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Abstract

Adaptive Metropolis-Hastings samplers use information obtained from
previous draws to tune the proposal distribution. The tuning is carried
out automatically, often repeatedly, and continues after the burn-in pe-
riod. Because the resulting chain is not Markovian, adaptation needs
to be done carefully to ensure convergence to the correct ergodic dis-
tribution. In this paper we distill recent theoretical advances on non-
Markovian chains into simple guidelines to construct adaptive indepen-
dent Metropolis-Hastings samplers. We then propose one such sampler
in which the flexibility of mixtures of normals is exploited to construct
the proposal distribution. To take full advantage of the potential of
adaptive samplers it is often desirable to update the mixture of normals
frequently and starting early in the chain. Algorithms must therefore
be built for speed and reliability. The sampler performance is evalu-
ated with simulated examples and with applications to time-varying-
parameter, semi-parametric, and stochastic volatility models.

Keywords: Clustering; Gibbs sampling; Markov chain Monte Carlo;
Semiparametric regression models; State space models.
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1 Introduction

Bayesian methodology using Markov chain Monte Carlo simulation methods
has had a large impact on statistical and econometric practice over the last
fifteen years because of its ability to estimate complex models and produce
finite sample inference. A key component in implementing Markov chain Monte
Carlo (MCMC) simulation is the Metropolis-Hastings method (Metropolis et al.
1953; Hastings 1970) which includes the Gibbs sampler as a special case.

Bayesian inference by Metropolis-Hastings sampling requires the specifica-
tion of one or several proposal distributions. The speed at which the chain
converges to its ergodic distribution and its ability to move efficiently across
the state space depend crucially on whether the proposal provides a good ap-
proximation to the target distribution, and on the local (as in random walk
Metropolis) or global (as in independent Metropolis-Hastings with all variables
generated jointly) nature of this approximation. Given the key role played by
proposal distributions, it is natural to use experience from preliminary runs to
tune them. In this broad sense most Metropolis-Hastings samplers are adap-
tive. In this paper we more narrowly define a Metropolis-Hastings sampler to
be adaptive if the tuning of the proposal is carried out automatically and if the
tuning continues (at least potentially) for the entire length of the chain.

Since at each iteration the proposal may depend on the entire history of
the draws, an adaptive chain is not Markovian, and therefore the standard
proof that Metropolis-Hastings (henceforth MH) samplers asymptotically draw
from the target distribution no longer applies. This lack of a solid theoretical
foundation has for a long time limited the development of adaptive MH schemes,
notwithstanding the intuitive appeal of using accumulated knowledge about the
target to improve the proposal and hence increase sampling efficiency. Nor was
this caution excessive, since it is not difficult to formulate apparently reasonable
adaptive schemes which do not converge to the correct ergodic distribution.
Theory was therefore needed not only to justify adaptive MCMC schemes, but
also to guide in their construction.

The literature on adaptive MCMC methods has followed two main strands.
Adaptation by regeneration stems from the work of Gilks et al. (1998) In this
paper we focus exclusively on diminishing adaptation schemes. Important the-
oretical advances in diminishing adaptation have been made in recent years by
Holden (1998) Haario et al. (2001), Andrieu and Robert (2001), Andrieu and
Moulines (2006), Andrieu et al. (2005), Atchadé and Rosenthal (2005), and
Nott and Kohn (2005). Although more theoretical work can be expected, the
existing body of results provides sufficient justification and guidelines to build
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adaptive MH samplers for challenging problems. The main theoretical obsta-
cles having been solved, research is now needed to design efficient and reliable
adaptive samplers for broad classes of problems.

This more applied literature is still in its infancy, and has mostly focused on
random walk Metropolis. Partial exceptions are G̊a semyr (2003) who uses nor-
mal proposals for an independent Metropolis-Hastings, but limits the tuning
of the parameters to the burn-in period, and Hastie (2005),who mixes ran-
dom walk and independent MH in reversible jump problems. Independent MH
schemes are implemented by Nott and Kohn (2005) to sample discrete state
spaces in variable selection problems (e.g. to learn if a variable is in or out),
and by Giordani and Kohn (2005) to draw interventions in dynamic mixture
models (e.g. to learn if an observation is a break, an outlier, or neither).

This paper contributes to the development of algorithms for adaptive in-
dependent MH in continuous state spaces. Our aim is to provide samplers
that can be expected to perform well for interesting sets of models. Increased
sampling efficiency is obviously one important goal, particularly in cases where
current best practice (typically some version of random walk Metropolis or
Gibbs sampling) is less than satisfactory. But equally important achievements
of adaptive schemes may be to expand the set of problems that can be handled
efficiently by general purpose samplers and to reduce coding effort. In partic-
ular, adaptive schemes can reduce dependence on the use of conjugate priors.
Such priors make it easier to implement MCMC schemes, but are less neces-
sary when using adaptive sampling. See, for example, the discussion of the
treatment of smoothing parameters in the semiparametric example in section
5.

Our adaptive sampler is built on three main ideas. The first is to ensure
that the theoretical conditions for the correct ergodic behavior of the sampler
are respected. The second is to estimate mixtures of Gaussians from the history
of the draws and use them as proposal distributions for independent MH. The
third is to perform this estimation frequently, particularly early on in the chain,
starting after a small number of accepted draws (a strategy we call intensive

adaptation). To apply these ideas successfully, estimation of the mixture pa-
rameters needs to be fast, reliable, and robust. We achieve a good balance of
these goals by carefully selecting and tailoring to our needs algorithms devel-
oped in the clustering literature.

We show that this adaptive sampler performs well in three examples in
which commonly used Gibbs schemes can be very inefficient: a time-varying-
parameter model, a semiparametric Gaussian model, and a stochastic volatility
model. All these examples involve a large number of parameters or latent
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variables. However, conditional on a small set of parameters, the others can
either be integrated out or have a known distribution, so we update all the
parameters jointly and still obtain high acceptance rates.

