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Abstract

Time series subject to parameter shifts of random magnitude and tim-
ing are commonly modeled with a change-point approach using Chib�s
(1998) algorithm to draw the break dates. We outline some advantages of
an alternative approach in which breaks come through mixture distribu-
tions in state innovations, and for which the sampler of Gerlach, Carter
and Kohn (2000) allows reliable and e¢ cient inference. We show how this
approach can be used to (i) model shifts in variance that occur indepen-
dently of shifts in other parameters (ii) draw the break dates e¢ ciently
in change-point and regime-switching models with either Markov or non-
Markov transition probabilities. We extend the proofs given in Carter
and Kohn (1994) and in Gerlach, Carter and Kohn (2000) to state-space
models with system matrices which are functions of lags of the dependent
variables, and we further improve the algorithms in Gerlach, Carter and
Kohn by introducing to the time series literature the concept of adaptive
Metropolis-Hastings sampling for discrete latent variable models. We de-
velop an easily implemented adative algorithm that promises to sizably
reduce computing time in a variety of problems including mixture inno-
vation, change-point, regime-switching, and outlier detection.
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1 Introduction

This paper is concerned with the problem of modeling and inference for processes
subject to random shifts in parameters at unknown dates. The literature on the
topic can be traced back at least to Quandt (1958) and Cherno¤ and Zack
(1964), but has expanded rapidly in recent years because of faster comput-
ers and the availability of powerful new statistical tools for the solution of the
considerable numerical problems involved. Additional incentives have been pro-
vided by Clements and Hendry (1999), who point to failures to detect (or to
properly adjust to) intercept shifts as a main source of forecast failure, and by
Stock and Watson (1996), who document the widespread nature of parameter
instability in linear models of U.S. macroeconomic and �nancial time series.
Traditionally, a majority of papers in this area take a frequentist approach.1

However, in recent years the number of Bayesian alternatives has increased
rapidly, as many authors came to recognize the theoretical and practical advan-
tages of a Bayesian approach for these types of problems. From a theoretical
perspective, it seems desirable for parameter and forecast distributions to re�ect
uncertainty on the number and timing of break-points, rather than being condi-
tioned on modal values. From a practical stance, because the likelihood quickly
becomes intractable as the number of breaks increase2 , frequentists are often
forced to resort to simulation methods similar to those employed by Bayesians,
therefore losing the advantage of simpler implementation enjoyed in other mod-
els.
The Bayesian approach coupled with modern simulation methods makes it

tractable to estimate models with multiple structural breaks. Latent variables
determine the location and nature of the breaks. Conditional on these latent
variables, it is possible to generate the model parameters, while conditional on
the parameters it is possible to generate the latent variables. Such generation
is repeated until an adequate sample is obtained from the posterior distribution
of interest. The most popular Bayesian approach in the econometric literature
on structural breaks follows Chib (1998), who models the breaking process as
a Markov chain with transition probabilities constrained so that regimes come
in a non-reversible sequence. (We refer to this as a �change-point�approach.)
Pesaran, Pettenuzzo, and Timmermann (2004) extend the results in Chib (1998)
by adding a hierarchical level for all parameters. Koop and Potter (2004a,
2004b) make a signi�cant advance by allowing for an unknown number of breaks.

1The frequentist literature on testing for structural breaks is reviewed by Hansen (2001)
and Elliott and Müller(2003).

2See the discussion in Elliott and Müller (2003).



An alternative approach builds on the state-space representation, modeling
the breaking process through mixture distributions for the state innovations.
(We refer to this as a �mixture innovation�approach.) Time-varying-parameter
models with normal innovations in state variables are well-known and easily esti-
mated special cases (see Cogley and Sargent (2001) and Primiceri (2005) for re-
cent Bayesian economic applications), but the general case of several component
distributions presents formidable computational problems. Several approxima-
tions have been proposed, including Harrison and Stevens (1976), Sims (1993)
and Engle and Smith (1999). Markov chain Monte Carlo techniques opened the
way for the exact solutions developed by McCulloch and Tsay (1993), Carter
and Kohn (1994), and Shephard (1994). However, these algorithms are at best
extremely ine¢ cient in the case of relatively infrequent breaks. The reason is
that they draw the discrete latent variables conditional on the states, and in
models with structural breaks the correlation between these two blocks is very
high or even perfect. For models that can be written in conditionally Gaussian
state-space form, the sampling algorithm of Gerlach, Carter and Kohn (2000)
avoids this problem and permits fast and e¢ cient estimation of mixture inno-
vation models.
Our paper makes �ve contributions to the Bayesian literature on structural

breaks. The �rst is to argue that mixture innovations in state variables are often
an intuitive and �exible way of modelling breaks, and that even complex mod-
els can be estimated e¢ ciently with the method of Gerlach, Carter and Kohn
(2000). Mixture innovation models have a number of desirable features, includ-
ing a random number of in-sample breaks, the possibility of jointly modeling
small (and more frequent) and large (and less frequent) breaks, easy inclusion
of innovation and additive outliers, ease of prior elicitation, and the relative
convenience of allowing di¤erent parameters to change at di¤erent times.
The second contribution is to show how to perform e¢ cient inference for

models with breaks in conditional variance, and how to allow breaks in the
parameters of the conditional mean and conditional variance to occur indepen-
dently.
Of course in some instances a change-point approach may still be preferred.

