of a goal variable from a

target level, or deviations of an intermediate target variable from an intermediate target level (cf.

Rogo¤ [62], Walsh [79] and Svensson [71] and [73]). A targeting rule, combined with a particular

model, is only an implicit instrument rule; typically, the equivalent of a �rst-order condition has

to be solved in order to �nd the corresponding explicit instrument rule. (For an intermediate

target variable that the central bank has complete control over, the �rst-order condition is trivial:

equality between the intermediate target variable and the target level.) As an example, note that

one interpretation of �in�ation-forecast targeting� is that the policy instrument is adjusted such

that a conditional in�ation forecast (the intermediate target variable) hits the in�ation target

at an appropriate horizon. Combined with a particular model, the instrument then becomes an

implicit function of current information; when the corresponding system of equations is solved

for the instrument, the explicit instrument rule results. We shall examine several such targeting

rules below.

Our analysis proceeds as follows. Section 2 presents the empirical model we use, which is

a simple two-equation model of U.S. output and in�ation, somewhat similar to the theoretical

model in Svensson [71]. The model captures some realistic dynamics (for example, monetary

policy actions a¤ect output before in�ation) in a very simple but tractable form. Section 3 �rst

attempts to reduce the confusion caused by the literature�s use of two di¤erent meanings of

�targeting,� and then presents the di¤erent instrument and targeting rules we examine. Section

4 reports our results, with focus on output and in�ation variability under a large set of various

policy rules. We �nd that some simple instrument and targeting rules involving in�ation forecasts

do remarkably well in minimizing the loss function (relative to the optimal rule). Other policy

rules, some of which are frequently used in the literature as representing in�ation targeting, do

less well. Finally, section 5 concludes.
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2. An Empirical Model of U.S. Output and In�ation

2.1. Motivation

Our choice of an empirical model of output and in�ation is motivated by three considerations.

First, we choose a simple linear model (as well as quadratic preferences below), so our analysis

will be tractable and our results transparent. Our model consists of an aggregate supply equation

(or �Phillips curve�) that relates in�ation to an output gap and an aggregate demand equation

(or �IS curve�) that relates output to a short-term interest rate. Obviously, our model glosses

over many important and contentious features of the monetary transmission mechanism. Still, we

feel that the model has enough richness�for example, in dynamics�to be of interest, especially

when judged relative to some of the models used in previous theoretical discussions.

Second, our model captures the spirit of many practical policy-oriented macroeconometric

models. Some (e.g., McCallum [56]) have argued that because there is no academic consensus

on the structure of the economy, any proposed monetary policy rule should perform well in a

variety of models. We are completely sympathetic to this argument. We believe that robustness

to plausible model variation is a crucial issue and one that this conference volume, taken as a

whole, should provide some insight into. However, we also believe that monetary policy analysis

will be most convincing to central bankers (who are, of course, among the most important

ultimate consumers of this research) if it is conducted using models that are similar in structure

to the ones actually employed by central bankers. Thus, for example, at this stage of analysis, we

focus our attention on a model that (1) uses a short-term interest rate as the policy instrument

with no direct role for monetary aggregates, (2) is speci�ed in terms of output gaps from trend

instead of output growth rates, and (3) includes a Phillips curve with adaptive or autoregressive

expectations that is consistent with the natural rate hypothesis. Such a structure is typical of

many central bank policy models (including, for example, the 11 models described in the central

bank model comparison project for the Bank for International Settlements [3]) and because

our empirical analysis uses U.S. data, we will be keen to match the properties of the Federal

Reserve�s venerable MPS macroeconometric model.5 Of course, the appropriate way to model

expectations for policy analysis remains particularly contentious (see, for example, the early

5 In 1996, the FRB/US model replaced the MPS model as the Federal Reserve Board�s main quarterly macro-
econometric model. The major innovation of this model is its ability to explicitly model various types of ex-
pectations including model-consistent ones (see Brayton and Tinsley [13]). Still, across a range of expectations
processes, the properties of the new model are broadly similar to those of our model. For example, the FRB/US
model exhibits an output sacri�ce ratio of between two and �ve, which, as noted below, brackets our model�s
sacri�ce ratio of about three.
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discussion by Lucas [52] and Sims [67]). We are persuaded that the importance of the Lucas

Critique is in large measure an empirical issue as in, for example, Oliner, Rudebusch, and Sichel

[60]. In this regard, Fuhrer [33] tests an autoregressive Phillips curve like ours against a forward-

looking version and cannot reject it. Moreover, many policymakers appear more comfortable

with the backward-looking version, including Federal Reserve Governor Meyer [58] and former

Vice-Chairman Blinder [9]. Finally, in this regard, it should be noted our backward-looking

expectations may be particularly appropriate during the introduction of a new rule for in�ation

targeting. As stressed by Taylor [77] and Bom�m and Rudebusch [10], rational expectations

may be unrealistic during the transition period when learning about the new policy rule is taking

place.

Our third consideration in model selection is empirical �t to the data. To judge whether our

model is able to reproduce the salient features of the data, we compare its �t and dynamics to an

unrestricted VAR. VARs have become a very popular tool recently for describing the dynamics

of monetary transmission, and they are a natural benchmark for model evaluation. Indeed, if

one dislikes the structural interpretation that we attach to our model, one can simply consider

it a reduced-form VAR and so our analysis is similar in spirit to Feldstein and Stock [30] or

Cecchetti [16].

2.2. Model Estimates

The two equations of our model are

¼t+1 = ®¼1¼t + ®¼2¼t¡1 + ®¼3¼t¡2 + ®¼4¼t¡3 + ®yyt + "t+1 (2.1)

yt+1 = ¯y1yt + ¯y2yt¡1 ¡ ¯r (¹it ¡ ¹¼t) + ´t+1; (2.2)

where ¼t is quarterly in�ation in the GDP chain-weighted price index (pt) in percentage points

at an annual rate, i.e., 400(lnp¡ ln pt¡1); ¹¼t is four-quarter in�ation in the GDP chain-weighted
price index, i.e., 14§

3
j=0¼t¡j ; it is quarterly average federal funds rate in percentage points at an

annual rate; ¹{t is four-quarter average federal funds rate, i.e., 14§
3
j=0it¡j; yt is the relative gap

between actual real GDP (qt) and potential GDP (q¤t ) in percentage points, i.e., 100(qt¡q¤t )=q¤t .
These �ve variables were de-meaned prior to estimation, so no constants appear in the equations.

The �rst equation relates in�ation to a lagged output gap and to lags of in�ation.6 The
6 Our series on the output gap is essentially identical to those that have been used in a variety of Federal

Reserve and other government studies including, for example, Congressional Budget O¢ce [22] and Hallman,
Porter, and Small [40]. Our estimation results were little changed by using a �exible trend for potential output
such as a quadratic trend.
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lags of in�ation are an autoregressive or adaptive representation of in�ation expectations, which

is consistent with the form of the Phillips curve in the MPS model described in Brayton and

Mauskopf [12]. In our empirical analysis below, we will not reject the hypothesis that the

coe¢cients of the four in�ation lags sum to one; thus, we will use an accelerationist form of the

Phillips curve, which implies a long-run vertical Phillips curve. The second equation relates the

output gap to its own lags and to the di¤erence between the average funds rate and average

in�ation over the previous four quarters�an approximate ex post real rate. The third term is

a simple representation of the monetary transmission mechanism, which, in the view of many

central banks, likely involves nominal interest rate (e.g., mortgage rates), ex ante real short and

long rates, exchange rates, and possibly direct credit quantities as well. Equation (2.2) appears

to be a workable approximation of these various intermediate transmission mechanisms.

The estimated equations, using the sample period 1961:1 to 1996:2, are shown below. (Co-

e¢cient standard errors are given in parentheses, and the standard error of the residuals and

Durbin-Watson statistics also are reported.)

¼t+1 = :70 ¼t ¡ :10 ¼t¡1 + :28 ¼t¡2 + :12 ¼t¡3 + :14 yt + "t+1;
(:08) (:10) (:10) (:08) (:03)

SE = 1:009; DW = 1:99;

yt+1 = 1:16 yt ¡ :25 yt¡1 ¡ :10 (¹it ¡ ¹¼t) + ´t+1;
(:08) (:08) (:03)

SE = 0:819; DW = 2:05:

The equations were estimated individually by OLS.7 The hypothesis that the sum of the

lag coe¢cients of in�ation equals one had a p-value of .16, so this restriction was imposed in

estimation.8

The subsample stability of our estimated equations is an important condition for drawing

inference from our model�whether it is given a structural or reduced form (VAR) interpreta-

tion. In particular, because ours is a backward-looking model, the Lucas Critique may apply

with particular force. The historical empirical importance of this Critique can be gauged by

econometric stability tests (again, see Oliner, Rudebusch, and Sichel [60]). Our estimated equa-

tions appear to easily pass these tests. For example, consider a stability test from Andrews [1]:

7 Almost identical parameter estimates were obtained by the SUR and by system ML methods because the
cross-correlation of the errors is essentially zero.

8 This p-value was obtained by simulating the above in�ation equation 1000 times and ranking the sum of
coe¢cients from the unrestricted Phillips curve estimated from the actual data (i.e., .969) in the set of unrestricted
sums estimated from the simulated data. This is in the spirit of Rudebusch [63]. For comparison, the simple
t -test gives a p-value of .42.
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the maximum value of the likelihood-ratio test statistic for structural stability over all possible

breakpoints in the middle 70 percent of the sample. For our estimated in�ation equation, the

maximum likelihood-ratio test statistic is 9.77 (in 1972:3), while the 10 percent critical value is

14.31 (from table 1 in Andrews [1]). Similarly, for the output equation, the maximum statistic

7.87 (in 1982:4), while the 10 percent critical value is 12.27.

2.3. Comparison to other empirical estimates

It is useful to compare our model with other empirical estimates in order to gauge its plausibility

and its conformity to central bank models. From the perspective of monetary policy, there are

two features of particular interest: (1) the sensitivity of real activity to movements in the policy

instrument, and (2) the responsiveness of in�ation to slack in the economy. Table 1 provides

some evidence on both of these issues with a comparison of simulations from our model (2.1)�

(2.2) and the MPS model, which was used regularly in the Federal Reserve�s forecasting process

for over 25 years. The experiment considered (as outlined in Smets [68] and Mauskopf [54]),

assumes that the Federal Reserve raises the federal funds rate by one percentage point for

two years and then returns the funds rate to its original level thereafter. Table 1 reports for

output and in�ation the average di¤erence between this simulation and a constant funds rate

alternative in each of the �rst three years after the funds rate increase. The responses of the

MPS model and our model to this temporary tightening of monetary policy are quite similar.

