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ABSTRACT

Vector autoregressions have steadily gained in popularity since their introduction in econo-
metrics 25 years ago. A drawback of the otherwise fairly well developed methodology is the
inability to incorporate prior beliefs regarding the system’s steady state in a satisfactory way.
Such prior information are typically readily available and may be crucial for forecasts at long
horizons. This paper develops easily implemented numerical simulation algorithms for analyz-
ing stationary and cointegrated VARs in a parametrization where prior beliefs on the steady
state may be adequately incorporated. The analysis is illustrated on macroeconomic data for
the Euro area.
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1. INTRODUCTION

Vector autoregressions (VAR) were launched by Sims (1980) as an alternative to the then
dominating large scale structural equations models, which he argued imposed ’incredible’ iden-
tifying restrictions. The flexibility of VARs comes at the cost of greater parameter uncertainty
and, as a consequence, erratic model predictions. This was noted by Sims already in his orig-
inal 1980 paper where he suggested using prior information to increase the precision. Sims’
suggestion spurred the development of prior distributions for VARs, see e.g. the well known
Minnesota prior in Litterman (1986), and subsequent modifications and extensions in Doan,
Litterman and Sims (1984), Kadiyala and Karlsson (1997), Robertson and Tallman (1999) for
reduced form VARs, Sims and Zha (1998) and Waggoner and Zha (2003) for structural VARs,
Kleibergen and van Dijk (1994), Kleibergen and Paap (2002), Strachan (2003), Strachan and
Inder (2004), and Villani (2005) for cointegrated reduced form VARs, and Villani and Warne
(2003) for cointegrated structural VARs.

All available priors for VARs focus on the dynamic coefficients but are largely non-informative
on the deterministic component of the model. It is well known that long horizon forecasts
from stationary VARs converge to the unconditional mean, or steady state, of the process.
Similarly, the long run forecasts of growth rates from cointegrated VARs converge to the un-
conditional mean of the growth rates. A non-informative prior on the deterministic part of the
process therefore has the undesirable consequence that the long run forecasts may converge to
values which are in gross conflict with true prior opinions. Thus while the existing Bayesian
methods allow the user to incorporate prior information on the dynamics of the economy, they
do not allow for prior information regarding its steady state. Such information are typically
available, and quite often in strong form. The forecasts of inflation undertaken at central
banks operating under an explicit inflation target is an apparent example.

One of the reasons for this missing component of the VAR methodology is probably that
applications of Bayesian VARs for U.S. data have often modelled variables in levels, where
the process’ steady state is often non-existing or at least not very relevant (near unit root
process). While VARs in levels seem to work well for U.S. data (see e.g. the many papers
by Sims and his coauthors), it has not been as successful for other countries, where instead
differencing or cointegration have been more widely applied. Theoretical arguments in favor
of differencing are given in Clements and Hendry (1995). Another explanation of the rather
casual handling of the unconditional mean is perhaps that it is expected to be fairly precisely
estimated even in the absence of prior information. This is not always the case, however, as
is illustrated in our empirical example in Section 4.

The recent advancements in dynamic stochastic general equilibrium (DSGE) modelling (see
e.g. the by now well known model in Smets and Wouters (2003)), have renewed the interest in
theoretical models for forecasting and policy analysis. A single model cannot cover all variables
of interest and other models, e.g. VARs, are used as flexible complements which may be
formulated and estimated on short notice to answer the policy maker’s question at hand. The
complementary models typically have at least a few variables in common with the baseline
model and are, almost without exception, estimated independently of the baseline model.
This raises the concern that the set of entertained models may be internally inconsistent. A
particularly disturbing inconsistency arises when two or more models have widely differing
steady states for the same variable. Using a prior on the unconditional mean of the VAR
process makes it possible to at least have the same prior opinion on the steady state in the
baseline theoretical model and the complementary VAR models.

A related reason for using a prior on the unconditional mean of the process comes from the
frequent application of Bayesian VARs (BVAR) as benchmark models in forecasting exercises.
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A recent example is Del Negro, Schorfheide, Smets and Wouters (2005), where the out-of-
sample forecasting performance of the DSGE in Smets and Wouters (2003) is compared to
several BVARs. A fairly informative prior on the steady state of the model is incorporated
via the prior on the theoretical model’s deep parameters. The comparison of forecasting
properties would be more balanced if the same prior had been used on the steady state also
in the benchmark BVARs.

