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Bayesian model discrimination in STS models

STS models widely used in applied macroeconomics.
Ideally macroeconomics should guide the time series
model choice. Economic theories however rarely point to a
unique specification, and discriminating between different
possibilities can be difficult.
Even in a simple trend plus noise decomposition the
amount of uncertainty may be huge
a) What model for the trend?
b) Deviations from trend should be a pure noise or a
stationary autocorrelated short term component ?
c) Identification of the component models

1) Model selection 2) Model identification
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Model selection

The Bayesian’s answer to model selection is the posterior
probability of model Mi :

p(Mi |y) ∝ f (y |Mi)p(Mi)

Let j = arg maxi p(Mi |y), then you can take f (trend |y ,Mj)

I like more f (trend |y) which reflects the uncertainty faced by
the researcher.

If p(Mj |y) is very large then f (trend |y) ≈ f (trend |y ,Mj)
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Model Identification

Let Mi be a simple trend plus noise model in which the trend is
an I(1) process without drift

yt = µt + εt

µt = µt−1 + ωt + ϑωt−1 0 ≤ ϑ ≤ 1

there are infinitely many combinations of ϑ and the signal to
noise ratio that are o.e.

Instead of imposing a specific identifying restriction on ϑ we
could specify a prior distribution f (ϑ).

Then f (trend |y ,Mi) would reflect our uncertainty.

Notice that in the above discussion I assume εt ⊥ ωt .
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The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization

The parameterization ±
√
θ is discussed at length.

It is argued that:

Normal prior more suitable than IG under model
uncertainty. Results are less sensitive to prior specification
as the normal prior is less influential than IG prior.
For θ is re-scaled χ2 versus IG...

Better mixing properties
If mixing comes from sign switch...

Bring important information about the hypothesis θ = 0
It should help also under a classical approach...

It seems odd that the parameterization is not used for σ2
ε

Also, the normal prior on
√
θ is actually NIG on (

√
θ, σ2

ε )



Introduction Bayesian model selection Parameterization George and McCulloch Motivation

The Noncentered parameterization and classical
statistics

What if one uses the same reparameterization under a
standard ML approach.

This would change the constrained maximization of L(θ, . . .)
into the unconstrained maximization of L(φ, . . .) (with φ2 = θ).

Maybe, it would also transform a non standard testing problem
into a standard one.

It doesn’t work as ∂L(φ,...)
∂φ |φ=0 = 0 by construction.

Still the likelihood is bimodal when the variance is different from
zero and unimodal otherwise
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Implementation of the variable selection approach

There are different ways to implement George & McCulloch

The one adopted here requires the use of conjugate priors and
when an indicator is equal to zero sets to zero also the
corresponding parameter.

Could we use nonconjugate priors?

Does it make sense to set a normal prior with very small
variance on

√
θ when the corresponding indicator is zero?

Otherwise care must be exercised not the get reducible chains.

The method would clearly work for a trend+cycle+noise
decomposition
But would it work for an exact trend+cycle decomposition?
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Stochastic model search vs. marginal likelihood
computation

When the model space is large or moderate stochastic model
search is the only solution.

There is no need to compute the whole posterior distribution

The stochastic search can work reasonably well even with
chains of length smaller than the number of alternative models.

When the model space is small:

p(Mi |y) =
f (y |Mi)p(Mi)∑K
j=1 f (y |Mj)p(Mj)

For instance in the Basic Structural Model I would compute all
the marginal likelihoods with the Dickey method virtually without
approximation error (Fiorentini, Planas and Rossi, 2008).
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Stochastic model search: extension

What if we have an unknown number of structural breaks at
unknown dates.

The classic marginal likelihood approach is infeasible.

Adapting the stochastic model search to this case would be
great.
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