In both models, output averages almost 0:5 percentage point lower in year two and between

two-thirds and 1 percentage point lower in year three, while in�ation falls by about a quarter of

a percentage point by the third year. Both models require about 3.3 years of a one percentage

point output gap in order to induce a one percentage point change in the in�ation rate�that is,

they exhibit an output sacri�ce ratio of just over three.9 Most importantly, the magnitude of

the link between the funds rate and in�ation, which will be crucial for our in�ation-targeting

analysis, is essentially the same across the two models.10

Finally, it is also useful to compare the �t and impulse responses of our model to those of a

VAR. While one may be deeply skeptical of the use of VARs for certain structural investigations

9 For comparison, with a rough back-of-the-envelope calculation, Ball (1994) reports an output sacri�ce ratio
for the U.S. of 2.4.
10 Our model estimates appear comparable to other recent small empirical structural models of the United

States, including Fuhrer and Moore [35], Clark, Laxton, and Rose [20], and Fair and Howrey [27]. This is true
even though the models use di¤erent interest rates in the IS curve: Fuhrer uses an ex ante real long rate, Clark,
Laxton, and Rose use an ex ante real short rate, and Fair and Howrey use a nominal short rate. In fact, over the
postwar historical sample, the four measured rates used appear to have moved together fairly closely.
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(see Rudebusch [65]), they can provide simple atheoretical summaries of the general dynamics of

the data and thus can provide a useful benchmark for the overall �t of a model. Our model can

be viewed as two restricted equations from a trivariate VAR with four lags. The VAR output

equation regresses the gap on four lags of ¼, y, and i. The VAR in�ation equation regresses

in�ation on the same lags as well as the contemporaneous value of the gap.11 Table 2 compares

the Schwarz and Akaike Information Criteria (SIC and AIC, respectively) for each VAR equation

with those of our structural model. These two model selection criteria, which are functions of the

residual sum of squares, are di¤erentiated by their degrees-of-freedom penalty for the number of

parameters estimated. As shown in table 2, the structural model�s in�ation equation is favored

over the VAR�s in�ation equation by both the SIC and the AIC. For the output equation, there

is a split decision. The SIC, which more heavily penalizes extra parameters, favors the structural

model, while the AIC favors the VAR. Overall, the information criteria do not appear to view

our structural model restrictions unfavorably.

As a �nal comparison of our structural model to the VAR, Figure 1 shows their responses

to various shocks. This exercise completes the VAR with the usual VAR funds rate equation

that regresses the funds rate on four lags of the three variables as well as contemporaneous

values of the output gap and in�ation. This VAR funds rate equation�with its interpretation

as a Federal Reserve reaction function�is also added as a third equation to our model. The

impulse responses of this structural system are shown as solid lines in �gure 1, while the usual

VAR impulse responses are shown as long-dashed lines along with their 95 percent con�dence

intervals as short-dashed lines. Because the funds rate reaction function equation is identical

across the two systems, any di¤erences in dynamics are attributable to the structural model

restrictions on the output and in�ation equations.

Figure 1 suggests that these restrictions do not greatly alter the dynamics of the model

relative to an unrestricted VAR. In response to a positive funds rate shock, output and in�ation

decline in a similar manner in each system.12 Also, a positive output shock persists over time and

boosts in�ation in a like fashion in both models. Only for an in�ation shock (the left column

of �gure 1), does our model�s responses edge outside the VAR�s con�dence intervals. This

discrepancy re�ects our model�s output sensitivity to the real interest rate, which falls after

an in�ation shock because the VAR funds rate reaction function has such an extremely weak

11 Thus, our VAR has a Cholesky factorization with a causal order of output, in�ation, and, �nally, the funds
rate.
12 There is a modest, insigni�cant �price puzzle� exhibited by the VAR but not the structural model.
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interest-rate response to in�ation. The implausibility of such VAR reaction functions, which mix

several decades of very di¤erent Federal Reserve behavior, is highlighted in Rudebusch [65] and

Judd and Rudebusch [44]. As shown below, with more plausible reaction functions where the

Fed raises the funds rate by more than in�ation shock (so the real rate raises, as in the Taylor

rule), output will fall following an in�ation shock in the structural model.

3. Monetary Policy Rules

3.1. Instrument Rules and Targeting Rules

As noted in the introduction, by an (explicit) instrument rule, we mean that the monetary

policy instrument is expressed as an explicit function of available information. Classic examples

of instrument rules are the McCallum [56] rule for the monetary base, or the Taylor [77] rule for

the federal funds rate. By a targeting rule, we mean that the central bank is assigned to minimize

a loss function that is increasing in the deviation between a target variable and the target level

for this variable. The targeting rule will, as we shall see, imply an implicit instrument rule.

In the literature, the expressions �targeting variable xt,� or �having a target level x¤ for

variable xt,� have two meanings. According to the �rst meaning, the expressions above are

used in the sense of �setting a target for variable x.�13 Thus, �having a target� means �using

all relevant available information to bring the target variable in line with the target,� or more

precisely to minimize some loss function over expected future deviations of the target variable

from the target level; for instance, the quadratic loss function

min
it
Et

1X
¿=0

±¿ (xt+¿ ¡ x¤)2;

where ±, 0 < ± < 1, is a discount factor and Et denotes the expectations operator conditional

on information available in period t. We will use �targeting� according to this �rst meaning,

following, for instance, Rogo¤ [62], Walsh [79] and Svensson [71] and [73].

According to the second meaning, �targeting� and �targets� imply a particular information

restriction for the instrument rule, namely that the instrument must only depend on the gap

between the target variable and the target level (and lags of this gap, and/or lags of itself).14

13 This is in line with Merriam-Webster [59]: target vt (1837) 1: to make a target of; esp to set as a goal 2:
to direct or use toward a target.
14 See, for instance, Judd and Motley [43], McCallum [57] and Bernanke and Woodford [5]. Bernanke and

Woodford�s criticism of Svensson�s [71] use of the term �in�ation-forecast targeting� seems to take the second
meaning of �targeting� for granted and disregard the �rst meaning (which indeed is the one used in [71]).
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Thus, the instrument rule is typically restricted to be

A(L)it = B(L)(xt ¡ x¤);

where A(L) and B(L) are polynomials in the lag operator L. To convey the second meaning,

�responding only to xt ¡ x¤� seems more precise. Note that �in�ation targeting� according to
this second meaning, but not according to the �rst meaning, might correspond to an instrument

rule like

it = hit¡1 + '(¼t ¡ ¼¤):

This instrument rule turns out to perform much worse than other instrument rules. Note also

that �in�ation-forecast targeting� according to the second meaning (as in, e.g., Haldane [37]),

but generally not according to the �rst meaning, might be an instrument rule like

it = hit¡1 + '(¼t+T jt ¡ ¼¤);

where ¼t+T jt denotes some conditional in�ation forecast of in�ation T quarters ahead (more on

this below).

A targeting rule for a goal variable is hence equivalent to having an objective for this variable.

Examples of such rules are �annual in�ation shall fall within the interval 1-3 percent per year

on average at least 3 years out of 4,� or �minimize the expected value of a discounted sum

of future weighted squared deviations of annual in�ation from 2 percent per year and squared

output gaps,� etc. We shall assume an objective of the last kind.

Similarly, a targeting rule for an intermediate target variable is equivalent to having a loss

function for this intermediate target variable (an intermediate loss function), where the target

level sometimes is not constant but depends on current information. The targeting rule can

also be expressed as an equation that the target variable shall ful�ll, for instance that the

target level for the intermediate target is an explicit function of available information. The

equation for the intermediate target variable may be interpreted as a �rst-order condition of an

explicit or implicit loss function for the goal variable (see Svensson [71] and [73] for examples).

Thus, a targeting rule in the end expresses the intermediate target level as a function of current

information. Examples of intermediate target rules are �minimize the expected future deviation

of M3 growth from the sum of a given in�ation target, a forecast of potential output growth,

and a velocity trend,� �keep the exchange rate within § 2.25 percent band around a given

central parity,� or �adjust the instrument such that the forecast for in�ation 4-8 quarters ahead,
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conditional on the current state of the economy and on holding the instrument at constant level

for the next 8 quarters, is 2 percent per year.� We shall consider some targeting rules of this

last kind.

A targeting rule in a given model implies a particular instrument rule, but this instrument

rule is implicit rather than explicit. That is, the targeting rule has to be solved for the instrument

rule in order to express it as a function of current information.

3.2. The Model

Let the model be given by (2.1) and (2.2), and let ²t and ´t be i.i.d. zero-mean disturbances with

variances ¾2" and ¾
2
´ and covariance ¾"´. The coe¢cients of the lagged in�ation terms in (2.1)

are restricted to sum to one,
4X
j=1

®¼j = 1:

In our analysis, we will interpret �in�ation targeting� as having a loss function for monetary

policy where deviations of in�ation from an explicit in�ation target are always given some weight,

but not necessarily all the weight. In particular, for a discount factor ±, 0 < ± < 1, we consider

the intertemporal loss function in quarter t,

Et

1X
¿=0

±¿Lt+¿ ; (3.1)

where the period loss function is

Lt = ¹¼
2
t + ¸y

2
t + º (it ¡ it¡1)2 ; (3.2)

(¼t and ¹¼t are now interpreted as the deviation from a constant given in�ation target), and ¸ ¸ 0
and º ¸ 0 are the weights on output stabilization and interest-rate smoothing, respectively.15

We will refer to the variables ¹¼t, yt, and it¡it¡1 as the goal variables. As de�ned in Svensson [73],
�strict� in�ation targeting refers to the situation where only in�ation enters the loss function

(¸ = º = 0), while ��exible� in�ation targeting allows other goal variables (nonzero ¸ or º).