Koop and Potter (2004b) is then an interesting option because it allows for a
random number of breaks. However, it requires O(n2) operations to draw the
break dates with a geometric prior distribution for regime durations, and O(n3)
operations with a Poisson prior (their preferred choice). The third contribution
of our paper is to show how to draw the break-points in the model of Koop and
Potter (2004b) in just O(n) operations with either prior. More generally, we
show how to perform e¢ cient Bayesian inference for state-space models with
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latent variables having non-Markov transition probabilities.
The fourth contribution is to introduce to the time series literature the con-

cept of adaptive Metropolis-Hastings sampling for discrete latent variable mod-
els. We present a simple algorithm which further improves sampling e¢ ciency
(over Gerlach et al., 2000) in a class of discrete latent variable models that
includes change-point, mixture innovation, regime switching, and outlier detec-
tion. The adaptive algorithm uses past draws of the discrete latent variables
to design a proposal distribution for a Metropolis-Hastings step, greatly reduc-
ing computing time spent (and mostly wasted) on observations for which the
presence or absence of a break is rather clear-cut. In two applications to U.S. in-
�ation and real interest rate, this adaptive algorithm reduces computing times
(compared to Algorithm 1 in Gerlach et al. (2000), for a given Monte Carlo
standard error) by over 70% and 60% respectively.
The proofs in Carter and Kohn (1994) and in Gerlach, Carter and Kohn

(2000) do not include models in which the system matrices are functions of
lags of the dependent variables. However, as it turns out, both algorithms still
apply. The �fth contribution of this paper is to show that the proofs generalize
to this class of models. The proofs in Gerlach, Carter and Kohn (2000) are also
extended to the multivariate case.
The paper is organized as follows. Section 2 presents three Bayesian ap-

proaches to structural change, and discusses some advantages of mixture inno-
vation models. In particular, it argues that the method of Gerlach et al. (2000)
solves the computational problems that have so far constrained their use and
development. Section 3 suggests a method to model breaks in variances in con-
ditionally Gaussian form and to combine shifts in conditional mean and variance
parameters. Section 4 shows how the sampler of Gerlach et al. (2000) can be
adapted to draw the break dates in models with non-Markov breaking processes,
using the case of a Poisson prior for regime duration as an example. Section 5
outlines a new adaptive Metropolis-Hastings sampler which promises to further
increase sampling e¢ ciency in a variety of discrete latent variable problems.
Section 6 evaluates the e¢ ciency gains from the new adaptive sampler on mod-
els of U.S. in�ation and real interest rate. Section 7 concludes the paper. An
appendix generalizes the proofs of Carter and Kohn (1994) and Gerlach, Carter
and Kohn (2000).

2 Bayesian approaches to structural change

This section reviews three approaches to modeling structural change: change-
point models, time-varying-parameter models, and mixture innovation models.
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For our purposes, it is useful to cast all these models in a common framework,
writing them in state-space form, with system matrices depending on vectors of
discrete latent variables. The contributions of our article are for conditionally
Gaussian models. Conditionally Gaussian models can be written in linear and
Gaussian state-space form conditional on a vector of latent variables3

yt = gt + h
0
txt + 
tut (1)

xt = ft + Ftxt�1 + �tvt; (2)

where ut � nid(0; 1); vt � nid(0; I)4 and all system matrices at time t are
known conditional on parameters, on lagged values of yt; on exogenous covari-
ates, and on a vector of discrete latent variables Kt. Throughout the paper,
for any variable zt; we de�ne zt1;t2 = (zt1 ; :::; zt2) and z = (z1; :::; zn). The
latent variables are typically assumed to be independent or Markov. Most time
series models take a conditionally Gaussian state-space form, and need not be
Gaussian after integrating out the latent variables. In fact, besides models for
structural change, the most common nonlinear models and several models for
fat-tailed errors are conditionally Gaussian (see Giordani, Kohn and van Dijk,
2005).

2.1 Change-point models with a known number of breaks

A conditionally linear change-point model with a known number of breaks is
de�ned as

yt = �
0

mzt + �mut (3)

�m = �1; �m = �1; for �1 > t � 1
:::

�m = �M�1; �m = �M�1; for �M�1 > t � �M�2

�m = �M ; �m = �M ; for n � t � �M�1;

where ut � nid(0; 1), M -1 is the number of breaks and the unknown para-
meters are (�1; :::; �M ; �1; :::; �M ; �1; :::; �M�1). Chib (1998) obtains large ef-
�ciency gains over previous samplers by framing the change-point problem as

3A note on terminology is in order. Harvey (1989) uses the expression "conditionally
Gaussian" to denote state-space models without indicators, but with system matrices which
are functions of lags of the dependent variables. Shephard (1994), Carter and Kohn (1994)
and Gerlach, Carter and Kohn (2000) call a model conditionally Gaussian if p(y1;njK1;n) is
Gaussian, which does not nest Harvey�s de�nition. The proofs given in the appendix of this
paper extend the results of Carter and Kohn (1994) and Gerlach, Carter and Kohn (2000), so
we can de�ne a model to be conditionally Gaussian if p(ytjy1;t�1;K1;t) is Gaussian.

4 It is possible to allow E(utvt) 6= 0.

5



a switching-regime problem with transition probabilities constrained so that
regimes come in a non-reversible sequence. This model can be written in the
state-space form (1) and (2) by setting Kt = m; gt = �

0
(Kt)zt; 
t = �(Kt);

and modelling Kt as a discrete Markov process with restrictions on the transi-
tion probability matrix. Chib adapts the sampler of Carter and Kohn (1994)
and draws K in O(nM) operations. He also shows how to compute the mar-
ginal likelihood so that the number of breaks can be treated as an unknown
quantity in a model selection or model averaging context. Chib�s method does
not require the measurement equation to be linear or Gaussian, but it does re-
quire the probability of yt to be readily available given parameters �(Kt), and
is therefore impractical for models with time-varying unobserved states such as
measurement errors or seasonal components.

2.2 Change-point models with an unknown number of breaks

Pesaran, Pettenuzzo and Timmermann (2004) generalize the model of Chib
(1998), but retain the assumption of a known number of breaks. Even though
they integrate over the number of breaksM -1 by computing the marginal likeli-
hood for M = 0; 1; :::;Mmax, Koop and Potter (2004a) point out that there are
several drawbacks to this strategy, besides the large computational costs. One
is the di¢ culty in nesting the case of rare, large breaks, and of frequent, smaller
breaks. A second problem is that the need to impose exactly M -1 in-sample
breaks typically implies a prior in which breaks near the end of the sample are
inordinately more likely than at earlier dates.
To avoid these shortcomings, Koop and Potter (2004b) develop a change-

point model with an unknown number of breaks. Letting the number of breaks
be random is not only valuable per se, but also delivers a prior in which all
observations have the same probability of being a break-point. Their key idea is
to model an unknown number of breaks indirectly, by assuming that there are
M regimes but that up to M -1 may occur out of sample. They set M = n and
are therefore able to nest a time-varying-parameter model and a model with few
breaks (given a su¢ ciently di¤use prior on regime duration).
Another innovation in Koop and Potter (2004b) is that regime duration has

a Poisson prior in place of the standard geometric prior. A geometric prior
for regime duration corresponds to the assumption of an independent breaking
process, i.e. p(KtjKs 6=t) = p(Kt), where Kt = 1 if there is a break at time t
and Kt = 0 otherwise. The geometric distribution implies that, for any j > 1,
durations of j are more likely than durations of j+1, a feature of the prior that
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is relaxed in Koop and Potter (2004b).5