The structure of the paper is as follows. Section 2 states a set of suffi-
cient conditions for the correct ergodic behavior of adaptive MH samplers, and
highlights some practical implications. Section 3 discusses opportunities and
risks of intensive adaptation strategies. Section 4 presents our adaptive inde-
pendent MH sampling schemes. The algorithms are introduced and discussed,
with technical details gathered in Appendix A. Section 5 provides applications
to time-varying-parameter, semiparametric, and stochastic volatility models.
Section 6 concludes.

2 Designing adaptive independent MH sam-

plers: some theory

A diminishing adaptation MH sampler performs the accept/reject step like a
standard MH, but updates the proposal distribution using the history of the
draws. This updating is ‘diminishing’ in the sense that the proposal distribution
settles down asymptotically (in the number of iterations). Theorem 1 in Nott
and Kohn (2005), which we restate here, provides sufficient conditions for the
ergodicity of an adaptive independent MH sampler.

Let Z = {Zn : n > 0} be a random process on a compact state space Ξ
evolving according to a collection of transition probabilities

Tn(z, z′) = pr(Zn+1 = z′|Zn = z, Zn−1 = zn−1, ..., Z0 = z0),

and let p(z) be be distribution of Zn and π(z) the target distribution we wish
to sample from. The proof in Nott and Kohn (2005), is given for a discrete
state space, but is readily extended to a compact state space. A more general
proof in given in Atchadé and Rosenthal (2005). The assumption of a compact
state space is relaxed in Andrieu et al. (2005).

Theorem 1 Suppose that for every n and z0, ...., zn−1 ∈ Ξ and for some dis-

tribution π(z) on Ξ

∑

zn

π(zn)Tn(zn, zn+1) = π(zn+1) (1)

|Tn(z, z′) − Tn+k(z, z
′)| ≤ anck, an = O(n−r1), ck = O(k−r2), r1, r2 > 0 (2)
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Tn(z, z
′

) ≥ επ(z′), ε > 0, (3)

where ε does not depend on n, z0, .., zn−1. Then, for any initial distribution p(z0)
for Z0

sup
zn

|p(zn) − π(zn)| → 0 for n → ∞.

By interpreting conditions (1)-(3) we can provide a set of useful guidelines for
building adaptive MH schemes.

Invariance condition. Equation (1) is an invariance condition that is
similar to that for a standard MH scheme, except that the transition density
is indexed by n. This condition is satisfied by any adaptive MH kernel as long
as the last available draw zn is not used to tune the parameters of the proposal
distribution.

The proposal distribution must settle down. Equation (2) is a di-
minished adaptation condition which requires the transition density, and hence
the proposal density, to converge to a fixed distribution. This can be achieved
by using the full history of the draws (except for the last value) or any suitably
increasing sub-sample to design the proposal density. For example, using ev-
ery k-th draw or at some point discarding the first M draws are both feasible
options, but continuously using only the last J draws is not.

Bound the tails. Equation (3) is an ergodicity condition. For an adaptive
independent MH (henceforth AIMH), equation (3) is equivalent to the condition

gn(z)

π(z)
≥ ε, ∀z, ε > 0, (4)

where gn(z) is the proposal distribution used at iteration n. To see this, let

αn(z, z′) =

{
min 1,

π(z′)

gn(z′)

gn(z)

π(z)

}

and note that Tn(z, z
′

) = gn(z
′

)αn(z, z′). Thus, if αn(z, z′) = 1, then Tn(z, z′)/π(z′) =
gn(z′)/π(z′) and gn(z)/π(z) ≥ gn(z′)/π(z′), and if αn(z, z′) < 1, then Tn(z, z

′

) =
gn(z)αn(z, z). The equivalence of (3) and (4) follows.
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This is the same requirement for the geometric ergodicity of a standard
independent MH, except that the proposal density is indexed by n and that
the condition must therefore hold for any possible history of the draws. If the
target distribution has a finite state space, condition (4) can be enforced by
setting a lower bound on gn(z) (see Nott and Kohn, 2005). Several strategies are
available for continuous distributions. The most straightforward is to enforce
a compact parameter space (by using a standard prior density with a compact
support or by truncating a general density), coupled with one or more of the
following designs for the proposal distribution: (i) set a lower bound on the
variance implied by gn(z), such that condition (4) is satisfied at the lower bound,
or (ii) let the proposal distribution be a mixture, with one component having
a lower bound on the variance, or simply with one component being constant
rather than adaptive (see Holden 1998). If the proposal distribution is designed
carefully, enforcing a compact state is often unnecessary in practice, and is
not implemented in this paper. Alternatively, one could check the conditions
given in Andrieu et al. (2005), which make the assumption of a compact space
unnecessary.

The next example illustrates that when the target is a mixture of normals,
using a normal proposal whose parameters are adaptively estimated from past
draws may not satisfy condition (4).
Example 1 Suppose that the target distribution is the two component mixture
of normals

π(z) = 0.8φ(z; 0, 1) + 0.2φ(z; 0, 16),

where φ(z; µ, σ2) denotes the normal density with mean µ and variance σ2. Sup-
pose further that the initial proposal density is g0(z) is normal φ(z; 0, 16), and
that after a certain number of draws we would like to estimate a normal pro-
posal density which is based on previous draws. Clearly the initial distribution
satisfies condition (4) and would therefore be a valid proposal for a standard
IMH. However, estimating the mean and variance from previous iterations will
give values of 0 and 4 respectively, on average, as these are the first two mo-
ments of π(z). To illustrate our point that an adaptive proposal based on a
normal distribution will be inadequate, suppose that gn(z) = φ(z; 0, 4). Then
gn(z)/π(z) < 10 exp(−3z2/32) implying that condition (4) does not hold, that
is, the tails of the proposal are too thin to bound the tails of π(z).

The above discussion shows how it is possible to build adaptive independent
MH samplers for which the proof of geometric ergodicity is not much more
difficult than for a standard independent MH sampler. Of course, in practice
both standard and adaptive independent MH schemes can be so inefficient that
the theoretically assured geometric ergodicity is of little practical relevance. By
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improving the fit of the proposal density to the target adaptively, our aim is to
increase the number of problems that can be handled efficiently by IMH.