When ± ! 1, the sum in (3.1) becomes unbounded. It consists of two components, however;

one corresponding to the deterministic optimization problem when all shocks are zero, and one

proportional to the variances of the shocks (see appendix B). The former component converges

for ± = 1 (because the terms approach zero quickly enough), and the decision problem is actually

15 Then it can be interpreted as the deviation of the federal funds rate from the sum of the in�ation target and
the natural real interest rate (the unconditional mean of the real interest rate).
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well-de�ned also for that case. For ± ! 1, the value of the intertemporal loss function approaches

the in�nite sum of unconditional means of the period loss function, E[Lt]. Then, the scaled loss

function (1 ¡ ±)Et
P1
¿=0 ±

¿Lt+¿ approaches the unconditional mean E[Lt]. It follows that we

can also de�ne the optimization problem for ± = 1 and then interpret the intertemporal loss

function as the unconditional mean of the period loss function, which equals the weighted sum

of the unconditional variances of the goal variables,

E [Lt] = Var [¹¼t] + ¸Var [yt] + ºVar [it ¡ it¡1] : (3.3)

We shall use (3.3) as our standard loss function, hence assuming the limiting case ± = 1:

3.3. State-space Representation

The model (2.1) and (2.2) has a convenient state-space representation,

Xt+1 = AXt +Bit + vt+1: (3.4)

The 9£1 vector Xt of state variables, the 9£9 matrix A, the 9£1 column vector B, and the 9£1
column disturbance vector vt are given by

Xt =

26666666666664

¼t
¼t¡1
¼t¡2
¼t¡3
yt
yt¡1
it¡1
it¡2
it¡3

37777777777775
; A =

266666666666664

P4
j=1 ®¼jej + ®ye5

e1
e2
e3

¯re1:4 + ¯y1e5 + ¯y2e6 ¡ ¯re7:9
e5
e0
e7
e8

377777777777775
; B =

266666666666664

0
0
0
0

¡ ¯r
4
0
1
0
0

377777777777775
; vt =

26666666666664

"t
0
0
0
´t
0
0
0
0

37777777777775
;

where ej (j = 0; 1; :::; 9) denotes a 1£9 row vector, for j = 0 with all elements equal to zero, for
j = 1; :::; 9 with element j equal to unity and all other elements equal to zero; and where ej:k

(j < k) denotes a 1£9 row vector with elements j; j + 1; :::; k equal to 1
4 and all other elements

equal to zero.

Furthermore, it is convenient to de�ne the 3£1 vector Yt of goal variables. It ful�lls

Yt = CXXt +Ciit; (3.5)

where the vector Yt, the 3£9 matrix CX and the 3£1 column vector Ci are given by

Yt =

24 ¹¼t
yt

it ¡ it¡1

35 ; CX =
24 e1:4

e5
¡ e7

35 ; Ci =
24 00
1

35 :
12



Then the period loss function can be written

Lt = Y
0
tKYt; (3.6)

where the 3£3 matrix K has the diagonal (1; ¸; º) and all its o¤-diagonal elements are equal to

zero.

3.4. Linear Feedback Instrument Rules

We will consider the class of linear feedback instruments rules, that is, rules of the form

it = fXt; (3.7)

where f is a 1£9 row vector. This class of rules includes the optimal instrument rule (see below).
For any given instrument rule of the form (3.7), the dynamics of the model follows

Xt+1 = MXt + vt+1

Yt = CXt;

where the matrices M and C are given by

M = A+Bf (3.8)

C = CX +Cif: (3.9)

For any given rule f that results in �nite unconditional variances of the goal variables, the

unconditional loss (3.3) ful�lls16

E [Lt] = E
h
Y
0
tKYt

i
= trace (K§Y Y ) ; (3.10)

where §Y Y is the unconditional covariance matrix of the goal variables (see appendix A).

3.5. The Optimal Instrument Rule

With (3.4) and (3.6), the problem is written in a form convenient for the standard stochastic

linear regulator problem (cf. Chow [17] and Sargent [66]). Minimizing (3.1) in each quarter,

subject to (3.4) and the current state of the economy, Xt, results in a linear feedback rule for

the instrument of the form (3.7). In the limit when ± = 1, the optimal rule converges to the one

minimizing (3.3). The expression for the optimal instrument rule is given in appendix B.17

16 The trace of a matrix A, trace(A), is the sum of the diagonal elements of A.
17 Since there are no forward-looking variables, we need not distinguish between the commitment and discretion

solutions, since they are the same.
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3.6. In�ation Forecasts

Given the lags in the monetary transmission mechanism, in�ation-targeting central banks focus

on in�ation forecasts. Indeed, several of these banks have started to publish in�ation reports that

are completely devoted to describing the recent history and future prospects for in�ation. The

actual in�ation forecasts that have been reported have fallen into two broad categories depending

on how monetary policy is projected forward: constant-interest-rate in�ation forecasts and rule-

consistent in�ation forecasts.

3.6.1. Constant-Interest-Rate In�ation Forecasts

In�ation-targeting central banks often refer to, and report, in�ation forecasts conditional upon a

given constant interest rate. We will call such forecasts constant-interest-rate in�ation forecasts.

Such in�ation forecasts are frequently used in the following way. If a constant-interest-rate in�a-

tion forecast for the current interest rate is above (below) target for a given horizon, monetary

policy has to be tightened (eased) and the interest rate increased (decreased). If the in�ation

forecast is on target, the current interest-rate setting is deemed appropriate. (see, for instance,

Mayes and Riches [55] and Svensson [71]). Such forecasts, based on a �xed nominal rate, may

seem overly simplistic,18 but they have been widely used at central banks, perhaps most notably

at the Bank of England, where (before operational independence in 1997) the Bank produced

such forecasts because it could not presuppose policy changes by the government.19

In an attempt to represent this, it is convenient to de�ne the �T -quarter-ahead constant-

interest-rate in�ation forecast�. By this we mean a forecast of 4-quarter in�ation T ¸ 2 quarters
ahead, conditional on a given constant current and future interest rate (and on the current state

variables Xt). Denote this conditional forecast by ¹¼t+T jt(i), for the given constant current and

future interest rate i. It is given by

¹¼t+T jt(i) ´ e1:4 ~MT¡1 (AXt +Bi) ; (3.11)

where ~M is a 9£ 9 matrix given by
~M = A+Be7 (3.12)

(we note that e7Xt+1 = it).

18 Indeed, given a long enough forecast horizon, the forecasted in�ation path will normally be explosive.
19 However, even after operational independence, the Bank�s forecasts have assumed unchanged short-term

interest rates (see Britton, Fisher, and Whitley [14]). Similarly, it is our impression that internal sta¤ forecasts at
the Federal Reserve Board are often conditioned on a constant federal funds path. Thus, constant-interest-rate
forecasts may have some general advantages�perhaps, in ease of communication, as noted by Rudebusch [64].
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Consider also the T -quarter-ahead constant-interest-rate in�ation forecast in quarter t, when

the interest rate is held constant at a level equal to that of the previous quarter, it¡1. This

conditional in�ation forecast, the �T -quarter-ahead unchanged-interest-rate in�ation forecast,�

¹¼t+T jt(it¡1), ful�lls

¹¼t+T jt(it¡1) ´ e1:4 ~M
T¡1 (AXt +Bit¡1)

= e1:4 ~M
T¡1 (AXt +Be7Xt)

= e1:4 ~M
TXt: (3.13)

3.6.2. Rule-Consistent In�ation Forecasts

There are of course many other assumptions that one could make about monetary policy in order

to produce in�ation forecasts. For example, one could condition on a constant real interest rate,

or one could set the rate in each future period according to a given reaction function for policy.

Recently, the Reserve Bank of New Zealand (see [61]) has moved beyond constant-interest-rate

forecasts, and started to report o¢cial in�ation forecasts conditional upon a particular reaction

function. (This results in in�ation forecasts always returning to the target.) Below, we shall

also consider a rule that employs such forecasts.

3.7. Simple Instrument Rules

By a simple instrument rule we mean an instrument rule of the form (3.7), where the vector f

is restricted in some way. We will distinguish no fewer than 9 types of simple instrument rules

by characterizing them in terms of three forms and three arguments.20

3.7.1. Three forms

We consider three forms: smoothing, level and di¤erence; the latter two are special cases of the

�rst form. The smoothing form, denoted S, is given by

it = hit¡1 + gXt (3.14)

f = he7 + g;

where h is a coe¢cient and g is a 1£9 row vector of response coe¢cients. When the coe¢cient
h ful�lls 0 < h · 1, this form of instrument rule is characterized by �partial adjustment,� or

20 The theory and practice of simple policy rules is examined in Currie and Levin [23].
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�smoothing� of the instrument. The larger the coe¢cient h, the more smoothing (the more

partial the adjustment).

Recall that it is the deviation from the average nominal interest rate, which in our model

equals the sum of the in�ation target (the average in�ation rate) and the natural real interest

rate (the average real interest rate). If we, temporarily in this paragraph, let all variables denote

absolute levels, and denote the average level of variable xt by x0, we can write (3.14) as

it = hit¡1 + (1¡ h)i0 + g(Xt ¡X0)

= hit¡1 + (1¡ h)(r0 + ¼¤) + g(Xt ¡X0)

= hit¡1 + (1¡ h)(r0 + ¹¼t) + ~g(Xt ¡X0); (3.15)

where ~g ´ g ¡ (1¡ h)e1:4 and we have used i0 = r0 + ¼¤. Thus, (3.14) is equivalent to (3.15),
which is a frequent way of writing instrument rules.21

The level form, denoted L, is the special case of the autoregressive form when h = 0; whereas

the di¤erence form, denoted D, is the special case when h = 1.22

3.7.2. Three arguments (restrictions on g)

We consider three combinations of arguments (variables that the instrument responds to). That

is, we consider three di¤erent restrictions on the vector g of response coe¢cients. First, we

consider a response to ¹¼t and yt, denoted (¹¼t; yt), which implies23

gXt = g¼¹¼t + gyyt

g = g¼e1:4 + gye5;

where g¼ and gy are the two response coe¢cients. Second, we consider a response to the

T -quarter-ahead unchanged-interest-rate in�ation forecast only, denoted (¹¼t+T jt(it¡1)). This

implies

gXt = g¼¹¼t+T jt(it¡1)

g = g¼e1:4 ~M
T ;

21 Clarida, Gali and Gertler [19] and [18] model interest-rate smoothing as

it = hit¡1 + (1¡ h)(¹¼t + ~gXt);

which is obviously consistent with (3.15) (as long as h 6= 1) since we can identify (1¡ h)~g above with ~g in (3.15).
22 Note that, since it¡1 = X7t = e7Xt, we can always write it = fXt as it = it¡1 + (f ¡ e7)Xt. Thus, unless

g7 is restricted to ful�ll g7 = 0, the di¤erence form does not imply any restriction.
23 Note that responding to ¹¼t means responding to the discrepancy between in�ation and the in�ation target,

since ¹¼t is the deviation from the mean, and the mean coincides with the in�ation target, since there is no in�ation
bias in our model.
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where we have used (3.13). Finally, we consider a response to both the T -quarter-ahead

unchanged-interest-rate in�ation forecast and the output gap, denoted (¹¼t+T jt(it¡1); yt), which

implies

gXt = g¼¹¼t+T jt(it¡1) + gyyt

g = g¼e1:4 ~M
T + gye5:

A particular instrument rule is denoted Ta, with the type T = S, L, or D, and the argument a

= (¹¼t; yt), (¹¼t+T jt(it¡1)) or (¹¼t+T jt(it¡1); yt). By a Taylor-type rule we mean a simple instrument

rule of the form L(¹¼t; yt),

it = g¼¹¼t + gyyt:

The classic Taylor Rule (Taylor [77]) is a Taylor-type rule with g¼ = 1:5 and gy = 0:5.24

We do not include the case of a response to only ¹¼t, gXt = g¼¹¼t, since it consistently

performed very badly.