Koop and Potter (2004b) draw the break dates conditional on parameters
by adapting the algorithm of Chib (1998). Chib�s algorithm, originally designed
for a geometric prior on duration, requires O(nM) operations to draw all break
points. Koop and Potter set M = n, resulting in O(n2) operations. Transition
probabilities are constant for a geometric distribution, whereas they depend
on the distance from the last break for a Poisson. The choice of a Poisson prior
therefore requires averaging over durations in computing transition probabilities,
leading to O(n3) operations, which limits the use of what is otherwise a �exible
model. Section 4 shows how break points can be drawn in O(n) operations by
adapting the sampling algorithm of Gerlach et al. (2000) rather than that of
Chib (1998).

2.3 Time varying parameter models

Time-varying-parameter (TVP) models are written in the state-space form (1)
and (2) with constant system matrices. Parameter variation comes through nor-
mal innovations in the transition equations. These models have a long tradition
(West and Harrison (1997) is a classic Bayesian reference). Recent examples in
economics include Cogley and Sargent (2001) and Primiceri (2005). Inference
by Gibbs sampling is relatively straightforward, as a number of algorithms are
available to draw the states conditional on parameters (including Carter and
Kohn (1994), Fruhwirth-Schnatter (1994), de Jong and Shephard (1995) and
Durbin and Koopman, 2002). The limitation of TVP models is that they are
designed for smooth and frequent parameter variation and cannot e¤ectively
cope with infrequent interventions. Both types of breaks can be captured by
mixture innovation models.

2.4 Mixture innovation models

Mixture innovation models are very general because they allow all system ma-
trices in (1) and (2) to depend on Kt. Parameter shifts are typically modeled
by letting �t�

0

t (the covariance matrix of innovations to the states) depend on

5Koop and Potter (2004a) also show that prior regime duration remains approximately
geometric if Kt is Markov. The idea of departing from a geometric distribution is not un-
controversial, though. Gelman et al. (1995, page 52) �nd that the geometric distribution�s
"�memoryless�property makes it a natural model for survival or lifetime data". Moreover, we
note that the use of a Poisson prior may be questionable when breaks are thought to be (or
turn out to be) relatively rare. For example, suppose that breaks occur every twenty years on
average. On monthly data that corresponds to � = 240, which implies a standard deviation
of
p
240 ' 15:5; or a little over a year. The Poisson prior therefore restricts infrequent breaks

to recur with greater regularity than is probably prudent to assume.
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Kt: To illustrate, consider the simple example

yt = �t + �uut (4)

�t = �t�1 +Kt�vvt;

where Kt is an independent sequence of Bernoulli variables, with

Kt = 1 with probability �

Kt = 0 with probability 1� �;

and ut and vt are both nid(0; 1): This model can be written in terms of (1)
and (2) by setting gt = 0, ht = 1; 
t = �u, ft = 0, Ft = 1, �t = �vKt. At
each new observation, there is a probability � of a break; if there is a break,
the change in the mean of the process is normally distributed with mean zero
and standard deviation �v. The number of in-sample breaks is random, with
prior distribution de�ned by � (possibly a random variable itself). Prior regime
duration is geometric, with mean (1��)=� and standard deviation

p
(1� �)=�.6

This approach to structural change has a number of advantages over the
change-point approach:

1. It is an intuitively simple way of allowing for random number and size of
breaks, which facilitates prior elicitation.

2. Computational costs are linear in the number of values that Kt can take.
This gives the modeler great �exibility. For example, we may wish to
capture the idea that the mean of a process is unchanged in some peri-
ods, while in others it incurs small but relatively frequent and large but
infrequent breaks. This can be achieved by setting

�v(Kt = K
i) = �vi ; prob(Kt = K

i) = �i for i = 1; 2; 3;

with �v1 = 0; and a prior for which �v3 � �v2 and �2 � �3: This is a gen-
eral and intuitive way of nesting TVP models and models with infrequent
breaks.7

3. It is just as easy to assume that parameters in di¤erent regimes (i) are
drawn from a common distribution, as in Chib (1998) and Pesaran et al.

6Notice that a geometric distribution with mean � has standard deviation close to �,
whereas a Poisson distribution with mean � has standard deviation

p
�: When � is relatively

large, the two priors have very di¤erent implications for the regularity of occurrences of breaks.
7Koop and Potter (2004b) also nest a TVP model and a model with few breaks, given a

su¢ ciently sparse prior on durations. However, mixture innovations are more general in that
they allow to combine (rather than choose from) these two options.
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(2004) (ii) depend only on parameters in the previous regime, as in Koop
and Potter (2004b) and in most TVP and mixture innovation applications,
or (iii) are a mixture of (i) and (ii). Referring to equation (4), the �rst
case can be modelled as

�t = mKt + �t�1(1�Kt) +Kt�vvt; (5)

where Kt is either 0 or 1: To nest both cases, write

�t = mK1t + �t�1(1�K1t) + (K1t�1v +K2t�2v)vt; (6)

where Kt = (K1t;K2t); Kt = (0; 0) for no break, and Kt = (1; 0) and
(0; 1) for a break with �tjKt independent and a random walk respectively.

4. It is a convenient framework to allow di¤erent parameters to change at dif-
ferent times. Change-point models invariably assume that all parameters
change at the same time (unless some are forced to be constant). With-
out this restriction, a change-point model would have Mp regimes to keep
track of, where M -1 is the maximum number of breaks in each parameter
and p is the number of parameters that are allowed to change, implying
at least O(nMp) operations to draw the break dates. In contrast, if we let
Kit 2 f0; 1g denote the absence or presence of a break in parameter i at
time t, then Kt = (K1t; :::;Kpt) can take 2p values, so K can be drawn in
O(n2p) operations regardless of the number of breaks (see Section 2.4.1).