In this paper we develop a Bayesian analysis of the VAR model in mean-adjusted form. This
parametrization of the VAR is expedient for prior elicitation as the unconditional mean of the
process is explicitly modelled. The mean-adjusted form was introduced in Bayesian analysis of
the univariate AR(1) process by Schotman and van Dijk (1991a,b) in an influential contribution
to the lively unit root debate in the early 90’s. Lubrano (1995) extended the Schotman-van
Dijk approach to the general AR(k) case, using a convenient approximation. These papers
derive properties of a Bayesian analysis in mean-adjusted form in the case of non-informative
priors. It is shown that the marginal posterior distribution of the dynamic coefficients has
a non-integrable asymptote when the process has a unit root. It is also shown that this
asymptote disappears when the initial conditions of the process are taken into account. See
Bauwens et al. (1999) for a clear survey of the literature in this area. We argue that the reason
for using the mean-adjusted form of the VAR in the first place is that prior information actually
is available on the steady state and that the use of a proper informative prior alleviates the
mentioned difficulties.

We first consider the stationary, or difference stationary, VAR and subsequently move on to
the cointegrated VAR. In the case of cointegrated VAR the mean-adjusted form of Clements
and Hendry (1999) is used, where the unconditional mean growth rate of the process and mean
of the long run relations are explicitly modelled. Note that cointegration restrictions pin down
the long run behavior of variables relative to other variables in the system, but give no control
over the long run behavior of the time series in absolute terms. Cointegration restrictions may,
for example, be used to force two variables to have the same long run growth, but the common
growth rate of the two series is free to take on any value. The methodology presented here
give the user the possibility to incorporate prior beliefs about this growth rate.

All results in this paper are derived in the reduced form VAR. Our results are easily seen
to apply also to structural or identified VARs. The joint posterior distribution of such models
may be sampled by adding an updating step to the Gibbs sampler (see Sections 2 and 3) for
the contemporaneous coefficients, as described in Waggoner and Zha (2003) and implemented
in the cointegrated case by Villani and Warne (2003).

The paper is organized as follows. The next section develops Bayesian inference for sta-
tionary VARs in mean-adjusted form. Section 3 extends the analysis to the cointegrated case.
The fourth section illustrates the analysis on a seven-variable model of the Euro area. The
final section concludes. The proofs are given in the appendices.

2. BAYESIAN ANALYSIS OF THE STATIONARY VAR PROCESS IN MEAN-ADJUSTED FORM

2.1. The model. The usual parametrization of the VAR model is
(21) H(L)l‘t = (I)dt + Et,

where x; is a p-dimensional vector of time series at time ¢, d; is a ¢-dimensional vector of
deterministic trends or other exogenous variables. II(L) = I, — I} L — ... — IIL*, L is the
usual back-shift operator with the property La; = x;—1, and &, ~ Np(0, X) with independence
between time periods. We shall initially assume that z; is a stationary process (either in its
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original form or after suitable differencing) and later on treat the extension to the cointegrated
case. The model in (2.1) will be referred to as a VAR model on standard form.

A Bayesian analysis requires a joint prior distribution of all model parameters IIy, ..., ITg, ®
and Y. This is often a daunting task for the user of VAR models and the common approach
is to model this joint prior in terms of a small number of hyperparameters which together
fully specify the prior. It is often claimed that it is hard to specify prior opinions on &
(see e.g. Litterman, 1986) and this part of the prior is usually taken to be non-informative,
either in the form of a uniform distribution or a normal distribution with zero mean and very
large variances. This does not mean, however, that prior information on the deterministic
component of the model is unavailable, simply that the particular parametrization of the
model in (2.1) forces the user to specify her beliefs in an awkward way.

Let E.(x;) denote the conditional expectation of z; using information up to time 7. In
stationary VARs the usual long horizon forecasts approach the unconditional mean of the
process, i.e. FEi(xyip) — Eo(x:) as h — oo. This property makes it clear that the implied
prior on Ep(z;) is an important aspect of a Bayesian analysis of VARs. Such information
is often available and may be very important for the forecasting performance of the VAR,
or is at the minimum useful for pedagogical reasons when the forecaster communicates his
results. In the parametrization in (2.1), Eo(z¢) is unfortunately a complex non-linear function
of I1y, ...,II and ®. Thus, convenient as this parametrization may be from a computational
viewpoint, it is not the preferred parametrization for incorporating prior opinions regarding

E()(.Tt).
An alternative parametrization of the model in (2.1) is of the form
(2.2) II(L)(x¢ — Vdt) = e.