3.7.3. An information lag

McCallum has in several papers, for instance [57], argued that it is more realistic from an

information point of view, to restrict the instrument in quarter t to depend on the state variables

in quarter t¡ 1,
it = fXt¡1.

On the other hand, it can be argued that the central bank has much more information about

the current state in the economy than captured by the few state variables in the model. Then,

assuming that the state variables in quarter t are known in quarter t is an implicit way of

acknowledging this extra information.25 This is the main reason why our baseline case has the

instrument depending on the state variables in the same quarter.

For comparability with results of other authors, we nevertheless would like to be able to

restrict the instrument to depend on state variables one quarter earlier. Thus, we consider the

case when there is response to ¹¼t¡1 and yt¡1, denoted (¹¼t¡1; yt¡1), with and without interest-rate

smoothing,

it = hit¡1 + g¼¹¼t¡1 + gyyt¡1. (3.16)

24 See McCallum [56], Bryant, Hooper and Mann [15], Judd and Motley [43] and Henderson and McKibbin [41]
for other examples of explicit instrument rules.
25 In fact, obtaining a good description of the real-time information set of policymakers is a complicated

assignment (see Rudebusch [65]). For example, simply lagging variables ignores data revisions (see Diebold and
Rudebusch [26]).
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This requires some technical modi�cations in our state-space setup, which are detailed in ap-

pendix C.

3.7.4. An instrument rule with response to a rule-consistent in�ation forecast

Consider the following rule,

it = hit¡1 + '¼t+T jt; (3.17)

where ' > 0 and ¼t+T jt (T ¸ 2) is the rational expectation of ¼t+T , conditional upon Xt, (3.4)
and (3.17). Thus, ¼t+T jt is a rule-consistent in�ation forecast as described above, although in

this case the rule being conditioned upon includes the forecast. This rule, where the instrument

responds to a rule-consistent in�ation forecast, is not an explicit instrument rule, because it does

not express the instrument as an explicit function of current information (or, in the context

of our model, of predetermined variables). It is not a targeting rule, in the sense we have

used the term, since it is not explicitly related to some loss function. Nor does it express

an intermediate target level as a function of current information. The rule is an equilibrium

condition because the right side of (3.17) is endogenous and depends on the rule itself. Hence,

it is an implicit instrument rule. The self-referential, rational expectations nature of the rule

complicates its analytical derivation in terms of an explicit instrument rule.26 However, the rule

remains a simple instrument rule similar in form to the S(¹¼t+T jt(it¡1)) rule described above,

only that the instrument responds to an endogenous variable rather than a predetermined one.

We consequently denote the rule in (3.17) by S(¼t+T jt).

Like the S(¹¼t+T jt(it¡1)) rule, the S(¼t+T jt) rule has considerable intuitive appeal, inasmuch

as it implies that if new information makes the in�ation forecast at the horizon T increase,

the interest rate should be increased, and vice versa. Even better, however, S(¼t+T jt) rule

uses an in�ation forecast that can be conditioned on a non-constant interest-rate path. The

S(¼t+T jt) rule is similar to the reaction function used in Bank of Canada�s Quarter Projection

Model (QPM, see for instance [21]) and Reserve Bank of New Zealand�s Forecasting and Policy

System (FPS, see [6]), and identical to the rule considered by Haldane and Batini [39] at this

conference.27 Indeed, this rule appears to be a frequent reference rule among in�ation-targeting

central banks. It is (when h = 1) what Haldane [37] calls �the generic form of the feedback rule

26 In equilibrium, the rational expectations in�ation forecast becomes an endogenous linear function of the
state variables (where the coe¢cients depend on the parameters T , ' and h), which by (3.17) results in (3.7).
For T = 2; the explicit instrument rule is easy to derive. For T ¸ 3; the derivation is more complex. The details
are provided in appendix D.
27 It is also used in Black, Macklem and Rose [7].
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under an in�ation target,� which �encapsulates quite neatly the operational practice of most

in�ation targeters.�

Nevertheless, the S(¼t+T jt) rule is not derived as a �rst-order condition of some loss function

corresponding to in�ation targeting.28 The question then arises: How e¢cient is this rule in

achieving an in�ation target? This question is particularly relevant because of its use in the in�a-

tion projections by two prominent in�ation-targeting central banks, and by its intuitive appeal

to many as representing generic in�ation targeting. Consequently we examine the performance

of this rule within the framework of our model.

3.7.5. Optimal Simple Instrument Rules

In order to �nd the optimal simple instrument rule for a given type of rule and with a given com-

bination of arguments, we optimize (3.3) over g, h, and ' taking the corresponding restrictions

into account.

3.8. Targeting Rules

3.8.1. The Optimal Targeting Rule

Above we have noted the existence of an optimal instrument rule. Of course, the corresponding

minimization problem de�nes an optimal targeting rule as well. Here, however, we show that

the �rst-order condition for an optimum can be interpreted as an optimal intermediate-targeting

rule.

Consider the �rst-order condition for minimizing (3.1) and (3.6) subject to (3.4) and (3.5),

0 =
1X
¿=0

@Y 0t+¿ jt
@it

KYt+¿ jt

= C 0iKYt +
1X
¿=1

B
0 ¡
A¿¡1

¢0
C0XKYt+¿ jt; (3.18)

where we have used that

@Yt
@it

= Ci;
@Yt+¿ jt
@it

= CX
@Xt+¿ jt
@it

= CXA
¿¡1B; ¿ = 1; 2; :::

28 Because the rule is not derived as a �rst-order condition, its precise form is not obvious. As alternatives to
(3.17) one can consider

it = hit¡1 + (1¡ h)¹¼t + '¼t+T jt;
or even

it = hit¡1 + g¼¹¼t + '¼t+T jt;

where g¼ is unrestricted.
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and let the discount factor ful�ll ± = 1. This is a linear relation between the current and

conditionally forecasted future goal variables, Yt+¿ jt, ¿ = 0; 1; 2; :::; conditional upon the current

instrument and the future policy. The task of the monetary authority can be described as setting

an instrument in the current quarter so as to achieve the relation (3.18). This relation can then

be interpreted as an intermediate target path for the forecast of future goal variables. That is,

the forecasts of future goal variables are considered intermediate target variables. Then, the

task of the monetary authority is to choose, conditional upon the current state variable Xt,

a current instrument it and a plan it+¿ jt (¿ = 1; 2; :::) for future instruments, such that the

resulting conditional forecast of future goal variables Yt+¿ jt ful�ll the intermediate target (3.18),

where

Yt = CXXt +Ciit

Yt+¿ jt = CXXt+¿ jt +Ciit+¿ jt

= CXA
¿Xt +

¿¡1X
j=0

CXA
¿¡1¡jBit+jjt +Ciit+¿ jt;

¿ = 1, 2,..., where we have used that

Xt+¿+1jt = AXt+¿ jt +Bit+¿ jt

= A¿+1Xt +
¿X
j=0

A¿¡jBit+jjt:

We note that the Yt+¿ jt (¿ = 0; 1; 2; :::) that ful�ll (3.18) can be seen as impulse responses of

the goal variables for the optimal solution, for impulses that put the economy at its initial state.

We can now imagine a Governor or a Board of Governors pondering over a set of alternative

current and future instrument settings and alternative forecasts for the goal variables that have

been provided for consideration by the central bank sta¤, in order to decide on the current

instrument setting. When the Governor or Board of Governors end up selecting one instrument

path and corresponding goal variable forecasts that they believe are best, their behavior (if

rational) can be seen as implicitly selecting forecasts that ful�ll (3.18) for some implicit weight

matrix K in their loss function.

In general, (3.18) involves a relation between all the goal variables. The case when in�ation

and the output gap are the only goal variables is examined in Svensson [71] and [73]. Since, by

the Phillips curve (2.1), the forecast of output can be written as a linear function of the forecast

of in�ation, this linear function can then be substituted for the output forecast in (3.18), which
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results in a relation for the forecast of future in�ation only. That relation can be interpreted

as an intermediate target for the in�ation forecast. In the special case examined in Svensson

[71] and [73], these relations for the in�ation forecast are both simple and optimal. In the

general case these relations need not be optimal. Here we will examine them as potential simple

targeting rules, called in�ation-forecast targeting rules.

3.8.2. Simple Targeting Rules

Consider targeting rules for the T -quarter-ahead constant-interest-rate in�ation forecast. These

rules imply implicit instrument rules which are normally not �simple,� since they normally

depend on most state variables. We will consider four kinds of simple targeting rules, namely

strict and �exible in�ation-forecast targeting, with and without smoothing.