3 Two-step adaptation and intensive adapta-

tion

A necessary condition for a successful AIMH sampler is that, given a sizable
sample drawn from the target π(z), the suggested algorithm can build a pro-
posal g(z) which is sufficiently close to the target for IMH to perform ade-
quately. A two step adaptive strategy is feasible whenever the answer is pos-
itive. We loosely define two-step adaptation as a sampling scheme in which a
rather thorough exploration of the target density is carried out in the first part
of the chain by a sampler other than IMH (such as random walk Metropolis)
before switching to a more efficient IMH sampler with proposal density tuned
on the first-stage draws. Hastie (2005) provides an interesting application to
reversible jump problems.

Two-step adaptation is relatively simple and safe, and in interesting cases
capable of achieving sizable efficiency gains. It has, however, a number of
limitations. If the first stage sampler fails to explore a region of the state
space, the proposal built for the second stage will not have adequate coverage
of that region either. To reduce these risks we may need a very large number
of iterations in the first phase. Finally, there is no saving of coding effort, as
the first stage sampler still needs to be implemented and tested. This can be
a time consuming task, particularly when the first stage sampler uses several
conditional distributions, as in Gibbs or Metropolis-within-Gibbs. For some
samplers, such as random walk Metropolis, the duplication of coding effort
is minimal: we write the likelihood function and then simply switch from a
random walk proposal to an independent proposal. However, all the limitations
of two-step adaptation are more severe when the first stage sampler is inefficient,
which is often the case for random walk schemes. It is in these cases that
intensive adaptation is most interesting. The examples provided in Section 6
show that AIMH is a very promising approach to broadening the set of problems
that can be handled efficiently with the same convenience of IMH and random
walk Metropolis samplers (both of which just require coding the likelihood and
prior functions).

We loosely define intensive adaptation as an AIMH scheme in which the
proposal distribution is updated frequently, particularly in the early part of the
chain. Building a sequence of increasingly good proposal densities in intensive
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adaptation is a more demanding task than building a proposal density once and
with thousands of draws available. The question is whether we can adequately
explore the target distributions given an initial proposal g0(z) but no draws.
The answer inevitably depends on the initial proposal g0(z), on the target π(z),
and on the details of the sampling scheme. However, it is possible to outline
some general dangers and opportunities offered by intensive adaptation.

Among the advantages, if the proposal distribution is sufficiently flexible,
frequent tuning of its parameters and continuing adaptation for the entire
length of the chain reduces the risk of a long run of rejections and increases
the chances of good performance when the initial proposal approximates the
target poorly.

Estimating proposal densities based on a small number of draws presents
some dangers that the designer of an AIMH scheme should try to minimize.
For example, suppose that we predetermine the iteration, say j, at which the
proposal is first updated. If the first j draws have all been rejected, then a
proposal distribution based entirely on these draws is degenerate and makes
the chain reducible. If too few draws have been accepted, the proposal may be
very poor. There are various ways of preventing these outcomes. We employ the
following. First, we initially update the proposal at a predetermined number
of accepted draws. Second, after fitting a mixture of normal distributions to
past draws, we fatten and stretch its tails. Third, we let the proposal be
a mixture where one component is the initial proposal g0(z), which should
of course have long tails. This is similar to the defensive mixtures approach
studied by Hesterberg (1998) for importance sampling. The same provisions
reduce the risk of adapting too quickly to a local mode.

4 A clustering algorithm for fast estimation of

mixtures of normals in adaptive IMH

Finite mixtures of normals are an attractive option to construct the proposal
density because they can approximate any continuous density arbitrarily well
and are quick to sample from and evaluate. See McLachlan and Peel (2000) for
an extensive treatment of finite mixture models.

However, estimating mixtures of normals is already a difficult problem when
an independent and identically distributed sample from the target is given and
estimation needs to be performed only once: the likelihood goes to infinity
whenever a component has zero variance (an even more concrete possibility
if, as unavoidable in IMH, some observations appear more than once), and its
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maximization, whether by the EM algorithm or directly, is plagued by local
modes. Although several authors have made substantial advances in dealing
with these problems (e.g. Figuereido and Jain 2002; Ueda, Nakano, Ghahra-
mani, and Hinton 2000; Verbeek, Vlassis, and Krose 2003), the EM algorithm
does not seem to be sufficiently reliable when the sample is small and contains
a non-trivial share of rejected draws. The inevitable short runs of rejections
give rise to small clusters with zero covariance matrix at which the EM algo-
rithm frequently gets stuck. Moreover, EM-based algorithm are computation-
ally expensive and slow to converge, which makes them less attractive when
the proposal is to be updated frequently.

We have therefore limited our attention to algorithms that estimate mix-
tures of normals quickly and without explicitly computing the covariance ma-
trix of each component (for robustness). Within this class, the k-means is the
most popular algorithm. We employ the k-harmonic means, an extension of
the k-means algorithm that allows for soft membership. Degeneracies can be
easily prevented, so the algorithm is remarkably robust even in the presence of
long series of rejections. The number of clusters is chosen with the BIC crite-
rion. The increase in speed and reliability is paid for with a decreased fit to
the target, as the family of k-means algorithms performs best when an optimal
fit requires all components of the mixture to have the same probability and
covariance matrix (see Bradly and Fayyad 1998, for a discussion). Hamerly
and Elkan (2002) show that the performance of k-harmonic means deteriorates
less rapidly than alternatives of similar computational costs with departures
from these ideal conditions.

Although the k-harmonic means algorithm is less sensitive to initialization
than either k-means or EM (Hamerly and Elkan 2002), in an unsupervised
environment it is important to have good starting values. We have found the
algorithm of Bradly and Fayyad (1998) to perform very well and at a low
computational cost.