5. It is a convenient framework to allow shifts in variance and in conditional
mean parameters to occur independently (see Section 3).

6. It is a convenient framework to model breaks and outliers jointly. This can
be important, as innovation and (especially) additive outliers may both
hide actual breaks and spuriously indicate non-existing breaks, particu-
larly in real-time forecasting.

7. While sampling schemes for multiple change-point models draw the break
dates conditional on all parameters, in a mixture innovation approach most
parameters can be treated as states and integrated out, which increases
sampling e¢ ciency. For example, referring to the model given by (3), we
would write

yt = �
0

tzt + �tut

�t = �t�1 +Kt�vvt;

treat �t as the state vector and integrate it out when drawing Kt (see
Section 2.4.1).
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Finally, it is worth noting that mixture innovations can be combined with
regime-switching and change-points (see Giordani et al. (2005) for an example),
and that transition and break probabilities can be related to exogenous variables
(see McCulloch and Tsay, 1993).

2.4.1 Sampling K in mixture innovation models

Mixture innovation models have been the subject of considerable study8 , but
until the mid-90s exact solutions were available only for the simplest cases and at
great computational expense. Several approximations were proposed, including
Harrison and Stevens (1976), Sims (1993) and Engle and Smith (1999). Markov
chain Monte Carlo techniques opened the way for the exact solutions developed
by McCulloch and Tsay (1993), Carter and Kohn (1994), and Shephard (1994).
However, the algorithms proposed by Carter and Kohn (1994) and Shephard
(1994) draw the auxiliary variables K conditional on the states x: In the case
of structural breaks or additive outliers, K and x are highly correlated, mak-
ing these samplers very ine¢ cient. Often, as in the model given in (4), the
correlation is perfect, and the samplers break down completely (see Gerlach et
al., 2000). McCulloch and Tsay (1993) reduce the severity of this problem by
drawing Kt conditional on the error vt rather than on the state xt, but their
sampler remains rather ine¢ cient (Gerlach et al., 2000). Gerlach et al. (2000)
develop an algorithm for conditionally Gaussian processes that drawsK without
conditioning on x, and therefore retains a high degree of e¢ ciency regardless of
the correlation between K and x.
The �rst contribution of Gerlach et al. (2000) is to draw K from

p(Ktjy;Ks 6=t; �) / p(yt;njy1;t�1;K; �)p(KtjKs 6=t; �); (7)

where the states have been integrated out (rather than conditioned on) and �
is the vector of parameters. For a given proposed value of Kt, p(KtjKs 6=t; �)

is evaluated from the transition probabilities, and p(yt;njy1;t�1;K; �) can be
computed with the Kalman �lter in conditionally Gaussian models. Evaluating
p(yt;njy1;t�1;K; �) through the Kalman �lter is straightforward, but requires
O(n) operations, implying O(n2) operations to draw K. Gerlach et al. (2000)�s
second contribution is to provide an algorithm to evaluate p(yt;njy1;t�1;K; �) in
one step and thus to draw K in O(n) operations. Since Kt takes a �nite number
of values, it can be drawn by computing p(Ktjy;Ks 6=t; �) for all possible values
of Kt and then normalizing. The computing time is then linear in both n and

8Harrison and Stevens (1976) call them multiprocess models. See also Kitagawa (1987).
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in the number of elements in the mixture (the number of values that Kt can
take).

3 Breaks in conditional variance

A mixture innovation approach can also be used to model variance shifts, as �rst
shown by McCulloch and Tsay (1993). Their algorithm draws K conditional
on the states and is therefore ine¢ cient. Drawing K without conditioning on
the states as in Gerlach et al. (2000) is preferable. However, because squared
residuals are not normal, it would seem that their algorithm is unsuitable for
variance shifts. This problem is overcome as follows. We begin by considering
shifts in variance in an otherwise white noise process, and then show how to
combine shifts in variance with shifts in other parameters.

Modeling shifts in variance. Let yt be a zero-mean, uncorrelated ran-
dom variable such that

yt = �t�t; (8)

where �t is standard normal. Then log(y2t ) = log(�
2
t ) + ut; where ut is log(�

2
1)

distributed. Following the stochastic volatility literature, we work with log(�2t );
ensuring that �2t is always positive. It is then natural to model permanent shifts
in �2t as

log(�2t ) = log(�
2
t�1) + �v(K2;t)vt; (9)

where vt is a standard normal random variable. If K2t takes only one value the
model reduces to smoothly changing variances of the type used by Primiceri
(forthcoming). In Section 6 we set �v(K2;t = 0) = 0 and �v(K2;t = 1) = �

�
v > 0

with a prior favouring infrequent shifts. More elements can be added to the
mixture, for example to allow for both smooth and sudden shifts in variance,
analogously to the case of shifts in conditional mean parameters.
We follow Carter and Kohn (1993 and 1997), Shephard (1994) and Kim et

al. (1998), who observe that the distribution of a log(�21) can be very accurately
approximated by a mixture of normals with few components. (Carter and Kohn
(1997) use �ve, Kim et al. (1998) seven.9) We can then write the model in
conditionally Gaussian state-space form

zt = g(K1;t) + ht + 
(K1;t)�t (10)

ht = ht�1 + �v(K2;t)vt;

9Both papers report all parameters of the mixture. We use the parameters from Carter
and Kohn (1997).
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where zt = log(y2t ); ht = log(�
2
t ); and �t and vt are standard normal. The mean

and standard deviation of each component of the mixture approximating the
distribution of ut determine g(K1;t) and 
(K1;t) respectively, so these matrices
contain no unknown parameters. The prior probabilities �i of each component
are also known. Thus

p(ut) '
IX
i

�iN(gi; 

2
i );

where N(gi; 
2i ) is the normal density with mean gi and variance 

2
i .

Shifts in conditional �rst and second moments. We use the following
sampling scheme to deal with shifts in both the conditional mean and conditional
variance parameters:

1. Initialize the sampler with a time series of conditional standard deviations
�1;n (for example �1 = �2 = ::: = �n).

2. Given �1;n; the model is conditionally Gaussian. Draw interventions Km

as in Gerlach et al. (2000) or with the adaptive Metropolis-Hastings sam-
pler described in Section 5. Conditional onKm; draw the states x with any
of the algorithms mentioned in Section 2.3. Conditional on y;Km and x;
compute residuals rt. The de�nition of residuals is such that std(rt) = �t:

3. Model interventions in log(r2t ) as explained above in this section. Referring
to equation (10), draw Kv = (K1;n

1 ;K1;n
2 ): Given Kv; draw log

�
�2t
�
for

t = 1; ::; n with the same algorithms used to draw x in step (2).