In Svensson [71], the following �rst-order condition for the in�ation forecast is derived, for

the case of �exible in�ation targeting with some non-negative weight on output stabilization,

¸ ¸ 0, but zero weight on interest-rate smoothing, º = 0,

¼t+2jt(it)¡ ¼¤ = c(¸)
¡
¼t+1jt ¡ ¼¤

¢
:

In the model in [71], ¼t+1jt is predetermined, ¼t+2jt(it) is the in�ation forecast for the earliest

horizon that can be a¤ected, and c(¸) is an increasing function of ¸, ful�lling 0 · c(¸) < 1,

c(0) = 0, c(¸)! 1 for ¸!1.
In the present model, we can consider a generalization of this framework,

¹¼t+T jt(it) = c¹¼t+1jt; (3.19)

where c and T ful�ll 0 · c < 1 and T ¸ 2. This we refer to as �exible T -quarter-ahead

in�ation-forecast targeting, denoted FIFT(T ).

The expression (3.19) denotes a targeting rule, where the corresponding instrument rule is

implicit. In order to solve for the instrument rule, we use (3.11) to write (3.19) as

e1:4 ~M
T¡1(AXt +Bit) = ce1:4AXt:

Then the implicit instrument rule can be written

it = g(c; T )Xt;

where the row vector g(c; T ) is a function of c and T given by

g(c; T ) ´ e1:4(cI ¡ ~MT¡1)A
e1:4 ~MT¡1B

; (3.20)
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where I is the 9£9 identity matrix (note that e1:4 ~MT¡1B is a scalar and e1:4(cI ¡ ~MT¡1)A is

a 1£9 row vector).
Strict T -quarter-ahead in�ation-forecast targeting, denoted SIFT(T ), is the special case of

(3.19) when c = 0;

¹¼t+T jt(it) = 0: (3.21)

The corresponding implicit instrument rule is

it = g(0; T )Xt; (3.22)

where

g(0; T ) ´ ¡ e1:4 ~M
T¡1A

e1:4 ~MT¡1B
(3.23)

Note that the numerator in (3.23) equals the constant-interest-rate in�ation forecast cor-

responding to a zero interest rate, ¹¼t+T jt(0). The denominator, e1:4 ~MT¡1B, is the constant-

interest-rate policy multiplier for the 4-quarter in�ation T -quarters ahead, since by (3.11)

@¹¼t+T jt(i)
@i

= e1:4 ~M
T¡1B: (3.24)

Hence, very intuitively the instrument rule corresponding to strict in�ation-forecast targeting

can be written as

it = ¡
¹¼t+T jt(0)

@¹¼t+T jt(i)=@it
;

the negative of the zero-interest-rate in�ation forecast divided by the constant-interest-rate

policy multiplier.

We can equivalently write this instrument rule in terms of changes in the interest rate. By

(3.11) we have

¹¼t+T jt(it)¡ ¹¼t+T jt(it¡1) = e1:4 ~MT¡1B(it ¡ it¡1):

By (3.21) we can write

it ¡ it¡1 = ¡
¹¼t+T jt(it¡1)
e1:4 ~MT¡1B

= ¡ e1:4 ~MTXt

e1:4 ~MT¡1B
= (f(0; T )¡ e7)Xt:

Very intuitively, the interest-rate adjustment equals the negative of unchanged-interest-rate in�a-

tion forecast for unchanged interest rate divided by the constant-interest-rate policy multiplier.

Note that strict in�ation-forecast targeting implies that the in�ation forecast conditional on

the future instrument rule (3.22), rather than conditional on a constant interest rate, deviates

from zero,

Et¹¼t+T 6= 0;

22



and in practice reaches zero later than T quarters ahead. This is apparent from the impulse

responses for ¹¼t+¿ jt under strict in�ation-forecast targeting.

Note that strict T1-quarter in�ation-forecast targeting may be approximately equal to �exible

T2-quarter �exible in�ation-forecast targeting, when the horizon for strict in�ation targeting

exceeds that of �exible in�ation targeting, T1 > T2.

The above targeting rules can be considered under smoothing (partial adjustment) of the

interest rate,

it = hit¡1 + (1¡ h)g(c; T )Xt
f = he7 + (1¡ h)g(c; T );

where it may be reasonable to restrict the smoothing coe¢cient h to ful�ll 0 · h < 1. Note that
under smoothing, h is not generally the �net� coe¢cient on it¡1, since g7(c; T ) is generally not

zero. These targeting rules under smoothing are denoted FIFTS(T ) and SIFTS(T ) respectively.

The optimal in�ation-forecast targeting rules are found by minimizing the loss function (3.3)

over the parameters c, h and T , taking into account the restrictions on these and that T ¸ 2 is
an integer. For instance, under strict in�ation targeting without smoothing, we have c = h = 0,

and the only free parameter is T .

4. Results

4.1. Optimized Rules

In this subsection, we consider the performance of various rules for several illustrative cases of

di¤erent preferences over goal variables. The rules we consider have been optimized in terms of

their parameter settings for the given preferences and the given form of the rule assumed.

Tables 3�7 provide results for �ve di¤erent sets of preferences over goals. In each table,

the volatility of the goal variables (measured as the unconditional standard deviations), the

minimized loss, and the relative ranking in terms of loss are shown for 22 di¤erent rules. Loss

is calculated under the assumption that output and in�ation variability are equally distasteful

(¸ = 1) in table 3 and that output variability is much less costly (¸ = 0:2) in table 4 and much

more costly (¸ = 5) in table 5. Variability of nominal interest-rate changes are also costly in

these three tables (º = 0:5).29 Variation in the costs of variability of interest-rate changes are

29 Such costs are suggested, in part, by the concern central banks display for �nancial market fragility (see,
e.g., Rudebusch [64]).
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considered in tables 6 (º = 0:1) and 7 (º = 1:0) (both assuming ¸ = 1). The preferences in

table 3 imply a concern not only about in�ation stabilization but also about output stabilization

and interest-rate smoothing, which we believe is realistic for many central banks, also in�ation-

targeting ones. Comparison with tables 4�7 allow us to note the consequences of relatively more

or less emphasis on output stabilization and interest-rate smoothing.

The �rst rule at the top of each table is the unrestricted optimal control rule�the obvi-

ous benchmark. The optimal rule in table 3 produces volatility results not too far from our

historical sample results, which are Std[¹¼t] = 2:33, Std[yt] = 2:80, and Std[it ¡ it¡1] = 1:09.

The next four lines consider level rules with current in�ation and output, L(¹¼t; yt), future in-

�ation L(¹¼t+8jt(it¡1)), and future in�ation and current output L(¹¼t+8jt(it¡1); yt) as arguments

(where the forecasts are the 8-quarter-ahead �unchanged-interest-rate� 4-quarter in�ation fore-

cast). The next three lines consider smoothing instrument rules with the same arguments. The

following three rows are for the interest-rate-smoothing rule S(¼t+T jt), using the 8-, 12-, and 16-

quarter-ahead rule-consistent quarterly in�ation forecasts. The �nal twelve rows of each table

present various implicit in�ation-forecast targeting rules at horizons of 8, 12, and 16 quarters.

For all of the rules (except the optimal one), the relevant optimal rule parameters are given in

the tables as well.

These tables suggest several conclusions:

First, simple instrument rules appear to be able to perform quite well in our model. Con-

sistently across the tables, the top performing rule is the S(¹¼t+8jt(it¡1); yt) one, which reacts to

the constant-interest-rate in�ation forecast and the current output gap. Indeed, these simple

�forward-looking� Taylor-type rules are always extremely close to matching the optimal rule

in terms of overall loss. This result is somewhat surprising given that the in�ation forecast

incorporated into these rules is simply a single 8-quarter-ahead in�ation projection conditioned

on an unchanged interest-rate path.

Perhaps even more surprising, the current in�ation and output Taylor-type rules�L(¹¼t; yt)

and S(¹¼t; yt)�are nearly as good. Particularly, in table 3 (with ¸ = 1), these rules perform

with output and in�ation gap variances that are similar to those of the optimal rule. In order to

understand the exceptional performance of these rules, it is instructive to compare the coe¢cients

of these simple rules to those of the optimal rule. The optimal rule in table 3 (the optimal rules

from the other tables have broadly similar parameterizations) has the form

it = :88¼t + :30¼t¡1 + :38¼t¡2 + :13¼t¡3 + 1:30yt ¡ :33yt¡1 + :47it¡1 ¡ :06it¡2 ¡ :03it¡3:
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The L(¹¼t; yt) rule, for example, comes close to matching this by setting the �rst four parameters

all equal to 0.68 (that is, g¼=4) , the yt parameter equal to 1.57, and the other parameters equal

to zero. Because the Taylor rule has received so much attention, it is also interesting to note

that across all of the tables the parameters for our L(¹¼t; yt) Taylor-type rules are fairly high.

Instead of the original Taylor rule parameters of 1.5 on in�ation (g¼) and 0.5 on output (gy), our

optimal L(¹¼t; yt) rules sets these parameters above 2 and 1, respectively, in all of the tables.30

Second, in distinct contrast to the simple rules that include contemporaneous output gaps,

the simple instrument rules that respond only to in�ation forecasts do quite poorly�even when

the weight on output stabilization is small, as in table 4. Of course, the optimal rule does include

large coe¢cients on output, but presumably these re�ect in large part the in�ation-forecasting

properties of output (especially for low ¸). However, the simple instrument rules L(¹¼t+8jt(it¡1))

and S(¹¼t+8jt(it¡1)) that incorporate only future in�ation do not fare very well. One might

conjecture that these rules do poorly because of the mechanical nature of the forecasts used,

which are simple projections assuming a constant nominal funds rate. However, the S(¼t+8jt)

rule, which conditions the in�ation forecast on a time-varying, rule-consistent interest-rate path,

does little better than the S(¹¼t+8jt(it¡1)) rule. More likely, the restricted fashion in which the

in�ation forecasts enter the rule�the instrument responds only to the deviation between the

forecast and the in�ation target�is to blame. This illustrates what was emphasized in section

3.7.4, namely that these rules are not �rst-order conditions to our loss function. However, note

that these rules do better for a smaller ¸ (table 4) and worse for a larger ¸ (table 5). This

indicates that they are closer to a �rst-order condition of a loss function that only involves

in�ation stabilization and interest-rate smoothing.31

Third, the in�ation-forecast targeting rules perform quite will given enough �exibility and

interest-rate-smoothing ability. The FIFTS rule (�exible in�ation-forecast targeting with smooth-

ing) is essentially able to match the performance of the S(¹¼t+8jt(it¡1); yt) rule�and hence the

optimal rule�in all cases except when there is a very high weight on output stabilization (table

5). Across all of the tables, the best in�ation-forecast horizon to use with this rule is usually 12

quarters but sometimes 8 quarters. The IFT rules without interest-rate smoothing are heavily

penalized by the cost of large changes in the nominal interest-rate instrument. Note that this is
30 Ball (1997), in a simple, calibrated theoretical model similar to our own, argues that the optimal Taylor-type

rule should have higher coe¢cients than the original Taylor rule. However, Ball also argues that in the optimal
rule the output parameter should be larger than the in�ation parameter, which is generally contrary to our results.
31 The length of the forecast horizon (T ) in the S(¼t+T jt) rule makes only a modest contribution. That is, the

targeting horizon trade-o¤ discussed in Haldane [37] is relatively modest in our model with this rule.
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true even in table 6 when the cost of variability of interest-rate change is quite low.