This VAR model is non-linear in its parameters, but the unconditional mean of the process
is directly specified by ¥ as Ey(x;) = Wd;. The form of the deterministic component Wd; is
flexible, any deterministic function may be used by a suitable definition of dy, e.g. a constant,
a piecewise constant or a linear time trend. The model in (2.2) will be referred to as a VAR
model on mean-adjusted form.

2.2. Prior distribution. Bayesian inference requires a prior distribution on X3, Iy, .., [Ty, and
W. The prior on X is here taken as

p(E) oc [~
Let IT = (I1y, .., IT)’. The prior for vec IT used here is a general multivariate normal distribution
vecll ~ Nkpz ((91‘[, QH)

which includes the well-known Minnesota prior (Litterman, 1986) and variants as special cases.
We further assume prior independence between II and V¥, and that

vec U ~ Npq((gqj, Q\I/)

2.3. Posterior distribution. The posterior distribution of the mean-adjusted VAR in (2.2)
is intractable. As will be shown below, the posterior distribution of each set of model para-
meters (i.e. one of ¥, IT and W) conditional on the remaining parameters is tractable. The
numerical method Gibbs sampling (Smith and Roberts, 1993) exploits this fact and generates
a sample of parameter draws from the joint posterior by iteratively sampling from the set of
full conditional posterior distributions, always conditioning on the most recent draw of the
conditioning parameters. Although the Gibbs draws are dependent, it has been shown that it
converges in distribution to the target joint posterior distribution (Tierney, 1994). Note that
also for the standard VAR in (2.1) must we resort to numerical methods, but in this case the
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posterior distribution may be sampled by a two-block Gibbs sampler (one block with ¥ and
the other with IT and ®).

The next result gives the full conditional posterior distribution of X, II and ¥. We will
make use of the following non-standard, but very convenient, notation. Let zi:, 2zot, ..., Zmt,
t=1,...,T, be m column vectors of possibly differing lengths, I;, i = 1, ..., m. We shall write
Z = |z, 22t ---,thjz;l to denote that the ¢th row of the 7' x (3.7, l;) matrix Z equals
(2145 Zhys oo 20ae)- The symbol | szl is thus simply a symbol for the usual rearrangement of
data vectors into a matrix for the whole sample. Since T" will be fixed throughout, we shall
merely write Z = |z, 221, ..., Zme). Furthermore, let Z, = {x1,...,24,d4,...,d;} denote the
available data at time .

Proposition 2.1.
e Full conditional posterior of %

S|, W, Iy ~ IW(E'E,T),

where E = |II(L)(x; — Vdy)].
e Full conditional posterior of I1

vec |3, ¥, Ty ~ N2y (011, Qm),

where Q' = Y71 @ X X + Qs 0n = Qnfvee(X5 Yo X ™) + Q'0n), Yo = |2 — ¥dy] and
Xy = LiUt—l —Wdi1, . Ty — ‘I’dt—kJ-
e Full conditional posterior of ¥

vec O[S, I1, Iy ~ Ny (B, Qu),

where Qg = U'(D'D @ S~ HYU + Qp L, 0y = Qu[U' vec(S7Y'D) + Qyl0g], YV = [TI(L)z,],
U/ = (Ipq7 Iq & H/l, veuy Iq &® H%) and D = Ldt, _dt—17 veay _dt7k+1J .

The Gibbs sample may be used to compute the marginal likelihood of a model using e.g.
the methods developed in Chib (1995) and Geweke (1999). Chib’s method is quite efficient in
this setting since the additional so called reduced Gibbs sampler (see Chib’s paper for details)
can be made to operate solely in (X, U)-space. The time-consuming II-step is thus excluded
in the reduced Gibbs sampler.

Contrary to the standard VAR in (2.1), the mean-adjusted VAR in (2.2) is locally non-
identified (Rothenberg, 1971). When at least one of the eigenvalues of the companion matrix
of IT is equal to or larger than one in modulus the process is non-stationary, the unconditional
mean Fy(z;) does not exist and the parameters in U are non-identified. When a flat prior is
used on ¥, this may cause the Gibbs sampler to converge slowly or perhaps not at all in the
following way. Once the Gibbs sampler draws a II in (or very close to) the non-stationary
region, the full conditional posterior of ¥ becomes very spread out and the subsequent U-draw
may end up far from the underlying posterior distribution. The next draws of ¥ and II will
condition on this abnormal W-draw and the Gibbs sampler may enter into a vicious cycle
where one bad draw leads to another. This excursion will continue until a draw happens to
end up in the stationary region and the Gibbs sampler gets ’back on track’ again.