4. Go to (2).

In going from (2) to (3), the most convenient assumption is that that shifts
in conditional variance (second block) are independent of shifts in conditional
mean parameters (�rst block). It is possible to have a prior relating probabilities
of interventions in the �rst and second block, but some care is required as an
overly tight prior may induce a nearly reducible chain. Innovation and additive
outliers are drawn in the �rst block and accounted for in computing the residuals
used in the second block (see Section 6 for an example), therefore reducing the
risk of isolated outliers being interpreted as variance shifts.

4 Non-Markov breaking processes

This sections shows how to adapt the algorithm of Gerlach et al. (2000) whenKt

is not Markov, and how this allows drawing the break dates in O(n) operations
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in the change-point model of Koop and Potter (2004b) with a Poisson prior on
regime durations.
Although Gerlach et al. (2000) work with Markov interventions, their key

results do not require this assumption. In particular, the algorithm to draw
p(yt;njK) in one step does not rely on Kt being Markov, as all operations are
conditioned on K, and it is therefore suitable for any breaking process as long as
it is possible to evaluate p(KtjKs 6=t; �) (or p(Kj�) / p(KtjKs 6=t; ; �)). The inde-
pendence and Markov assumptions are simply the most convenient to perform
this evaluation.

4.1 Poisson prior for regime duration

Following Koop and Potter (2004b), assume that regime duration follows a
Poisson distribution. The duration of regime m is de�ned as dm = �m+1 � �m,
where �m+1 and �m are adjacent break dates. They then assume that dm � 1
is Poisson distributed Po(�) with parameter �:10 We now show how to draw K
in mixture innovation models with a Poisson prior for durations, and then how
the same technique can be used to draw break dates in the change-point model
of Koop and Potter (2004b). In both cases, only O(n) operations are required
for conditionally Gaussian models.

4.1.1 Drawing K

Let Kt = 1 (Kt = 0) stand for the presence (absence) of a break at time t. We
want to evaluate p(KtjKs 6=t)� where the dependence on parameters � has been
dropped for convenience� when durations are Poisson distributed with known
parameter �. Assuming that there is at least one break both before and after t,
the probability of a break at t is given by

p(Kt = 1jKs 6=t) = p(d1t)p(d2t);

where d1t and d2t are regime durations, de�ned as the number of periods between
two adjacent breaks

d1t = min(t� �1; t > �1;K�1 = 1)

d2t = min(�2 � t; t < �2;K�2 = 1);

and the probability of no break at t is given by

p(Kt = 0jKs 6=t) = p(d3t);

10Koop and Potter (2004b) use a hierarchial prior to allow the mean duration � to depend
on m. For our purposes, we can assume a single � with no loss of generality.
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where d3t is the number of periods between the last break before period t and
the �rst break after period t

d3t = min(�2 � �1; �2 > t > �1; K�1 = K�2 = 1):

Finally, p(dit); where i = 1; 2; 3, is evaluated as

p(dit) /
exp(��)�dit�1

(dit � 1)!
:

The only slight complication arises when there is no in-sample break either
before or after t. A simple but unsatisfactory solution is to assume K0 =

Kn+1 = 1. To illustrate a better solution, keep the assumption K0 = 1 (simply
for convenience of exposition). Initialize the algorithm with an arbitrary value
of n�, such as n� = n+ 1, where

n� = min(� ; � > n; K� = 1):

Given n�, sequentially update K1; :::;Kn as described above. n� is then easily
updated from the prior conditional on n � � l; where � l is the last in-sample
break date.

4.1.2 Application to Koop and Potter (2004b)

Referring to equation (7), having shown how to evaluate p(Ktjy;Ks 6=t; �) with
a Poisson prior on duration, we can use Gerlach et al. (2000) to compute
p(yt;njK; �) in one step if the model is conditionally Gaussian.11 To illus-
trate, consider a simpli�ed version of the benchmark model in Koop and Potter
(2004b):

yt = �
0

mzt + �mut

�m = �m�1 + �
�
t

ln(�m) = ln(�m�1) + �
�
t

var(�t) = 1, var(��t ) = 
� , var(�
�
t ) = !�;

where dm � 1 � Po(�) and other priors can be omitted for our purposes. Koop
and Potter draw all parameters conditional on the regimes and then the regimes
conditional on the parameter sub-set � = (�1; :::; �m; �1; :::; �m; �): If we frame
the problem as one of drawing break dates rather than regimes, then, conditional

11Non-Gaussian change-point models include Chib (1998) and Koop and Potter (2004a).
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on � and on the break dates, the model can be written as (1)-(2) with all system
matrices known, by setting

gt = �
0

mzt; ht = 0; 
t = �m:

This completes the description of how to draw K in O(n) operations using the
sampler of Gerlach et al. (2000).

5 AdaptiveMetropolis-Hastings sampling for dis-
crete latent variable models

5.1 Discussion

This section describes a new adaptive sampler that speeds up the drawing of
K. Since this is, to the best of our knowledge, the �rst application of adaptive
sampling for discrete latent variables in a time series context, the main ideas
are discussed in some detail. Because the discussion is in terms of drawing
K in a conditionally Gaussian model, the methods developed in this section
are applicable to mixture innovation models as well as regime switching and
multiple change-point models with unobserved states and to the change-point
model with unknown number of breaks of Koop and Potter (2004b). Moreover,
they are ideally suited to detect outliers in both time series and cross sectional
data.
The key idea of adaptive sampling is to use previous draws to form e¢ cient