To augment the tables, �gure 2 shows the trade-o¤s between in�ation variability and output

gap variability that result for varying the weight on output stabilization (¸) from 0 to 10 and

assuming º = 0:5.32 The trade-o¤ resulting from the optimal rule is shown as a solid line. For

increasing ¸, the optimal rule corresponds to points further southeast on the curve. The dashed

lines correspond to the smoothing rules S(¹¼t; yt), S(¹¼t+8jt(it¡1)), S(¼t+8jt), and S(¹¼t+8jt(it¡1); yt).

Only the last of these is consistently close to the optimal rule. Note that S(¼t+8jt) is close to

the optimal rule for small ¸.

Also, the triangle shows the sample (1960:1�1996:2) standard deviation of in�ation and the

output gap. The circle shows the standard deviations that result from an estimated Taylor-

type rule for the sample 1985:1�1996:2 (with g¼ = 1:76 and gy = 0:74). The square shows the

standard deviations that result from the Taylor rule (with g¼ = 1:5 and gy = 0:5).

The trade-o¤s from �exible in�ation-forecast targeting with smoothing (FIFTS) at 8, 12,

and 16 quarter horizons are shown as the dashed-dotted lines. For T = 8 quarters, the trade-o¤

is consistently close to that of the optimal rule.

The trade-o¤s from the �exible in�ation-forecast targeting without smoothing (FIFT) shown

as the dotted lines. A shorter horizon T is associated more with less output variability than

with less in�ation variability (cf. table 3).

Finally, �gures 3 and 4 give the dynamic impulse responses of the model under various

optimal simple smoothing rules and targeting rules, respectively. All of the rules have broadly

similar features, especially a large quick interest-rate rise in response to a positive in�ation or

output shock.33 There are, however, some subtle but telling di¤erences among the rules. In

�gure 3, the S(¼t+8jt) rule, which considers only the in�ation forecast, has the mildest response

to an output shock, which allows in�ation (through the Phillips curve) to get a bit more out

of control, and requires a slightly longer slowdown in output to compensate. In �gure 4, the

in�ation-targeting rules without smoothing show large initial interest-rate spikes in response to

the shocks. With smoothing, however, the FIFTS rule is able to mimic the hump-shaped pattern

of interest rates of the smoothing instrument rules.

32 Although plots of such trade-o¤s are common in the literature, they sweep interest rate smoothing consider-
ations under the rug, so we have some preference for the tabular results.
33 Note the great contrast between �gures 3 and 4 and the left two columns of �gure 1. Again, the poor results

in �gure 1 can be traced to the misspeci�cation of the VAR interest rate equation.
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4.2. Common Conference Rules

In this subsection, we consider the �ve rules that are to be common across all of the investigations

at this conference. These rules and our results on volatility and loss (assuming ¸ = 1 and º = 0:5)

are summarized in table 8. The results with lagged information, which are shown in the lower

half of table 8, are qualitatively the same as those with contemporaneous information, so we

concentrate on the latter.

First, consider the two level rules (in our terminology) that are common. Rule III(1) and

IV(1) have much weaker in�ation and output response coe¢cients than our optimal L(¹¼t; yt)

rule (in table 3), and in�ation variability under the common rules is much larger than with the

optimal ones, while output variability is slightly lower and variability of interest-rate changes is

about the same. The parameters of the common conference rules could only be optimal for a

very large ¸ (much greater than 10).

Second, the set of common conference rules included 2 di¤erence rules and one smoothing

rule with h = 1:3. None of these rules provided dynamically stable solutions in our model. Note

that the optimal value of h for rule S(¹¼t; yt) equals 0.14 in table 3 and is hence not close to one.

The optimal di¤erence rule D(¹¼t; yt) that is shown in table 8 requires very low coe¢cients in

order to ensure stability. Even so its performance is quite poor.34

4.3. A Non-Negative Nominal Interest-Rate Constraint

In this subsection, we consider the occurrence of negative nominal interest rates. Negative

nominal interest rates, although highly implausible in practice, are almost never excluded in

policy rule analyses and our study is no exception. As noted in section 2, our model has many

much-debated simpli�cations; however, one of its least debated approximations is its completely

linear nature with its symmetry with respect to zero for all quantities including nominal interest

rates. Indeed, it is straightforward to calculate the unconditional probability of obtaining a

negative nominal funds rate for any given rule. For example, assuming an in�ation target of 2

percent and an equilibrium real funds rate of 2.5 percent (which is obtained from the estimated

constant term in the IS curve regression without de-meaned data), most of the optimized rules

in table 3 give about a 20 percent probability of a negative interest rate. Clearly, these rules

assume that nominal interest rates would be negative a non-negligible proportion of the time.

34 In rational expectations models, di¤erence rules appear to perform much better, e.g., Fuhrer and Moore [35]
and Williams [81].
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Still, for policy rule analysis, we view the simple imposition of an interest-rate non-negativity

constraint as unsatisfactory in several respects. Technically, such a nonlinear constraint renders

our analytical methods di¢cult if not infeasible, though simulation methods are available, see

Fuhrer and Madigan [34] and Fair and Howrey [27]. More importantly, however, such a con-

straint, by limiting the degree to which the central bank can conduct expansionary monetary

policy at low in�ation rates, almost ensures dynamic instability in an otherwise linear model.35

We do not view such instability as plausible. We think that there are always mechanisms by

which the central bank can stimulate the economy even if short-term rates are near zero. Expan-

sionary monetary policy could always be conducted by the injection of reserves through purchases

of Treasury securities at all maturities (�attening the entire yield curve), or purchases of foreign

exchange (unsterilized intervention), or even purchases (or �nancing) of corporate debentures

and equity.36 That is, our model, although not strictly true, may give a fairly accurate picture of

the potential power of central banks. However, it must be admitted that there is little empirical

basis for judging the performance of very low in�ation economies in our sample.

5. Conclusions

An early working title of this paper was �Practical In�ation Targeting�, by which we meant

an exploration of plausible policy rules using a model of a form common at central banks. In

this spirit, our examination of policy rules has been in part descriptive, and closely linked to

what in�ation-targeting central banks actually seem to be doing, as well as partly prescriptive,

involving sifting and judging among various rules. From the latter perspective, our results

suggest that certain simple forward-looking rules are able to perform quite well.

Of course, our prescriptive results about particular simple rules are conditional upon our

particular model, and there is much room for extensions and improvements. Questions regard-

ing parameter uncertainty and structural stability are crucial before the results can be taken

too seriously; however, judging just from the results of this conference, questions about model

uncertainty are likely an order of magnitude larger. Plausible model variation may strengthen

our conclusions. For example, our model is backward-looking and has no explicit role for expec-

tations and no �credibility e¤ect� in the Phillips curve. An expectations channel for monetary

35 Intuitively, with an estimated equilibrium real funds rate of 2.5 percent, if in�ation ever falls to, say, ¡3
percent, then with a zero nominal funds rate, the real funds rate is still restrictive, so the output gap decreases
and in�ation falls even more.
36 See the related discussion in Lebow [49].
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through the Phillips curve would most likely make in�ation easier to control and more self-

stabilizing under in�ation targeting.37 In this sense, relative to some of the other papers at this

conference, we are stacking the cards against in�ation targeting. Nonetheless, there can be no

substitute to actually investigating the robustness of our results across model speci�cation.

However, we would like to emphasize that a forward-looking decision framework for in�ation

targeting can exhibit robustness to model variation. For example, as mentioned above, one

implementation of in�ation-forecast targeting is to choose from the set of conditional in�ation

forecasts (each based on a particular path for the instrument) the one that is most consistent

with the in�ation target�that is, approaches the in�ation target at an appropriate rate, hits

the in�ation target at an appropriate horizon, and more generally, minimizes the loss function�

and then follow the corresponding instrument path. The construction of conditional forecasts of

course depends on the model used, but the procedure itself is robust to known model variation.38

Put di¤erently, targeting rules allow the coe¢cients of the implied instrument rules to change

with structural shifts in the model. It is this decision framework that we have tried to capture

in the optimal targeting rule in section 3.8.1, and in the simple in�ation-forecast targeting rules

in section 3.8.2. In contrast, any given optimal explicit instrument rule depends on the precise

model assumed, and may be rather imperfect for a di¤erent model; any given reasonably robust

explicit instrument rule may still be rather imperfect for a speci�c model.

37 The analysis in Svensson [75] of in�ation targeting in an open economy with forward-looking aggregate
demand and supply con�rms this.
38 In a forward-looking model, constructing conditional in�ation forecasts for arbitrary instrument paths imply

some problems that are not present in a backward-looking model. Svensson [74] provides a solution.
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A. Unconditional variances

The covariance matrix §Y Y for the goal variables is given by

§Y Y ´ E
£
YtY

0
t

¤
= C§XXC

0; (A.1)

where §XX is the unconditional covariance matrix of the state variables. The latter ful�lls the

matrix equation

§XX ´ E
£
XtX

0
t

¤
=M§XXM

0 +§vv: (A.2)

We can use the relations vec(A+B) = vec(A) + vec(B) and vec(ABC) = (C0 A) vec(B)
on (A.2) (where vec(A) denotes the vector of stacked column vectors of the matrix A, and 
denotes the Kronecker product) which results in

vec (§XX) = vec
¡
M§XXM

0¢+ vec (§vv)
= (M M) vec (§XX) + vec (§vv) :

Solving for vec (§XX) we get

vec (§XX) = [I ¡ (M M)]¡1 vec (§vv) : (A.3)

B. The optimal instrument rule

The optimal instrument rule is the vector f in (3.7) that ful�lls

f = ¡ ¡R+ ±B0V B¢¡1 ¡U 0 + ¯B0V A¢ ;
where the 9£ 9 matrix V ful�lls the Riccati equation

V = Q+ Uf + f 0U 0 + f 0Rf + ±M 0VM;

where M is the transition matrix given by (3.8) and Q, U and R are given by

Q = C0XKCX ; U = C
0
XKCi; R = C

0
iKCi:

Furthermore, the optimal value of (3.1) is

X 0
tVXt +

±

1¡ ± trace (V§vv) ; (B.1)

where §vv = E [vtv0t] is the covariance matrix of the disturbance vector.