One situation (quite common in applications) in which clustering algorithms
do not perform well is when a multivariate distribution is normal along most
but not all dimensions (the EM algorithm is also in trouble in this case). We
have found the following ad hoc solution to work well. Rather than trying to fit
a mixture of normals to all parameters of the target distribution, whenever we
need to update the mixture we divide the parameter vector θ into two groups,
θ1 and θ2, where parameters in θ1 have approximately symmetric marginal
distributions while parameters in θ2 do not. A normal is then fitted to the first
group and a mixture of normals to the second. Finally, we compute covariances
and build the proposal as a mixture of normals for the entire vector θ (see the
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appendix for details). This enhances the ability of the algorithm to deal with
the situations mentioned above and reduces computing times whenever some
or all parameters are nearly normally distributed.

In principle the proposal could be updated at each iteration, but in practice
that would be too costly. We update it at predetermined numbers of accepted
draws, more frequently in the earlier stages of the chain. We also recommend
updating the proposal following a long sequence of consecutive rejections (ex-
cluding the last draw). A large number of consecutive rejections signals a poor
fit of the proposal, and it therefore makes sense to update the proposal to give
it a chance of better covering that area. This does not violate conditions (1)-
(3) because only the decision of when to update the proposal is affected, and
not the proposal itself: as the draws accumulate, the proposal gradually settles
down.

Following the recommendations of Section 2, the proposal distribution for
MH is built by fattening and stretching the tails of the mixture of normals
estimated by k-harmonic means, and by drawing from the initial proposal with
a small probability. The proposal density at iteration n is therefore given by
the initial proposal g0(z) before the mixture of normals is estimated for the
first time, and afterwards by

π1g0(z) + π2g̃n(z) + (1 − π1 − π2)gn(z),

where gn(z) is the mixture of normals last estimated by the clustering algo-
rithm, and g̃n(z) is a version of gn(z) with fatter and longer tails: the means
and probabilities of each cluster are unchanged, and the variances are multi-
plied by a user-defined scalar k (we use k = 42). The probability π1 can be
set to a small number, say 0.05; π1 > 0 ensures that condition (4) is satisfied
for all n as long as it is satisfied for the initial proposal g0(z). Setting π2 > 0
is not required theoretically but can be very helpful in practice. Fattening the
tails can help to satisfy condition (4) as n grows even when it is not satisfied
at g0(z). Maybe more important in practice, setting π2 > 0 (at 0.05-0.2, say)
often greatly speeds up the exploration of the state space and hence the con-
vergence of the proposal distribution. Although we have used constant π1 and
π2 in our work, these considerations suggest that a more sophisticated strategy
would involve (i) setting π1 and π2 rather high in the initial, exploratory phase,
and then gradually lowering them (ii) letting π1 start high (low) and decrease
slowly (rapidly) if the quality of the initial proposal g0(z) is good (bad). A full
description of the algorithm is given in the appendix.
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5 Discussion

In order to understand the strengths and limitations of our sampler, we have
found it useful to consider two desirable qualities of an adaptive IMH scheme.
First, given a sufficiently large sample drawn from the target, we wish to con-
struct a proposal density which fits the target as well as possible. This is an
approximating ability: we want to draw an accurate ‘map’ of the areas that
we have already explored. Second, we wish the sampler to perform as well as
possible when the initial proposal fails to cover part of the support of the target
distribution. This is an exploring ability: when we propose in a region where
our map is poor, we want to explore that region and quickly update our map.

For example, using a normal proposal when the target is highly non-normal
results in little approximating ability. Updating the proposal only once or very
rarely results in little exploring ability, since the proposal reacts slowly or not
at all to the information that it is fitting poorly at a given point.

Our sampler has several characteristics designed to enhance its exploring
ability. Frequent updating, particularly at early iterations, and updating fol-
lowing a sequence of rejections and/or a low MH acceptance probability both
quicken the pace at which the proposal adapts to the information that it is
not fitting well in a certain area. Long tails are useful not only to satisfy the
ergodicity condition (4), but also to improve the chances of venturing into un-
explored parts of the state space. Finally, mixtures are ideally suited for this
exploration because a new component can be centered on a value causing a se-
quence of rejections. The long runs of rejections that can plague standard IMH
are therefore much less likely using our AIMH sampling scheme because the
proposal distribution is updated frequently and will accommodate the cluster
of rejections by changing the mixture parameters or adding a new component.
If our sampler makes a move in a region where the proposal fits poorly, it should
therefore be able to explore it. Of course as the parameter dimension increases,
if the initial proposal fails to cover a region we may never explore that region
simply because the probability of making a proposal there is too small.

The next example shows that in low dimensions we can often get away with
a very poor initial proposal distribution.
Example 2 Suppose that the target is the univariate mixture

π(z) = 0.5φ(z; 0, 1) + 0.3φ(z;−3, 4) + 0.2φ(z; 6, 0.5),

and the initial proposal is φ(z;−5, 4). This proposal has very high importance
weights π/g in a large part of the support of z, but we still quickly converge to
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a good approximation of the target. The acceptance rates increase fast initially
and then stabilize as the proposal distribution also settles down. See Figure 1

As the dimension increases, a good initial proposal distribution becomes
more valuable. This is illustrated in the next example.
Example 3 Consider the fifteen dimensional target distribution which is the
mixture of two normals

π(z) = 0.7φ(z; 0, I) + 0.3φ(z; µ2, 2I),

where φ(z; µ, Σ) is a multivariate normal density with mean µ and covariance
matrix Σ evaluated at z. The vector µ2 has elements µ2,i = 0 for i = 1, ..., 14,
and µ2,15 = −3. The first fourteen marginals are therefore symmetric but
slightly leptokurtic, whereas the fifteenth is also skewed. The proposal dis-
tribution is initialized by fattening and stretching the tails of the Laplace ap-
proximation, that is, a normal distribution centered at the mode and with
covariance set to minus the inverse of the Hessian of the log-likelihood at the
mode. The Laplace approximation is nearly equal to φ(z; 0, I), so we have
g0(z) ' 0.6φ(z; 0, I) + 0.4φ(z; µ2, 16I). The acceptance rates at the initial pro-
posal are not high, but sufficient to start the learning process (see figure 2). The
AIMH learns the marginal distribution of the non-normal variable rather well
and, since most variables are normal, at very low computational cost since we
only estimate the mixture parameters on variables that appear skewed. In con-
strast, an initial proposal such as φ(z;−m, 4I), where mi = −5 for i = 1, ..., 14
generates such low acceptance rates for this fifteen dimensional distribution
that the learning process cannot get successfully started.