proposal distributions for the application of the Metropolis-Hastings method.
Precursors to full adaptive sampling limited this learning process to a subset of
the burn-in period. This guarantees that the chain is Markov, and hence that
the standard convergence properties of Metropolis-Hastings are una¤ected by
the initial learning period. A fully adaptive sampler, however, does not limit
the learning to the burn-in period. Because the proposal distribution is no
longer constant, but rather depends on the history of the draws, the resulting
chain is not Markov, so the usual proof of ergodicity of the Metropolis-Hastings
algorithm no longer applies. Establishing the properties of an adaptive MH
sampler is a rather complex problem. Recent progress has been made by Gilks,
Roberts and Sahu (1998), Haario, Saksamn and Tamminen (2001), Atchadé and
Rosenthal (2003), and Nott and Kohn (forthcoming).
In particular, Nott and Kohn (forthcoming) establish conditions for the va-

lidity of an adaptive sampling scheme for discrete distributions. However, their
argument is also valid for a compact space and so can be applied by suitably
truncating the priors on the unknown parameters and states without a¤ecting
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practical performance. Adaptation needs to be implemented with care to en-
sure ergodicity. Loosely speaking, the main requirements are that we use the
entire history of draws rather than a moving window and that we constrain
the proposal distribution so that no event in the sample space of K has zero
probability.
The traditional use of partially (limited to the burn-in) adaptive schemes is

to gain some knowledge of a non-standard distribution. Adaptive algorithms
can of course be used to increase sampling e¢ ciency in this case. However,
the intuition of Nott and Kohn (forthcoming), which we extend to our time-
series framework, is that an adaptive Metropolis-Hastings algorithm can increase
sampling e¢ ciency even when direct sampling from the distribution of interest
is possible. The key idea is to use information coming from the history of the
draws to cheaply draw from an approximation rather than expensively draw
from the exact distribution. The approximation is then used as the proposal
distribution in a Metropolis-Hastings step.
The general problem of detecting regimes and interventions in time series

models is ideally suited to incorporate these ideas, because (i) the distribu-
tion of (KtjY;Ks 6=t) is expensive to compute, particularly when the number of
interventions is random (ii) in most periods, most of the probability mass is
concentrated in a small sub-set of the sample space of Kt. For example, during
the running of the chain, for many observations it soon becomes clear whether
a break in that period is likely or unlikely, or if the observation belongs to, say,
regime one or two. Sizable computational gains are therefore possible by incor-
porating this information into a proposal distribution for a Metropolis-Hastings
algorithm, rather than drawing Kt from the exact but computationally expen-
sive distribution.

5.2 Sampling algorithm

We now present our adaptive Metropolis-Hastings (MH) sampling algorithm to
draw K e¢ ciently. The algorithm is �rst stated and then discussed.

1. For m = 1; :::; d; generate K(m) (the m-th draw of K) using the algorithm
of Gerlach et al. (2000). After drawing each K(m); update all the model
parameters.

2. For m = d + 1; :::;M (where M is the total number of iterations), carry
out (a)-(c) for t = 1; :::; n; and then (d):

(a) Using past draws K(1); :::;K(m�2); compute the percentage of Kt =

Ki for i = 1; :::; J; where J is the number of values that Kt can take.
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Call each percentage pi;t.

(b) De�ne �it = max(min(pit; 1��); �); for i = 1; :::; J; where � > 0 (e.g.
0:01 or 0:02). Then normalize �it so that

PJ
i=1 �it = 1. Draw P 2

f1; :::; Jg from a multinomial density with parameters f�1t; :::; �Jtg.
Given P; form KP :

(c) Let C be the current indicator of Kt, that is, KC = K
(m�1)
t : We

accept K(m)
t = KP with probability min(1; p); where

p =
p(Kt = K

P jy;Ks 6=t)

p(Kt = KC jy;Ks 6=t)

�Ct
�Pt

;

and p(Kt = K
P jy;Ks 6=t) can be computed e¢ ciently using the method

of Gerlach et al. (2000), and (crucially) no computation is required
whenever KP = KC .

(d) Update all model parameters.

We note that adaptation is carried out only on the latent variables Kt and
not on the other parameters and variables in the model.
The learning mechanism outlined in step 2.a has two characteristics that

ensure ergodicity: (i) an expanding (rather than �xed) window of draws (ii) a
proposal distribution built with information up tom-2 only (K(m�1) is available
but not used). The percentages mentioned in step 2.a may be updated at each
iteration or only infrequently (we update them every 50 iterations). In step 2.b,
a strictly positive constant � ensures that we can draw with positive probability
even those interventions that have not been drawn before (thus ensuring that
the sampling scheme does not become reducible). Crucially, for a large propor-
tion of the observations the multinomial density (�1t; :::; �Jt) typically assigns
most of the probability mass to one or a few outcomes. For example, for most
observations the probability of an outlier is either close to zero or to one. The
probability of a break at t is rarely close to one, but is often very small. The
proposal distribution built in 2.b is used in 2.c in a Metropolis-Hastings step.

5.3 Assessing e¢ ciency gains

The e¢ ciency gains of our adaptive MH sampler are likely to be larger when
interventions are relatively rare (as for breaks) and/or relatively clear-cut (as
for outliers and, in some cases, regime-switching), since then the large majority
of proposals is of the type KP = KC , and hence no calculation is required in
step 2:c: Computational gains are also likely to increase when J is large. To say
more, we need to specify a model, a data-set and a prior, as the e¢ ciency of our
adaptive MH sampler can only be evaluated numerically.
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Since the number of objects of interest (including K) is high, we summarize
sample draws through the distributions of selected parameters and of the states
at t = 1: Denoting by �mi the m-th draw of parameter i, we compare Algorithm
1 in Gerlach et al. (2000) with our adaptive MH sampler by (i) con�rming that
they lead to the same posterior inference, summarized by �i = (

PM
m=1 �

m
i )=M

and b�i2 = [PM
m=1(�

m
i ��i)2]=M; and (ii) comparing their relative e¢ ciency. Par

(ii) is done as follows: An estimate of the variance of �i is

var(�i) =
b�i2
M
[1 + 2

RX
i=1

(1� j

M
)b�i(j)];

where b�i(j) = dcorr(�mi ; �m�ji ) and the truncation point R is such that b�i(j) ' 0
for j > R: Assuming that M is su¢ ciently large, b�i2 is the same for both
samplers. The term in square parenthesis is the ine¢ ciency factor (IF). An
independent sampler has unit ine¢ ciency factor. We can couple the ine¢ ciency
factor with the running time of the two sampling schemes to obtain a measure of
the relative e¢ ciency of the adaptive scheme. The number of iterations needed
for the adaptive scheme to have the same var(�i) as the non-adaptive scheme is
given by the ratio of the ine¢ ciency factors. We can then multiply this number
by the ratio of computing time (CT) to obtain a measure of the relative e¢ ciency
of the adaptive Metropolis-Hastings sampler:

Relative e¢ ciency =
CT non-adaptive
CT adaptive

IF non-adaptive
IF adaptive

:

6 E¢ ciency gains in models of U.S. real interest
rate and in�ation

This section computes relative e¢ ciencies in two applications to U.S. real inter-
est rate and in�ation. The models are meant to illustrate the mixture innovation
approach to structural breaks and to evaluate the e¢ ciency of the adaptive sam-
pler rather than to provide a thorough empirical analysis of the two series.
In both cases 20000 iterations are used, with a burn-in of 100.12 The �rst

100 iterations are always performed with Algorithm 1 in Gerlach et al. (2000).
After 100 iterations we either continue to use the same algorithm or switch to
the adaptive Metropolis-Hastings sampler, with � = 0:01:

12The burn-in may seem low, but in our experience convergence to the stationary distribu-
tion occurs very quickly in this type of model using Algorithm 1 in Gerlach et al. (2000).
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6.1 Mean shifts in the U.S. real interest rate

U.S. real interest rates have attracted considerable attention in the multiple
change-point literature because they seem to display several sharp shifts in
mean, at least in a univariate context (Bai and Perron, 1998). The data are
quarterly from 1952Q1 to 2004Q413 . We consider an AR(1) model with �xed
autoregressive coe¢ cient and �xed residual variance, time variation modeled
directly in the mean of the process rather than in the intercept, and additive
outliers

yt = y�t + �eKv;tvt (11)

y�t = �t + �(y
�
t�1 � �t�1) + �eet

�t = �t�1 + �eK�;tut

p(Kt) = p(KtjKs 6=t);

whereKt = (Kv;t;K�;t): Additive outliers are modelled by lettingKv;t 2 f0; gvg
and breaks in mean by letting K�;t 2 f0; g�1 ; g�2g; where (gv; g�1 ; g�2) are ran-
dom. In total, Kt can take the four values (for given gv; g�1 ; g�2), shown in
Table 1.
The priors for (g2v ; g

2
�1
; g2�2) are inverse gamma

g2i � IG(Si; ni);

where i 2 fv; �1; �2g; ni = 5 and
p
Sv=nv = 2:5;

p
S�1=n�1 = 1;

p
S�2=n�2 =

3: These priors are not very tight, but they do not try to be di¤use either. As
shown in McCulloch (2000), being uninformative or nearly uninformative on the
size of breaks ends up placing most prior probability on extremely large breaks,
with the result that no break is ever found. Conversely, di¤use priors on the
frequency of breaks place considerable probability on very frequent breaks, and
therefore carry a large risk of over-�tting.
Letting �i be the prior probability that Kt = K

i; the prior distribution for
(�1; �2; �3; �4) is Dirichelet

p(�1; �2; �3; �4) � D(n0��1; :::; n0��4);

where n0 can be interpreted as the number of prior observations (the tightness

13The nominal interest rate is the yield on three months government bonds, secondary
market. In�ation is CPI in�ation for urban consumers, all items, seasonally adjusted. Both
series are from the database FRED II (http://research.stlouisfed.org/fred2), aggregated from
monthly data.
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of the prior), and (��1; :::; �
�
4) as their relative frequencies (the prior mean).

14

To emphasize the strength of the evidence of mean shifts, we impose a tight
prior of extremely infrequent breaks: n0 = 1000; and the prior probabilities
of K� = g�1 and K� = g�2 are both just 0.1%, implying an average regime
duration of 125 years. In spite of such tight priors, posterior distributions show
rather clear evidence of four mean shifts, corresponding closely with common
historical interpretations of the data: low real interest rates during the in�ation
of the 70s, then a sudden increase with the Volcker de�ation, and after a few
years a return to lower values. Once mean shifts are taken into account, the
real interest rate displays little persistence: Table 1 and Figure 1 show that the
posterior mean of the autoregressive coe¢ cient � is only 0:35:
Table 3 shows that the relative e¢ ciencies of the MH sampler for �1; � and �e

are 3.13, 3.64, and 3.47 respectively. That is, on average, the adaptive sampling
scheme reaches a given Monte Carlo standard error in about 29% of the time
required by Algorithm 1 in Gerlach et al. (2000). The adaptive scheme is a
bit less e¢ cient per iteration, but the e¢ ciency loss is compensated for by the
increase in speed.

6.2 Changing mean, dynamics and volatility in U.S. in�a-
tion

Several studies (see, for example, Nelson and Piger, 2002) have suggested the
presence of structural breaks in the mean of U.S. in�ation.15 Moreover, there
is some statistical evidence and some economic theory to support the non-
constancy of in�ation persistence over long time periods (Akerlof et al. (2000),
Christiano and Fitzgerald, 2003). However, other researchers have found little
variation in either the intercept or autoregressive coe¢ cients of AR models for
U.S. in�ation, but strong evidence of changes in residual variance (for example,
Primiceri (forthcoming), and Koop and Potter, 2004b).
We model quarterly U.S. CPI16 in�ation for the period 1951Q1-2004Q4 as

an AR(1) process with random breaks in intercept, autoregressive parameter,
and residual variance as:

14The posterior distribution of g2v ; g
2
�1
; g2�; given �� is inverse gamma. See Giordani et al.