Note however that both of the following two conditions must be satisfied for the Gibbs
sampler to fail: i) a vague prior (large variance) is used for ¥, and ii) the posterior of II has
non-negligible probability mass in the non-stationary region. The first condition will typically
not be satisfied since the reason for choosing the more complex mean-adjusted VAR model
in the first place is that prior information actually are available on V. To explicitly show
how prior information on W stabilizes the Gibbs sampler we use straight forward algebra to
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F1GURE 1. Gibbs sampling sequence for the simulated data. Flat prior on the
steady state.

rewrite the precision matrix (inverse covariance matrix) in the full conditional posterior of W
(assuming for simplicity that d; = 1) as

O =U'(D'DS MU+ =TI, — Y LS (L, — i TL) + Qg

With a flat prior on U it is easily seen that )y diverges as we approach the unit root region
in II-space (where I, — Zle I1; becomes rank deficient). With an informative prior assigned
to ¥ we instead have that Qg — Qg as the system approaches a unit root.

We will use simulated data to illustrate that a moderately informative prior on W is typically
sufficient to prevent the Gibbs sampler from generating 'wild’” U’s, even if the previous II-
draw happened to end up in the non-stationary region. A bivariate time series of length
100 was generated from the stationary mean-adjusted VAR in (2.2) with £k = 1, d; = 1
for all t, ¥ = (¢1,99) = (1,4), II; = Diag(0.95,0.95) and ¥ = Diag(0.1,0.1). Note that
Eo(z¢) = (1,4)" and that the data generating process is close to a unit root process. We will
display the sequence of Gibbs sampling iterations for three different priors on U: (i) a flat prior,
(ii) a mildly informative prior where ¥, ~ N(2.5,1.25%) independently of 15 ~ N(5,2.52), and
(iii) an informative prior where ¢; ~ N(1,1) independently of 15 ~ N(4,1). A flat prior on
IT; and the usual non-informative prior \E|_(p /2 s used for X in all three cases. Figure 1,
2 and 3 displays 2000 Gibbs iterations for each of the three priors. It is clear from Figure 1
that the Gibbs sampler does not behave well when a flat prior is used for W. The situation
improves radically when ¥ is assigned a mildly informative prior (Figure 2), and under the
informative prior the mixing of the simulation sequence is excellent (Figure 3).
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FI1GURE 2. Gibbs sampling sequence for the simulated data. Mildly informa-
tive prior on the steady state.

It is clear from Proposition 2.1 that there are some additional computing steps in the
mean-adjusted VAR compared to the standard form of the model: we need to compute the
mean-adjusted data x; — Wd, following every draw of W, and the U matrix following every
draw of I' = (Ily, ..., I ). One would therefore expect the mean-adjusted VAR to be the more
computationally demanding of the two parametrizations. The extra computational steps in the
mean-adjusted VAR is only part of the story, however. Regardless of the parametrization, the
covariance matrix in the full conditional posterior of I in Proposition 2.1 consumes the largest
fraction of the computing time, especially in larger systems. This covariance matrix is of larger
dimension in the standard VAR than in the mean-adjusted model, since the deterministic
component in the standard VAR (® in (2.1)) is included in II. In smaller systems with short
lag lengths, the additional computational steps in the mean-adjusted VAR dominates the
gain in speed from having a smaller dimensional II. For larger systems with long lags, the
opposite holds and the Gibbs sampler for the mean-adjusted form may even be faster than
Gibbs sampling in the standard VAR. As an example, the Gibbs sampling for the model
analyzed in Section 4 (seven variables and four lags) is slightly faster in mean-adjusted form.
It should be noted, however, that the number of iterations of the Gibbs sampler needed to
obtain convergence is typically larger in the mean-adjusted model. This is especially true
when prior information on the steady state is weak as illustrated in Figures 1-3.
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F1cURE 3. Gibbs sampling sequence for the simulated data. Informative prior
on the steady state.

3. BAYESIAN ANALYSIS OF COINTEGRATED VAR PROCESSES IN MEAN-ADJUSTED FORM

3.1. The model. So far we have assumed the process to be stationary. It is of course possible
to transform non-stationary I(1) or I(2) variables to stationarity by differencing in the usual
way and use the mean-adjusted VAR directly on these differenced variables. An intermediate
case between stationary and difference stationary processes are the cointegrated processes
introduced by Clive Granger (see e.g. Engle and Granger, 1987). A fairly general version of
the cointegrated VAR process in mean-adjusted form is (Clements and Hendry, 1999)

(3.1) T(L)(Azy — ) = a(B'zi-1 — po — t) + e,

where (3 is a p X r matrix with the r cointegration vectors as columns, « is a p X r matrix
of adjustment coefficients determining the speed of adjustment back to equilibrium after a
disturbance, T'(L) = I, — T1L — ... — [y_1 L*71, L is the usual back-shift operator with the
property Lay = x;—1, and g, ~ Np(0,X) with independence between time periods. The mean-
adjusted form of the cointegrated VAR model is non-linear in its parameters, but models the
mean of the growth rates explicitly as F(Ax;) = v and the mean of the cointegration relations
as B(f'v-1) = po + pt.