6 Applications

State space models and nonparametric models are ideal initial applications for
AIMH schemes. Although they can have a large number of parameters, it is
often the case that, conditional on a small subset, most parameters can be
integrated out or have known analytical form. Therefore it is often possible to
draw all parameters in one or two blocks. Exploiting these features, it is also
often inexpensive to find the posterior mode, possibly for a simplified version
of the model, and therefore obtain a reasonable initialization of the proposal
distribution. Finally, the standard approach based on Gibbs and Metropolis-
within-Gibbs can be very inefficient, particularly for state space models (see
Fruhwirth-Schnatter 2004).

In all the examples below we adopt the notation x for {x1, ..., xT}.
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6.1 Time-varying parameter autoregressive models

Consider the following time-varying parameter first order autoregressive (AR(1))
process (the extension to a more general autoregressive process is straightfor-
ward):

yt = ct + ρtyt−1 + σεεt (5)

ct = ct−1 + λ0σεut

ρt = ρt−1 + λ1vt,

where εt, ut, vt are all nid(0, 1). The model has three parameters (σ2
ε , λ

2
0, λ

2
1),

while c0 and ρ0 can be treated either as parameters or (our choice) as states.
Given conjugate priors (inverse gamma for the parameters, and normal for c0

and ρ0), Gibbs sampling is straightforward (Carter and Kohn 1994). Fruhwirth-
Schnatter (2004) reports that Gibbs sampling can be very inefficient in these
models. Her assessment is based on inefficiency factors, that is, on the autocor-
relation structure of the draws. In the following application we also find that
the Gibbs draws are highly autocorrelated and, by comparing posterior statis-
tics from Gibbs sampling and from our AIMH, we add that the autocorrelations
do not reveal the full extent of the problem.

6.1.1 Application: US CPI inflation

We apply the model to quarterly U.S. CPI inflation for the period 1960-2005
(184 observations).1 We use rather dispersed inverse gamma priors for σ2

ε , λ
2
0, λ

2
1

with a common shape parameter of 1. The scale parameters are defined by
setting the modes of the priors close to maximum likelihood estimates: σ2

OLS

for σ2
ε (where σ2

OLS is the residual variance from an AR(1) model estimated by
OLS), at 0.01σ2

OLS for λ2
0 and at 0.0012 for λ2

1. The modes of λ2
0 and λ2

1 are
centered at the maximum likelihood estimates to ensure that the bimodality
in the posterior distribution of the log of λ2

1 documented in Figure 4 is not
induced by the prior.

For given parameters, the likelihood is easily computed via the Kalman
filter. It is therefore simple to find the posterior mode, at which the chain is
initialized. Posterior mode values suggest that time variation is nearly absent.

1Annualized quarterly CPI inflation, defined as 400(Pt/Pt−1 − 1), where Pt is aggregated
from monthly data (averages) on Consumer Price Index For All Urban Consumers: All Items,
seasonally adjusted, Series ID CPIAUCSL, Source: U.S. Department of Labor: Bureau of
Labor Statistics.
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Starting with Gibbs sampling, we draw 40 000 times after a burn-in of
5000. The inefficiency factors for the logs of σ2

ε , λ
2
0, and λ2

1, are high (see Table
1). However, the recursive parameter means do seem to settle down (not re-
ported) and the posterior distributions are in line with a normal approximation
taken at the mode, suggesting a persistent AR(1) with little sign of parameter
variation (see Figure 3). It may therefore seem reasonable to assume that the
chain, though mixing slowly, has produced a sample representative of the entire
posterior.

However, the AIMH scheme tells a different story. The proposal is initialized
at a mixture of two normals

g0(z) = 0.5φ(z; µ̂, Σ̂) + 0.5φ(z; µ̂, 16Σ̂),

where µ̂ is the posterior mode and −Σ̂ is the inverse of the Hessian of the
log-posterior evaluated at µ̂. The AIMH soon discovers that the posterior
distribution of log(λ2

1), not to mention λ2
1, is highly non-normal (see Figure 4),

with substantial probability mass around a second mode corresponding to non-
trivial amounts of time variation in ρt and a lower ρ1. In spite of this, the
inefficiency factors are just 6.9, 2.7, and 6.4 (see Table 1).

6.2 Additive semiparametric Gaussian models

In this example we consider a semiparametric regression model with Gaussian
errors, with some of the covariates entering linearly and the others entering
more flexibly. The model is additive, implying that its flexibility does not
extend to interaction effects. Thus, we consider the model

yi =
m∑

j=1

γjzji +
H∑

h=1

fh(xh,i) + σεεi (6)

where εi is nid(0, 1). The z is a vector of regressors that enter linearly and the
xh, h = 1, ..., H are covariates that enter more flexibly by using the quadratic
polynomial spline functions

fh(xh,i) = β0,hxh,i +
J∑

j=1

βh,j(xh,i − x̃h,j)
2
+ (7)

= β0,hxi + gh(xh,i),

where x+ = x if x > 0 and 0 otherwise and {x̃h,1, ..., x̃h,k} are points (or ‘knots’)
on the abscissae of xh such that min(xh) = x̃h,1 < ... < x̃h,J < max(xh). In
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this paper we choose 30 knots so that each interval contains the same number
of observed values of xh. For a discussion of quadratic spline bases and other
ralated bases see chapter 3 of Ruppert, Wand and Carroll (2003). We assume
that a global intercept term is included in z in (6) and for simplicity we include
the parameters βh,0, h = 1, . . . , H in the vector γ and xh, h = 1, . . . , H as
part of the vector z. This transforms the nonparametric model into an highly
parametrized linear model

y = Z̃γ̃ + ε. (8)

The prior for the linear parameters γ can be normal with a diagonal covariance
matirx

γ ∼ N(0, v2
γI),

where vγ can be set to a large number. It is also convenient to assume a normal
prior for the nonparametric part, with all parameters independent and

βh,j ∼ N(0, τ 2
h), , j = 1, ..., J, h = 1, ..., H.