For ± = 1 the optimal value of (3.3) is

E [Lt] = trace (V§vv) : (B.2)
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C. An information lag

With our state-space setup, the information lag in (3.16) requires inserting ¼t¡4 as a 10th state

variable and forming the extended 1£10 state-variable vector

~Xt =

·
Xt
¼t¡4

¸
:

Then the restriction can be written

~g ~Xt = g¼¹¼t¡1 + gyyt¡1

~g = g¼(~e2:4 +
1

4
~e10) + gy~e6

~f = h~e7 + ~g

it = ~f ~Xt;

where ~g and ~f are 1£10 row vectors, ~ej and ~ej:k are de�ned as ej and ej:k, except that they are
10£1 vectors.

D. An instrument rule that responds to a rule-consistent in�ation forecast

Suppose T > 3 (we deal with T = 2 below.) Then we have to write the model in state-space

form with forward-looking variables. We �rst note that, since in our model the �rst element in

B is zero, the �rst equation in (3.4) is

¼t+1 = A1¢Xt + º1;t+1; (D.1)

where A1¢ is the row vector (a1k)nk=1. Then ¼t+1 and ¼t+1jt = A1¢Xt are predetermined. In

order to write the system in state-space form, we now de�ne the (T ¡ 2)£ 1 column vector of
forward-looking variables, xt = (xlt)

T¡2
l=1 , where

xlt ´ ¼t+l+1jt (D.2)

for l = 1; ::; T ¡ 2. Observe that, for l = 1; :::; T ¡ 3, by the law of iterated expectations,

xl;t+1jt = xl+1;t; (D.3)

whereas for l = T ¡ 2 we have
xT¡2;t+1jt = ¼t+T jt: (D.4)
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Equation (D.3) gives us T ¡ 3 equations for the �rst T ¡ 3 forward-looking variables xlt,
l = 1; :::; T ¡ 3. We also need an equation for xT¡2;t. Lead equation (D.1) by one period, and
take expectations in period t,

x1t ´ ¼t+2jt = A1¢Xt+1jt = A1¢[AXt +B(hit¡1 + '¼t+T jt)] = A1¢( ~AXt + 'BxT¡2;t+1jt); (D.5)

where

~A = A+ hBe7; (D.6)

where we have used (3.4), (3.17), and (D.4). Solve for xT¡2;t+1jt,

xT¡2;t+1jt = ¡
1

'A1¢B
A1¢ ~AXt +

1

'A1¢B
x1t; (D.7)

which gives us the remaining equation (note that A1¢B is a scalar).

Thus, equations (D.3) and (D.7) give us T ¡ 2 equations for the T ¡ 2 forward-looking
variables. With regard to the predetermined variables, we use (3.4), (3.17), (D.4), (D.6) and

(D.7) to write,

Xt+1 = ~AXt + 'BxT¡2;t+1jt

= ~AXt + 'B

µ
¡ 1

'A1¢B
A1¢ ~AXt +

1

'A1¢B
x1t

¶
=

µ
I ¡ 1

A1¢B
BA1¢

¶
~AXt +

1

A1¢B
Bx1t: (D.8)

By combining (D.8), (D.3) and (D.7), we can now write the system in state-space form,·
Xt+1
xt+1jt

¸
= D

·
Xt
xt

¸
+

·
vt+1
0

¸
; (D.9)

where the (n+ T ¡ 2)£ (n+ T ¡ 2) matrix D is given by

D =

" ³
I ¡ 1

A1¢BBA1¢
´
~A 1

A1¢BBun+1

D21 D22

#
;

where uk, k = 1; :::; n+T ¡ 2 is an 1£ (n+T ¡2) row vector with element k equal to unity and
all other elements equal to zero, and where the (T ¡2)£n matrix D21 and the (T ¡2)£ (T ¡2)
matrix D22 are given by

D21 =

·
0(T¡3)£n

¡ 1
'A1¢BA1¢

~A

¸
; D22 =

·
0(T¡3)£1 IT¡3

1
'A1¢Bun+1

¸
;

where 0k£m is a k £m matrix of zeros and Im is an m£m identity matrix.
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The system (D.9) can then be solved with the help of known algorithms, for instance the

one in Klein [47]. The solution results in a (T ¡2)£n matrix H, expressing the forward-looking
variables as a linear function of the state-variables,

xt = HXt: (D.10)

The dynamics of the predetermined variable are then given by

Xt+1 = (D11 +D12H)Xt + vt+1; (D.11)

where D11 and D12 are the obvious submatrices of D. It furthermore follows that

xt+1jt = D21Xt +D22xt = (D21 +D22H)Xt.

From (3.17) and (D.4) follows that the equilibrium instrument rule can be written

it = fXt

f = he7 + 'un+T¡2(D21 +D22H):

Then we can use f in (3.8) and (3.9) and proceed as in the other cases. The matrix M in (3.8)

will of course equal the matrix (D11 +D12H) in (D.11).

For T = 2, by (3.17) and D.5, we directly get

¼t+2jt = A1¢( ~AXt + 'B¼t+2jt)

=
1

1¡ 'A1¢BA1¢
~AXt;

hence,

it = hit¡1 +
'

1¡ 'A1¢BA1¢
~AXt;

f = he7 +
'

1¡ 'A1¢BA1¢
~A:
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Table 1. Model Responses to a Funds Rate Increase
(Annual average di¤erence from baseline in percentage points)

Years after funds rate increase
1 2 3

Output Gap
MPS ¡:07 ¡:45 ¡:99
Our Model ¡:07 ¡:41 ¡:66
In�ation
MPS ¡:00 ¡:03 ¡:26
Our Model ¡:00 ¡:08 ¡:25
Note: The MPS results are from table II.1 in Mauskopf [54].

Table 2. Model Selection Criteria
SIC AIC

In�ation Equation
VAR 736:8 698:8
Our Model 705:0 690:3
Output Equation
VAR 652:2 617:1
Our Model 639:7 630:9
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Table 3. Results on Volatility and Loss with Various Rules
(¸ = 1; º = 0:5)

Rule Std[¹¼t] Std[yt] Std[it ¡ it¡1] Loss Rank
Optimal 2.15 2.24 1.68 11.08 1
L(¹¼t; yt)
g¼ = 2:72; gy = 1:57

2.18 2.24 1.74 11.27 5

L(¹¼t+T jt(it¡1))
T = 8; g¼ = 2:55

2.42 2.27 2.07 13.15 18

L(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 2:53; gy = 0:29

2.44 2.15 2.20 13.01 17

S(¹¼t; yt)
g¼ = 2:37; gy = 1:44; h = 0:14

2.18 2.25 1.68 11.23 4

S(¹¼t+T jt(it¡1))
T = 8; g¼ = 1:89; h = 0:46

2.15 2.47 1.53 11.89 12

S(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 1:54; gy = 0:45; h = 0:60

2.15 2.25 1.68 11.09 2

S(¼t+T jt)
T = 8; ' = 2:62; h = 0:32 2.15 2.45 1.53 11.77 11
T = 12; ' = 3:65; h = 0:38 2.13 2.41 1.55 11.58 10
T = 16; ' = 5:52; h = 0:41 2.13 2.40 1.57 11.51 7
SIFT(T )
T = 8 1.40 2.84 7.44 37.65 22
T = 12 1.81 2.44 3.15 14.17 19
T = 16 2.21 2.27 2.03 12.05 13
FIFT(T )
T = 8; c = 0:72 2.24 1.82 5.31 22.41 21
T = 12; c = 0:39 2.17 2.11 2.72 12.86 16
T = 16; c = 0:01 2.22 2.26 2.02 12.05 13
SIFTS(T )
T = 8; h = 0:59 1.51 3.39 3.88 21.29 20
T = 12; h = 0:45 1.87 2.60 1.94 12.16 15
T = 16; h = 0:31 2.24 2.34 1.47 11.57 8
FIFTS(T )
T = 8; c = 0:66; h = 0:71 2.15 2.26 1.86 11.42 6
T = 12; c = 0:35; h = 0:47 2.18 2.28 1.59 11.17 3
T = 16; c = 0:00; h = 0:31 2.24 2.34 1.47 11.57 8

35



Table 4. Results on Volatility and Loss with Various Rules
(¸ = 0:2; º = 0:5)

Rule Std[¹¼t] Std[yt] Std[it ¡ it¡1] Loss Rank
Optimal 1.97 2.64 1.55 6.47 1
L(¹¼t; yt)
g¼ = 3:17; gy = 1:22

2.00 2.61 1.65 6.71 10

L(¹¼t+T jt(it¡1))
T = 8; g¼ = 2:65

2.37 2.28 2.17 9.00 17

L(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 2:69; gy = ¡0:25 2.36 2.41 2.10 8.92 16

S(¹¼t; yt)
g¼ = 2:34; gy = 1:03; h = 0:30

2.00 2.64 1.56 6.60 9

S(¹¼t+T jt(it¡1))
T = 8; g¼ = 1:63; h = 0:69

1.97 2.75 1.53 6.58 8

S(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 1:42; gy = 0:16; h = 0:74