The parameters in (3.1) are subject to the restriction 3y = p; (Clements and Hendry,
1999, p. 152-153). An explicit parametrization of + in terms of its unrestricted elements is
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where Pg = 3(6'8)~Y, Pg, = B,(8 B.)"", uyisrx1and Xis (p—r) x 1. Note that with
this parametrization 3y = y; and 8,y = \.

We shall first assume that [ is completely known and later in this section discuss the
case where it is not. One reason for conditioning the analysis on a fixed 8 is that since
E(B'z¢—1) = py + pqt, the interpretation of py and py is dependent on 3. Conditioning on
B therefore makes it substantially more straight forward to elicit prior opinions on i, and
1. When f is sufficiently restricted by over-identifying restrictions to allow the cointegration
vectors to be interpreted, it should be possible to specify a prior on py and gy, even if 3 is
partly unknown.

3.2. Prior distribution. We need to specify a prior on X, o, I'* = (T'1,..,T%_1) and n =
(N, ug, 1))’ We assume prior independence between the parameter blocks 3, o, I" and 7.

We will use the same prior for ¥ as in the stationary case. The prior on « is taken to be of
the form

(3.3) vec |3, X ~ Npr(0a, Qo).

Common choices for 6, and €, are 8, = 0 and Q, = (3'SB)~! ® \,X, where A\, > 0 is a
shrinkage factor and S is a positive definite matrix, usually assumed to be diagonal; see Villani
(2004) for a motivation of this prior.

We shall also assume that

(34) vec '™ ~ sz(k_l)(er*, QI‘*),

where O« and Qp« are usually parametrized in terms of a few hyperparameters, see e.g.
the well-known Minnesota specification (Litterman, 1986). It will be convenient to define
' = (a, '), such that vecT" ~ Ny 4 -1y (01, Or).
Finally, it is assumed that
1N ~ Npir(On, ),

a priori. It follows from (3.2) that E(y) = PgE(u;) + Pg, E(A), which implies E(\) =
B E(7). If we assume prior independence between  and 1y we also have V' (y) = PsV (111) Py+
Pg LV()‘)Pég so that V(A) = 3 V(y)3, . It is thus sufficient to elicit the mean and covariance
matrix of the growth rates, v, to pin down the prior for A.

3.3. Posterior distribution. The next result shows that the full conditional posteriors of
the three parameter blocks Y, I' and n are all of standard form. A simple three-block Gibbs
sampler may thus be set up also in the cointegrated case.

Proposition 3.1.
e Full conditional posterior of %

ST, n, 8,Ir ~ IW(E'E, T),

where B = |T(L)(Azy — ) — a(B'zi—1 — pg — pat) |-
e Full conditional posterior of T = (a,T'1,...,Tx_1)

vec F‘E7 m, 57 IT ~ Np[r+p(k71)] (él—V QP)7
where 51 = 571 @ X)X, + 0!, i = Oplvec(X]¥,5Y) + 0510, Yy = Az — 5] and

Xy = w1 —po — gt Axe 1 =,y Ay_pyy — ]
e Full conditional posterior of

Vecn‘za Fu ﬂuIT ~ Np+7“(0777 Qn)u
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where 7(277 ! Qg—i—Q;l, L= (QiE*l/Q, ...,Q}E*1/2), Q= [I'(L)Ps,, —a, I'(L)Pg —ta],
0, = Q,[Q% vec(S7V/2YY) + Q. 10,] and Yr = |T(L)Ax; — af'z; 1.

When 3 cannot realistically be assumed to be known, we can augment the Gibbs sampler
in Proposition 3.1 with a Metropolis updating step for the unrestricted elements of 5 (the full
conditional posterior of 3 is non-standard as a result of the restriction 3’y = ;). One possible
class of restrictions is the general linear restrictions 8 = (hy + H1%¢q, ...., hy + H,1),.) used by
Johansen (1995). A multivariate normal distribution centered over the previous draw may be
used as proposal distribution with a covariance matrix equal to a constant times the inverse
Hessian at the posterior mode (obtained from standard numerical optimization routines).