However, with this prior there is a high risk of over-fitting if we simply set τ 2
h

to a large number. The variance τ 2
h is often chosen by cross-validation, but

in a fully Bayesian setting we can treat τ 2
h as a parameter. To illustrate the

advantage of AIMH in working with different priors, we experiment with two
options for the prior τ 2

h . The first prior is log-normal and rather dispersed:

ln(τ 2
h) ∼ N(0, 52),

the second is inverse gamma with shape parameter 1 and scale parameter im-
plied by setting the mode at 0.12. The prior for σ2

ε is inverse gamma with shape
parameter one and scale parameter implied by setting the prior mode at the
OLS residual variance estimated on (8). The prior for γ̃ = (γ, β1, ..., βH) is
therefore jointly normal conditional on τ 2 = {τ 2

1 , .., τ 2
H}

γ̃|τ ∼ N(0, Veγ(τ)),

where

Veγ(τ) =




v2
γI 0 0 0
0 τ 2

1 I 0 0
0 0 .. 0
0 0 0 τ 2

HI


 .

One way to estimate the posterior density of the semiparametric model is to
use Gibbs or Metropolis-within-Gibbs sampling as proposed by Wong and Kohn
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(1996) and Hastie and Tibshirani (2000) (who called it Bayesian backfitting).
Such an approach proceeds as follows. The parameters γ̃ = {γ, β1, ..., βH} are
conjugate given θ = {σ2

ε , τ
2
1 , ..., τ 2

H}, and σ2
ε is conjugate given γ̃. Each variance

τ 2
h can be updated with a Gibbs step for the inverse gamma prior, or with a

Metropolis-Hastings step for the log-normal prior. In this second case, we use
a Laplace approximation of p(ln(τ 2

h)|βh), which is very fast to compute using
analytical derivatives. However, the correlation between τ 2

h and {βh,1, .., βh,J}
could be quite high using either prior for τ 2

h . In addition, using a log normal
prior for τ 2

h leads to high rejection rates in the Metropolis-Hastings step when
generating the τ 2

h . Both problems are elegantly solved using AIMH.
We now show how to update all parameters in one block with an effi-

cient AIMH sampler. We first note that, conditional on θ, γ̃ can be inte-
grated out, making it possible to compute p(θ|y) ∝ p(y|θ)p(θ), where y|θ ∼

N(0, σ2
ε I + Z̃Veγ(τ)Z̃ ′). An efficient method for computing this likelihood is

given in appendix B.

6.2.1 Application: Boston housing data

We use the Gaussian semiparametric model to study the Boston housing data
analyzed semiparametrically by Smith and Kohn (1996). 2 There are 506
observations. The dependent variable is the log of MV , the median value of
owner-occupied homes. We use all 13 available covariates (see Smith and Kohn
or the web-site for a full description) in the linear part and the following six in
the nonparametric part (Smith and Kohn use only the first five):

X5 = NOX, nitrogen oxide concentration,
X6 = RM, average number of rooms,
X8 = DIS, logarithm of the distance from five employment centers,
X10 = TAX, property tax rate,
X13 = STAT, proportion of the population that is lower status,
X1 = CRIM, per capita crime rate by town.

The proposal distribution for the seven parameters θ = {ln(σ2
ε ), ln(τ 2

5 ), ...,
ln(τ 2

1 )} is initialized by fattening the tails of the Laplace approximation. To
find the Laplace approximation, we simply apply Newton-Raphson optimiza-
tion (with numerical derivatives) to ln p(y|θ) + ln p(θ), which involves no extra

2The dataset is available at www.cs.utoronto.ca/˜delve/data/boston.
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coding effort since both distributions are needed to compute the MH accep-
tance ratio. Figure 5 provides results for the case of a log-normal prior on
τ 2
h , h = 1, ..., H. The acceptance rates (all seven parameters updated jointly)

quickly improves and stabilizes at around 60% (see Figure 5). Most parame-
ters are approximately lognormally distributed, except those connected to the
variables TAX and CRIM , which benefit from the added flexibility of mix-
tures. The correlation matrix of the smoothing parameters {ln(τ 2

5 ), ..., ln(τ 2
1 )}

is nearly diagonal. This suggests that the AIMH could handle large numbers of
smoothing parameters efficiently by updating them in blocks (with a different
proposal density estimated adaptively on each block), since the blocks would
be nearly independent of each other.

Table 1 shows that AIMH is about twice as efficient as Gibbs sampling
when both samplers use the inverse gamma prior on τ 2

h , and nine times as
efficient when both samplers use the log-normal prior. Reported results are for
the average inefficiency factor (over both h and i) of fh(xh,i). Looking at the
autocorrelation of the log-parameters gives similar inefficiency ratios.

Boston mean fh(xh,i) Inflation log(σ2
ε ) log(λ2

0) log(λ2
1)

AIMH, IG 3.5 AIMH 6.9 2.7 6.4
Gibbs, IG 6.3 Gibbs 9.4 113.3 156.4
AIMH, LN 2.1
M-Gibbs, LN 18.4

Table 1: Inefficiency factors for semiparametric (Boston) and state space (in-
flation) models. Inefficiency factors in columns, parameters in rows. AIMH
for adaptive independent Metropolis-Hastings. M-Gibbs for Metropolis-within-
Gibbs. IG and LN for inverse gamma and log-normal prior.