1.97 2.64 1.55 6.48 2

S(¼t+T jt)
T = 8; ' = 2:35; h = 0:62 1.97 2.73 1.53 6.55 7
T = 12; ' = 3:86; h = 0:71 1.97 2.69 1.54 6.50 5
T = 16; ' = 8:33; h = 0:47 1.97 2.68 1.54 6.49 4
SIFT(T )
T = 8 1.40 2.84 7.44 31.21 22
T = 12 1.81 2.44 3.15 9.42 19
T = 16 2.21 2.27 2.03 7.95 14
FIFT(T )
T = 8; c = 0:69 2.13 1.87 5.38 19.68 21
T = 12; c = 0:24 1.99 2.24 2.88 9.10 18
T = 16; c = 0:00 2.21 2.27 2.03 7.95 14
SIFTS(T )
T = 8; h = 0:71 1.62 3.84 3.34 11.16 20
T = 12; h = 0:60 1.93 2.74 1.60 6.51 6
T = 16; h = 0:45 2.28 2.39 1.25 7.11 12
FIFTS(T )
T = 8; c = 0:53; h = 0:79 1.98 2.67 1.67 6.74 11
T = 12; c = 0:08; h = 0:60 1.98 2.65 1.52 6.48 2
T = 16; c = 0:00; h = 0:45 2.28 2.39 1.25 7.11 12
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Table 5. Results on Volatility and Loss with Various Rules
(¸ = 5; º = 0:5)

Rule Std[¹¼t] Std[yt] Std[it ¡ it¡1] Loss Rank
Optimal 2.65 1.86 2.36 26.99 1
L(¹¼t; yt)
g¼ = 2:15; gy = 2:17

2.69 1.89 2.16 27.46 4

L(¹¼t+T jt(it¡1))
T = 8; g¼ = 2:13

2.69 2.22 1.70 33.32 17

L(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 2:24; gy = 1:40

2.80 1.83 2.69 28.17 7

S(¹¼t; yt)
g¼ = 1:26; gy = 2:35; h = ¡0:11 2.68 1.88 2.27 27.39 3

S(¹¼t+T jt(it¡1))
T = 8; g¼ = 2:03; h = 0:06

2.67 2.23 1.59 33.29 16

S(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 1:78; gy = 1:27; h = 0:31

2.65 1.87 2.31 27.15 2

S(¼t+T jt)
T = 8; ' = 2:62; h = ¡0:15 2.65 2.21 1.62 32.81 15
T = 12; ' = 3:16; h = ¡0:11 2.61 2.19 1.65 32.06 12
T = 16; ' = 3:91; h = ¡0:09 2.59 2.18 1.67 31.78 11
SIFT(T )
T = 8 1.40 2.84 7.44 69.88 22
T = 12 1.81 2.44 3.15 37.89 20
T = 16 2.21 2.27 2.03 32.59 13
FIFT(T )
T = 8; c = 0:81 2.64 1.70 5.15 34.71 18
T = 12; c = 0:64 2.70 1.91 2.49 28.61 8
T = 16; c = 0:44 2.79 2.02 1.78 29.86 10
SIFTS(T )
T = 8; h = 0:35 1.44 3.04 5.07 61.07 21
T = 12; h = 0:15 1.82 2.47 2.69 37.50 19
T = 16; h = 0:02 2.21 2.27 1.99 32.59 13
FIFTS(T )
T = 8; c = 0:80; h = 0:52 2.63 1.87 2.52 27.48 5
T = 12; c = 0:64; h = 0:22 2.71 1.95 1.94 28.15 6
T = 16; c = 0:44; h = 0:03 2.79 2.03 1.71 29.85 9
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Table 6. Results on Volatility and Loss with Various Rules
(¸ = 1; º = 0:1)

Rule Std[¹¼t] Std[yt] Std[it ¡ it¡1] Loss Rank
Optimal 1.96 2.12 3.02 9.25 1
L(¹¼t; yt)
g¼ = 3:43; gy = 2:50

2.01 2.18 2.71 9.51 5

L(¹¼t+T jt(it¡1))
T = 8; g¼ = 3:46

2.11 2.35 2.99 10.86 20

L(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 3:41; gy = 1:00

2.18 2.05 3.53 10.18 11

S(¹¼t; yt)
g¼ = 2:80; gy = 2:80; h = ¡0:16 2.00 2.15 2.90 9.46 4

S(¹¼t+T jt(it¡1))
T = 8; g¼ = 3:15; h = 0:31

1.94 2.47 2.47 10.51 18

S(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 2:79; gy = 1:06; h = 0:47

1.96 2.14 2.98 9.29 2

S(¼t+T jt)
T = 8; ' = 5:01; h = ¡0:01 1.94 2.45 2.49 10.37 13
T = 12; ' = 7:99; h = 0:06 1.92 2.41 2.55 10.13 9
T = 16; ' = 13:66; h = 0:09 1.91 2.39 2.58 10.04 8
SIFT(T )
T = 8 1.40 2.84 7.44 15.54 22
T = 12 1.81 2.44 3.15 10.19 12
T = 16 2.21 2.27 2.03 10.41 14
FIFT(T )
T = 8; c = 0:61 1.95 1.97 5.54 10.75 19
T = 12; c = 0:27 2.02 2.21 2.84 9.78 7
T = 16; c = 0:00 2.21 2.27 2.03 10.41 14
SIFTS(T )
T = 8; h = 0:34 1.43 3.03 5.14 13.86 21
T = 12; h = 0:11 1.82 2.46 2.80 10.15 10
T = 16; h = 0:06 2.20 2.26 2.15 10.41 14
FIFTS(T )
T = 8; c = 0:60; h = 0:45 1.95 2.13 3.08 9.30 3
T = 12; c = 0:27; h = 0:13 2.03 2.23 2.46 9.73 6
T = 16; c = 0:00; h = ¡0:06 2.20 2.26 2.15 10.41 14
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Table 7. Results on Volatility and Loss with Various Rules
(¸ = 1; º = 1)

Rule Std[¹¼t] Std[yt] Std[it ¡ it¡1] Loss Rank
Optimal 2.27 2.29 1.33 12.17 1
L(¹¼t; yt)
g¼ = 2:44; gy = 1:23

2.29 2.28 1.42 12.49 8

L(¹¼t+T jt(it¡1))
T = 8; g¼ = 2:24

2.60 2.24 1.79 14.99 17

L(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 2:23; gy = 0:07

2.61 2.20 1.82 14.97 16

S(¹¼t; yt)
g¼ = 1:12; gy = 1:04; h = 0:27

2.29 2.30 1.34 12.33 4

S(¹¼t+T jt(it¡1))
T = 8; g¼ = 1:47; h = 0:54

2.27 2.47 1.24 12.82 12

S(¹¼t+T jt(it¡1); yt)
T = 8; g¼ = 1:18; gy = 0:30; h = 0:65

2.27 2.30 1.34 12.18 2

S(¼t+T jt)
T = 8; ' = 1:92; h = 0:45 2.26 2.45 1.25 12.71 10
T = 12; ' = 2:52; h = 0:50 2.25 2.42 1.26 12.54 9
T = 16; ' = 3:63; h = 0:53 2.25 2.41 1.27 12.48 7
SIFT(T )
T = 8 1.40 2.84 7.44 65.29 22
T = 12 1.81 2.44 3.15 19.13 19
T = 16 2.21 2.27 2.03 14.11 15
FIFT(T )
T = 8; c = 0:77 2.45 1.75 5.21 36.19 21
T = 12; c = 0:47 2.30 2.04 2.64 16.43 18
T = 16; c = 0:12 2.32 2.20 1.95 14.02 14
SIFTS(T )
T = 8; h = 0:66 1.56 3.62 3.54 28.08 20
T = 12; h = 0:56 1.91 2.70 1.68 13.77 13
T = 16; h = 0:45 2.28 2.39 1.25 12.47 6
FIFTS(T )
T = 8; c = 0:69; h = 0:79 2.28 2.33 1.47 12.77 11
T = 12; c = 0:40; h = 0:59 2.27 2.31 1.31 12.19 3
T = 16; c = 0:05; h = 0:45 2.32 2.36 1.23 12.46 5
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Table 8. Results for Conference Rules
(¸ = 1; º = 0:5)

Rule Std[¹¼t] Std[yt] Std[it ¡ it¡1] Loss

a. With Contemporaneous Information; it = hit¡1 + g¼¹¼t + gyyt

Rule I(1); D(¹¼t; yt) Dynamically unstable
g¼ = 3:00; gy = 0:80; h = 1:00

Rule II(1); D(¹¼t; yt) Dynamically unstable
g¼ = 1:20; gy = 1:00; h = 1:00

Rule III(1); L(¹¼t; yt) 3.46 2.25 0.71 17.25
g¼ = 1:50; gy = 0:50; h = 0:00

Rule IV(1); L(¹¼t; yt) 3.52 1.98 1.03 16.86
g¼ = 1:50; gy = 1:00; h = 0:00

Rule V(1); S(¹¼t; yt) Dynamically unstable
g¼ = 1:20; gy = 0:06; h = 1:30

Optimal L(¹¼t; yt) 2.18 2.24 1.74 11.27
g¼ = 2:72; gy = 1:57; h = 0:00

Optimal D(¹¼t; yt) 3.85 3.80 1.07 30.42
g¼ = 0:07; gy = 0:27; h = 1:00

b. With Lagged Information; it = hit¡1 + g¼¹¼t¡1 + gyyt¡1

Rule I(2); D(¹¼t¡1; yt¡1) Dynamically unstable
g¼ = 3:00; gy = 0:80; h = 1:00

Rule II(2); D(¹¼t¡1; yt¡1) Dynamically unstable
g¼ = 1:20; gy = 1:00; h = 1:00

Rule III(2); L(¹¼t¡1; yt¡1) 3.62 2.40 0.72 19.07
g¼ = 1:50; gy = 0:50; h = 0:00

Rule IV(2); L(¹¼t¡1; yt¡1) 3.63 2.14 1.04 18.29
g¼ = 1:50; gy = 1:00; h = 0:00

Rule V(2); S(¹¼t¡1; yt¡1) Dynamically unstable
g¼ = 1:20; gy = 0:06; h = 1:30

Optimal L(¹¼t¡1; yt¡1) 2.38 2.44 1.69 13.03
g¼ = 2:50; gy = 1:50; h = 0:00

Optimal D(¹¼t¡1; yt¡1)
g¼ = 0:04; gy = 0:21; h = 1:00 4.96 4.21 0.87 42.75
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Figure 3
Impulse Responses for Smoothing Rules

(λ = 1, ν = 0.5)
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Figure 4
Impulse Responses for Inflation Targeting Rules 

(λ = 1, ν = 0.5)
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