4. EMPIRICAL ILLUSTRATION

We will use quarterly data for the Euro area, first collected by Fagan, Henry and Mestre
(2001), over the time period 1970Q1—2002Q4 to illustrate the methods developed in this paper.
The VAR system consists of the seven variables used in the estimation of the influential DSGE
model of Smets and Wouters (2003): the domestic inflation rate 7, growth rates of real wages
Awy, consumption Acy, investment Aiy, the short-run interest rate r, employment e; and real
GDP growth Ay,. All series except 7, are in logs. The quarter-to-quarter differences used
in the estimation are subsequently aggregated up to annual growth figures in the presented
results. The employment series was demeaned and detrended before estimation to remove a
large upward trend presumably generated by population growth and increased part-time work
during the sample period (data on hours worked are not available for the Euro area).

We will assume that the above reported transformation of the original data produces sta-
tionary series so that the model in (2.2) can be used. We note that the version of the Smets-
Wouter’s model used in Del Negro et al. (2005) includes a common trend in the real variables.
An alternative would thus have been to analyze the data in levels using the mean-adjusted
cointegrated VAR in (3.1) with the six cointegrating relations: w; — yy, ¢t — Y, it — Y, T, Tt €4

The DSGE model in Smets and Wouters (2003) features a time varying inflation target to
model the changes in monetary policy during the analyzed time period. We will instead use
the regime dummy d; = (1,dpy, p7t)/ , where dp/p; is a monetary policy dummy

IS I
MPE=19 0 ift>t*

The date of the regime shift t* will be inferred from the data. Figure 4 displays the approximate
posterior distribution of the lag length and t* obtained form Schwarz’ first order approximation
of the marginal likelihood (Schwarz, 1978). Almost all posterior probability mass is placed on
the model with one lag. The Schwarz approximation is well known to favor too small models,
however. In addition, the prior used here on the dynamics of the process shrinks longer lags
heavily towards zero so the cost of increasing the lag length is much smaller than in a non-
Bayesian analysis. This, in combination with the inferior fit of the one lag model (judged
visually from the actual-vs-fit graphs and residual autocorrelograms), suggests that a model
with more than one lag should be used. For k > 1 the posterior probabilities dates the last
quarter of the first regime to sometimes in 1992. Given that the data are on a quarterly basis,
it seems natural to condition the ensuing analysis on four lags and then use t* = 1992Q4.

To formulate a prior on W, note that the specification of d; implies the following parame-
trization of the steady state

iy, i<
EO(S“)—{ ¥y >t
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FIGURE 4. Approximate joint posterior distribution (BIC) of the timing of the
regime shift (¢*) and the lag length (k) using data from 1980Q1.

¢ Awt ACt AZt Tt €t Ayt
U, (1.54,2.33) (2.02,2.83) (2.02,2.83) (2.02,2.83) (4.93,6.39) (—10,10) (2.02,2.83)

TABLE 1. 95% prior probability intervals of ¥ in the diffuse mean-adjusted model.

where 1, is the ¢th column of W. The prior on v¢;, which determines the steady state in the
latter regime, parallels the implied prior from the deep parameters on the steady state in the
DSGE model in Adolfson, Laseén, Lindé and Villani (2005), and is displayed as the first row
of Table 1. The prior on 1y, which determines the difference in steady states between the first
and second regime, is given in the second row of Table 1. Note that the prior on v is centered
on the event that the regime shift is purely nominal, i.e. that the real variables have the same
steady state throughout the whole sample period. The spread around zero is fairly large,
however, making it essentially up to the data to determine if the shift is purely nominal or
not. We will also consider a model with the elements in 1, corresponding to the real variables
set exactly to zero. We refer to this restricted model as the mean-adjusted nominal model
and the former model with the prior in Table 1 as the mean-adjusted diffuse model. Note also
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Tt Awt ACt A’Lt Tt (& Ayt

Arith. mean 2179 0.189 1.711  1.641 5.064 0.204 1.967
ML 6.970 2.681 2.435 —-1.800 3.923 2.376 2.103
Standard 4.556 2.221 2.380 -0.608 3.374 3.115 2.280

Mean-adj. nominal 2.014 2.160 2.495 2.377 5.455 1.207 2.564
Mean-adj. diffuse  2.012 2.229 2.282 2.399 5.235 1.785 2.516
TABLE 2. Point estimates of the steady state in the subperiod 1993Q1-2002Q4.