6.3 Stochastic volatility models

The simplest stochastic volatility model can be written for mean corrected data
as

yt = e0.5htεt (9)

ht = µ + ρ(ht−1 − µ) + σvt,

where εt is nid(0, 1) and the model parameters are θ = {µ, ρ, σ}. We square
and take logs of the observation equation, and we approximate the distribution
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of ln(ε2
t ), which is the log of a chi-squared 1, by a mixture of normals as in Kim

et al. (1998). The model then has a conditionally Gaussian state space form

ỹt = g(Kt) + ht + G(Kt)ut (10)

ht = µ + ρ(ht−1 − µ) + σvt,

where εt is nid(0, 1), ỹt = ln(y2
t ), and g(Kt) and G(Kt) are known given Kt.

The indicators K can be sampled in one block given θ and h as in Carter and
Kohn (1994). The distribution of θ given h is conjugate, but Kim et al. (1998)
show that θ and h are highly correlated and recommend drawing θ given y
and K but integrating h out. This is accomplished with a Metropolis-Hastings
step, where p(y|K, θ) is computed via the Kalman filter. Since the posterior
mode is not readily available, Kim et al. (1998) use IMH, where the proposal
distribution is calibrated once from draws obtained with a less efficient sampling
scheme. This is less efficient than our scheme and requires coding two different
samplers. An alternative we now explore is to use AIMH from the beginning
of the chain.

6.3.1 Application: USD-GBP daily returns

We analyze daily U.S. dollar - British pound returns (defined as the first dif-
ference of the log of the nominal exchange rate) for the period January 1990 to
March 2004. The parameter µ can be integrated out (see Kim et al. (1998)). To
initialize the proposal distribution, we approximate the distribution of ln(ε2

t ) as
a normal with mean −1.27 and variance 2.222. This gives a standard Gaussian
state space models, for which the Laplace approximation is easily available. We
also use the mode to center the priors for ρ and ln(σ2), which are normal and
disperse. The prior for ρ is truncated at 1. With fattened tails, the initial pro-
posal gives an acceptance rate of around 10%, and it takes only a few hundred
iterations for the acceptance rates to increase to around 50% (see Figure 6).
This number is satisfactory given that the proposal approximates p(θ|y) while
the acceptance probability is computed on p(θ|y, K). (see Figure 6)

7 Conclusion

The key message of this paper is that there is now sufficient theoretical back-
ground on adaptive Metropolis-Hastings to move to the important task of de-
vising efficient and reliable adaptive samplers for important classes of problems.
The most interesting applications arise when current best practice is inefficient
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or cumbersome and, in our opinion, when adaptation starts early. Our article
provides a fast and reliable algorithm which performs well in three interesting
models. Better algorithms can surely be devised. Another promising area for
research is the development of adaptive samplers for conditional distributions
when it is not feasible or desirable to update all the parameters in one block.
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A Appendix: Adaptive sampling scheme

The proposal distribution at iteration n is given by π1g0+π2g̃n+(1−π1−π2)gn,
where g0 is the initial proposal, for example a Laplace approximation (possibly
with fattened tails), gn is the mixture of normals last estimated by the clustering
algorithm, and g̃n is a version of gn with fatter tails: the means and probabilities
of of each cluster are unchanged, the variances are multiplied by a user-defined
scalar k (we use k = 16). In this paper we set π1 = 0.05, and π2 = 0.15. These
values have been found to work well but are not optimal in any well-specified
sense, but the speed of convergence and the efficiency of our sampler could
surely be further improved with a more careful (and possible adaptive) choice
of these parameters. Any other value of k in the range 9-25 and of π1 and π2

in the range 0.05 − 0.3 worked well for the examples given in this paper, and
π1 could be set to 0 without affecting the results.

The distribution gn is a mixture of normals. It is updated at predetermined
numbers of accepted draws. We start updating after 20, 30, 50, 100, 200, 300,
500, 1000, 2000, 3000, 5000 and multiples of 5000 accepted draws, though up-
dating would probably optimally start later unless the acceptance rate from g0

is very low. We also update after a series of more than M consecutive rejec-
tions (excepting the last draw), where M is set to the number of parameters
multiplied by ten, after checking that the MH acceptance probability was lower
than 1% (i.e. that the rejections were due to poor fitting rather than bad luck).

The estimation of the mixture of normals can get slow when the number of
iterations is large. To avoid this problem, after 1000 accepted draws we only
add every j-th draw to the sample used to estimate the mixture parameters,
where j is chosen so that the mixture is not estimated often on more than 10000
observations.

When most parameters are nearly normally distributed, fitting a mixture
of normals to all the parameters is problematic in the sense that the chances
of finding a local mode with all parameters normally distributed is quite high
(though depending on the starting value of course). This is true of clustering
algorithms and also of EM-based algorithms. To improve the performance
of the sampler in these situations, we divide the parameter vector θ into two
groups, θ1 and θ2, where parameters in θ1 are classified as approximately normal
and parameters in θ2 are skewed.3 A normal is then fit to the first group and

3Our rule of thumb is to place a parameter in the ‘normal’ group if its marginal distribution
has |s| < 0.2, where s is the skeweness. Our fattening the tails of the mixture should handle
the kurtosis, though this would optimally be done with mixtures of more flexible distributions

21



a mixture of p normals to the second. For θ1, we can compute the mean
µθ1

and covariance matrix Σθ1
inexpensively from the draws. For θ2, we fit a

mixture of normals as detailed below, estimating probabilities π1, ..., πp, means
µ1, ..., µp, and covariance matrices Σ1, ..., Σp. We then need to build a mixture
for θ = {θ1, θ2}. The mean is straightforward: for the normal parameters,
all components have the same mean. The diagonal blocks of the covariance
matrices Ωi corresponding to var(θ1) and var(θ2) for component i are also
straightforward. The off-diagonal blocks of Ωi, corresponding to cov(θ1, θ2) is
computed as

Ω12
i =

n∑

t=1

π∗

i,t[(θ1,t − µθ1
)(θ2,t − µi)]/

n∑

t=1

π∗

i,t,

where π∗

i,t = prob(Kt = i|θ2,t) is the probability of θ2,t coming from the i-th
component.