The model is estimated on data from 1970Q1.
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0 |
1 | f | | | | | | | | -2 | | | | | | | | | |
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FIGURE 5. Dynamic forecasts using data from 1970Q1. The Bayesian forecasts
are the posterior median of the predictive distribution.

that the demeaning and detrending of the employment series makes it problematic to assign
a steady state prior to this variable, hence the relatively uninformative prior in Table 1.

The prior proposed by Litterman (1986) will be used on the dynamic coefficients in II,
with the default values on the hyperparameters in the priors advocated by Doan (1992):
overall tightness is set to 0.2, cross-equation tightness to 0.5 and a harmonic lag decay with a
hyperparameter equal to one. See Litterman (1986) and Doan (1992) for details. Litterman’s
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Tt Awt Act AZt Tt (& Ayt

Arith. mean 2179 0.189 1.711 1.641 5.064 0.204 1.967
ML —0.623 0.707 2.227 2.046 3.088 1.848 2.169
Standard 1.387 0.583 1.729 0.373 4.174 2.257 1.831

Mean-adj. nominal 1.873 2.116 2.363 2.409 5.595 1.825 2.409
Mean-adj. diffuse 1.909 2.194 2.282 2417 5.549 2.137 2.391
TABLE 3. Point estimates of the steady state in the subperiod 1993Q1-2002Q4.

The model is estimated on data from 1980Q1.
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98:1 99:1 00:1 01:1 02:1 03:1 04:1 05:1 06:1 07:1 08:1

FIGURE 6. Dynamic forecasts using data from 1980Q)1. The Bayesian forecasts
are the posterior median of the predictive distribution.

prior was designed for data in levels and has the effect of centering the process on the univariate
random walk model. We therefore set the prior mean on the first own lag to zero for all the
variables in growth rates. The two remaining level variables r; and e; are assigned a prior
which centers on the AR(1) process with a dynamic coefficient equal to 0.9. The usual random
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walk prior is not used here as it is inconsistent with having a prior on the steady state. Finally,
the usual non-informative prior |S|~P+Y/2 is used for .

The Gibbs sampler in Proposition 2.1 was used to generate a sample of 20,000 draws from
the joint posterior distribution of the model parameters. For each parameter draw a dynamic
forecast was generated 24 quarters ahead to form a sample from the predictive distribution.
No problems with the convergence of the Gibbs sampler were found. Figure 5 displays the
point forecasts from the four different models and Table 2 contains the estimated steady state
of the process during the post-break period. We also present results for the standard VAR in
(2.1), and a VAR estimated by maximum likelihood (ML) for comparison. Several things are
worth noting. First, there are large differences between the ML and standard VAR forecasts,
on the one hand, and the two mean-adjusted models on the other. This is especially true for
the inflation and interest rate forecasts. The ML and standard VAR estimates of the steady
state of inflation in Table 2 are in gross conflict with the current inflation target of the ECB of
"below but close to two percent’. Second, the choice between the nominal and diffuse versions
of the prior in the mean-adjusted VAR only matters significantly for the forecasts of inflation
and the interest rate. The difference in terms of steady states is small, however. Third, the
correspondence between the estimated steady state and the simple arithmetic mean of the
observed data is weak for some of the variables (the wage series in particular), even in the
Bayesian standard VAR and the ML estimated VAR.

To investigate the robustness of the predictions to changes in the estimation period, we
repeated the analysis using only the subsample 1980Q1 — 2002Q4 for inference. Figure 6
displays the point forecasts from the four different models and Table 3 the estimated post-
break steady state. The effect of reducing the estimation sample for the ML and standard
VAR predictions is striking, especially for the inflation and interest rate series. The estimated
steady state of inflation for the ML and standard VAR in Table 3 is drastically reduced
compared to the full sample estimates in Table 2. The estimated steady state inflation from
the ML estimates is even negative. The prediction paths from the two mean adjusted models
are less affected by changing the sample period. The estimated steady states from these two
models are particularly robust to changes in the estimation sample.

5. CONCLUDING REMARKS

We have developed practical algorithms for analyzing both stationary and cointegrated
VARs with informative prior beliefs on the steady state of the process. We have argued that
this kind of prior information can be very important, especially for long horizon forecasts,
and is often available in relatively strong form. The decision maker will not be pleased to
hear that while her prior information may easily be incorporated on the more obscure part of
the model, such as the reduced form dynamic coefficients, her strong prior beliefs about the
steady state cannot be used for ’technical reasons’. The purpose of this paper is to remove
this straight-jacket from the analyst.