A.1 k-harmonic means clustering

We estimate the mixture of normal parameters using the k-harmonic means
clustering algorithm (see Hamerly and Elkan 2002, for a discussion) . The
algorithm runs as follows. Let p be the number of clusters.

1. Initialize the algorithm with c1, ..., cp, the component centers. The start-
ing values are chosen with the procedure of Bradly and Fayyad (1998)
. We depart slightly from Bradley and Fayyad in using the harmonic
k-means algorithm (rather than k-means) in the initialization procedure.

2. For each data point θt, compute a membership function m(ci|θt) and a
weight function w(θt), for t = 1, ..., p. These are defined as

w(θt) =

∑p

i=1 ||θt − ci||
−p−2

(
∑p

i=1 ||θt − ci||−p)2

m(ci|θt) =
||θt − ci||

−p−2

∑p

i=1 ||θt − ci||−p−2
,

where ||θt − ci|| is the Euclidean or Mahalanobis distance. Following
Bradly and Fayyad (1998), we put a lower boundary ε on ||θt − ci|| (to

than the normal.
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avoid degeneracies when trying ||ci−ci||). The membership function soft-
ens the sharp membership of the k-means algorithm, so one observation
can belong to more than one cluster in differing degrees. The weight func-
tion gives more weight to observations that are currently covered poorly
(i.e. that are far from the nearest center).

3. Update each center ci

ci =

∑n

t=1 m(ci|θt)w(θt)θt∑n

t=1 m(ci|θt)w(θt)
.

4. Repeat until convergence. This gives the cluster centers, which we take
as estimates of the component means. The other mixture parameters can
then be estimated for i = 1, ..., k as

Vi =

∑n

t=1 m(ci|θt)w(θt)(θt − ci)(θt − ci)
′

∑n

t=1 m(ci|θt)w(θt)

πi ∝

n∑

t=1

m(ci|θt)w(θt).

5. The number of clusters is chosen with the BIC criterion given a maximum
number (5 in our examples).

We notice that the covariance matrices Vi are only estimated once, after
convergence. k-means type algorithms also differ from the EM algorithm in
that they do not evaluate the likelihood p(θ|c1, ..., π1,V1, ...). This sub-optimal
use of information in fact turns out to be a great advantage for our purposes.
Fewer iterations than for EM are needed for convergence, and each iteration
is faster. Even more importantly, the algorithm does not get stuck in the
small degenerate clusters caused by rejections in the sense that, unlike for the
EM algorithm with freely estimated covariances, these small clusters are not
absorbing. If k-harmonic means does find a degenerate cluster, this causes no
trouble for convergence, and after convergence we can use a predefined matrix
in place of any non-positive-definite covariance matrix (for example, if Vi is not
positive definite we set it to 0.52V ar(θ)). If desired, the mixture parameters can
be refined with a few steps of the EM algorithm. In this case, we recommend
not updating the the covariance matrices for the reasons just discussed.
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B Appendix: Computing the marginal likeli-

hood for the semiparametric Gaussian model

In the semiparametric example of section 6.2 we wish to efficiently compute the
likelihood

y|θ ∼ N(0, σ2
ε I + Z̃Veγ(τ)Z̃ ′). (11)

The employ the QR decomposition to evaluate p(y|θ) quickly. The QR decom-
position of a n × k matrix X returns a n × n matrix Q and a k × k matrix
R such that Q′X = (R′, 0′)′ and Q′Q = I. The decomposition is numerically
stable and is quickly performed even for n in the several thousands, and it
needs computing only once. From (8)

Q′y = Q′Z̃γ̃ + Q′ε,

where ε̃ = Q′ε has covariance σ2
ε I since Q′Q = I. We can therefore write

[
ỹ1

ỹ2

]
=

[
Rγ̃
0

]
+

[
ε̃1

ε̃2

]

and evaluate p(y|θ) as

p(y|θ) = exp(−0.5ỹ′

2ỹ2σ
−2
ε )σ−0.5(n−k)

ε exp(−0.5ỹ′

1V
−1
1 (τ)ỹ1)|V1(τ)|−0.5, (12)

and k is the dimension of γ̃, and where

V1(τ) = σ2
ε I + Veγ(τ).

The evaluation of (12) requires computing the determinant of a k × k matrix
and therefore has computational complexity O(nk).
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Figure 1: Left panel: Proposal distribution after 15 000 iterations, initial-
ized with a normal φ(z;−5, 4). The target density is a univariate mixture
0.5φ(z; 0, 1)+0.3φ(z;−3, 4)+0.2φ(z; 6, 0.5). Right panel: Recursive updates of
the acceptance rate in the last 500 iterations.
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Figure 2: Proposal distribution after 35 000 iterations. The target distribution
is a 15-dimensional mixture. The graph plots the true marginal distributions
for the first and last variable together with the corresponding marginal dis-
tributions implied by the mixture of normals estimated on the full history of
the draws, and with recursive updates of the acceptance rate in the last 500
iterations.
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Figure 3: Inference for a time varying parameter AR(1) model for US inflation
by Gibbs sampling. (a) marginal distribution of ln(λ0) (b) marginal distribution
of ln(λ1) (c) marginal distribution λ1 (d) inflation plot and mean, estimated
as E[(ct/1 − ρt)|y] (e) marginal distribution of ρ0|y (f) E(ct|y) (bold line) and
E(ρt|y).
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Figure 4: Inference for the model of Figure 3 by adaptive IMH. The interpre-
tation of the panels is the same as in figure 3.
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Figure 5: Inference for semiparametric model of housing prices by adaptive
IMH. First row: recursive acceptance rate for the last min(it,500) iterations,
recursive means of ln(τi), marginal of σε. Second and third rows: marginals of
ln(τi). Fourth and fifth rows: means of βix + gi(x).
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Figure 6: Inference for the daily US-GBP exchange rate by AIMH. (a) ex-
change rate returns (b) mean of 0.5 ln(ht) (c) marginal of σv (d) marginal of
0.5 exp(µ) (e) marginal of ρ (f) moving window of the acceptance rate for the
last min(it,500) iterations.
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