Analysis of regime shifts using VARs with informative priors on the steady state is currently
being conducted by the author. Without any special structure on the VAR it is likely, especially
in a multivariate framework, that the data point toward a break which may not be of the type
we had in mind a priori, e.g. a change in monetary policy regime with only real variables
differing between regimes. Adding this additional structure via an informative prior on the
effect of the regime change on the steady state seems to be an attractive option.
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APPENDIX A. PROOF OF PROPOSITION 2.1

Proof. Conditional on ¥ the model in (2.2) is a standard VAR model for the time series
x; — Wds. The full conditional posteriors of ¥ and II therefore follow from standard results,

see e.g. Zellner (1971). To derive the full conditional posterior of ¥ we rewrite the model in
(2.2) as

(L), = I(L)Wd; + & = Wdy — T Udy_y — ... — T Wdy_j, + <.
Let Y = |II(L)x¢] and D = |d;, —dy—1, ..., —di—k | and note that
Ipq
’ (Iq ® Hl)
vec© = vec(U, IV, ..., II,V) = . vecU = Uvec V.
(Iq ® Hk)

The full conditional likelihood of ¥ can be written
p(X, DI, ILY) o etr[2H(Y — DOY (Y — DO)]
x etr[(® — &)L - &)D'D],

= exp (—%(U vec U — vec©')(D'D @ ©71) (U vec U — vec @/)>
X exp <—% [(vec U)' Avec ¥ — (vec ¥)'B — B vec W])

1 ~ ~
x e (= [w=iraw-a]).,
where etr(H) = exp(—%trH) for any quadratic matrix H, ¢ = vec¥, A = U'(D'D ®
> YU, B = U'(D'D®Y vec®, 6 = (D'D)"'D'Y and ¢y = A'B = [U(D'D ®
S HUU’ vec(X71Y’ D). Multiplying the conditional likelihood with the Ny, (6w, y) prior
yields (see e.g. Zellner, 1971)

exp (=5 [0 00703 (0= 0)] ).
where Q03! = U'(D'D @ £~HU + Q'

0y = Qu[U'(D'D @ S~ HUY + Q31 04] = Qu[U’ vec(7Y'D) + Q3104
which proves the result. ]

APPENDIX B. PROOF OF PROPOSITION 3.1

Proof. Transpose and rearrange (3.1) and stack the resulting row vectors in matrices to obtain
the following multivariate regression form of the model

Y, = X,I +E,

where Y, = |[Azy — 7], X, = Lﬁ/xt,l — g — pt, Azp1 — Y, s ATy — 'yJ, E = |&] and
I'=(a,Tq,...,T%_1)". The full conditional posteriors of I and X now follow from the standard
theory of Bayesian multivariate regression, see e.g. Zellner (1971).

We will now derive the full conditional posterior of n. Using that v = Pguy + Pg, A, the
model in (3.1) may be rewritten as

D(L)Azy —af'zi1 = T(L)(Pspy + Pg, A) — a(pg + pyt) + &
(Bl) = Qtn + Et,
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where Q; = (I'(L)Pg, , —a,T(L)Pg—ta) and n = (XN, ug, py)'. Transposing (B.1) and stacking
the resulting row vectors in matrices yields

Yr=A+F,

where Yr = |D(L)Az¢ —af'zi—1|, E = |e] and A = [Qn]. The conditional likelihood
function may be written

p(X|Z,T,n, 8,Zr) x etr[S~ (Y — A)' (Yr — A)] = etr[(Wr — C) (Wr — C)],
where Wr = YrX /2 and C = AR V2 = LE_1/2Q,577J. Note that
S12Qum 120,

2=12Q9m Y12Q,

vec(C') = = Qx1n, where Qy, =

SVaQ SRl
Thaus,
p(X[%,T,n,8,Ir) o etr[(Wr — O) (W — O)]
~ e (—% vec(IVh) — vee(C)] [vec(W}) — vec(o/)]>

1

= o (3w Qo - @)

2

where w = vec(W}) and /) = (Q5Qx) 'Q%w. Multiplying p(X|Z,T,n, 8,Zr) with the
Npir(0y,€2y) prior yields the full conditional posterior of 1 (see e.g. Zellner, 1971)

1 _ _
pOIX. 2.1, 0.70) xexp (5 008,90 8,) ).
where Q;l = Q%Qx + Q;l and

Oy = Q[QxQxf + 010, = Q[Q%w + Q1 6,),
which proves the result. O

s exp (50— Qes(n 1)
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