(2005) for details.
15This statement implictly assumes a linear reference model. Sargent (1999) is an example

of a non-linear model in which shifts in the mean and dynamics of in�ation arise endogenously,
a reminder that the presence or absence of structural breaks can only be evaluated in relation
to a model.
16Consumer Price Index for all urban consumers (all items), from the database Fred II,

series ID: CPIAUCSL, seasonally adjusted. CPI aggregated from monthly data (averages)
and in�ation de�ned as 400( CPIt

CPIt�1
� 1).
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yt = ct + btyt�1 + �tKe;tet (12)

ct = ct�1 +Kc;tu
c
t

bt = bt�1 +Kb;tu
b
t

log(�2t ) = log(�2t�1) +Kv;tvt

p(Kt) � p(Km;t;Kv;t) = p(Km;t)p(Kv;t) = p(KtjKs 6=t);

where Km;t = (Ke;t;Kc;t;Kb;t). The latent variable Ke;t can take the values
(1; 2:5); where 1 is a standard observation and 2:5 an innovation outlier; Kc;t can
take the values (0; 0:2; 1) and Kb;t can take the values (0; 0:5). For ease of inter-
pretation, we assume that a break and an outlier cannot occur simultaneously,
but we do allow breaks in ct and bt to occur both separately and jointly. This
last feature seems new to the literature. As discussed in Section 2.4, extending
change-point models to relax the assumption that all parameters break at the
same time is straightforward in principle, but problematic in practice, whereas
in our case the increased computational burden is small. In total, the vector
Km;t can take seven values (refer to Table 2). Kv;t can take the values (0; 1:39);
�t = �t�1 for Kv;t = 0; while Kv;t = 1:39 and vt = 1 (�1) imply �t=�t�1 ' 2
(�t=�t�1 ' 0:5):
The prior probabilities of interventions are �xed and re�ect the assumption

that breaks in any parameter are rare (the combined probability of a break in
ct and/or bt is 1%, so the prior mean interval between breaks is 25 years; the
probability of a break in variance is also 1%). Priors on all the other parameters
are conditionally conjugate but di¤use, and centered on OLS values.
The results are summarized in Figure 2. The rise in in�ation in the late

sixties and seventies is captured by an increase in both coe¢ cients, whereas
the falling in�ation of the eighties leaves the constant nearly una¤ected but
corresponds to a large and sudden decrease in persistence. In�ation persistence
is a positive function of the in�ation level, as observed by Akerlof et al. (2000).
The conditional standard deviation shows marked changes during the sample,
which are also strongly correlated with the in�ation level.17

Table 3 shows that the relative e¢ ciencies of the MH sampler for c1; b1; and
�1 are 1.94, 2.82, and 2.94 respectively.

17This �nding is hardly surprising. There is conclusive evidence that in�ation is less fore-
castable at higher levels (see Giordani and Söderlind (2003) for a recent discussion).
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7 Conclusion

Koop and Potter (2004a and 2004b) convincingly illustrate the advantages of
allowing for a random number of breaks in change-point models. Our article
argues that a mixture innovation approach is often a more natural and general
way of achieving the same goal, and that fast and reliable estimation of con-
ditionally Gaussian mixture innovation models is possible using the algorithm
of Gerlach et al. (2000). The sampler of Chib (1998) is e¢ cient when the
number of break-points is known, but can otherwise involve dramatically higher
computational costs.
Our article also introduces to the time series literature the concept of adap-

tive Metropolis-Hastings sampling for discrete latent variable problems. A sim-
ple adaptive scheme produces large e¢ ciency gains (arising from reduced com-
puting times) in two empirical applications to models with outliers and shifts in
both conditional mean and conditional variance parameters. When considering
the generality and simplicity of the sampler and the small additional program-
ming costs required, these e¢ ciency gains suggest that adaptive Metropolis-
Hastings for discrete latent variable models should prove a fruitful concept in
time series.
Acknowledgments. The work of Paolo Giordani was mostly carried out

at the University of New South Wales. The work of Robert Kohn was partially
supported by an Australian Research Council Grant on mixture models.
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A Carter and Kohn (1994) and Gerlach, Carter
and Kohn (2000) when system matrices de-
pend on lagged observations.

A.1 Gerlach, Carter and Kohn (2000).

We extend the proof in Gerlach, Carter and Kohn (2000), henceforth GCK, to
show that their algorithm to draw the indicators fK1; : : : ;Kng in O(n) oper-
ations can still be applied if the system matrices are functions of lags of the
dependent variable. We also write all formulas assuming that yt is a vector,
rather than a scalar as in GCK.
For any variable zt; let zt;s = fzt; : : : ; zsg, and z = fz1; : : : ; zng. Consider

the state-space model

yt = gt + h
0
txt +Gtut (13)

xt = ft + Ftxt�1 + �tvt (14)

where the system matrices gt; ht; Gt; ft; Ft;�t are determined by y0;t�1, Kt and
by a vector of unknown parameters, and where Kt is a random vector such that
p(KtjKs 6=t) is known up to some parameters. (To simplify notation, dependence
on parameters is omitted from all expressions.)18 Equations (13) and (14) imply
the following:

p(ytjy0;t�1; x1;t;K) = p(ytjy0;t�1; xt;Kt) (15)

p(xtjy0;t�1; x1;t�1;K) = p(xtjy0;t�1; xt�1;Kt) (16)

The proof in GCK consists of four lemmas, which we now consider in turn, mod-
ifying each expression as required to allow the system matrices to also depend
on y0;t�1; rather than on Kt and parameters alone.

Lemma 1. Let rt+1 � var(yt+1jxt;K1;t+1; y0;t): Then the following hold:

E(yt+1jy0;t; xt;K1;t+1) = gt+1 + h
0
t+1(ft+1 + Ft+1xt) (17)

rt+1 = h
0
t+1�t+1�

0
t+1ht+1 +Gt+1G

0
t+1 (18)

and

E(xt+1jy0;t+1; xt;K) = at+1 +At+1xt +Bt+1yt+1 (19)

var(xt+1jy0;t+1; xt;K) = Ct+1C 0t+1 (20)

18GCK allow correlation between the errors of the transition and observation equations,
whereas (13)-(14) do not. The proof extends straightforwardly to the case of correlated errors.
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where

at+1 = (I �Bt+1h0t+1)ft+1 �Bt+1gt+1 (21)

At+1 = (I �Bt+1h0t+1)Ft+1 (22)

Bt+1 = �t+1�
0
t+1ht+1r

�1
t+1 (23)

Ct+1C
0
t+1 = �t+1(I � �0t+1ht+1r�1t+1h0t+1�t+1)�0t+1: (24)

The expression on the right hand side of (24) can be factored as Ct+1C
0

t+1 where
the matrix Ct+1 is either null or has full column rank. Then we can write

xt+1 = at+1 +At+1xt +Bt+1yt+1 + Ct+1zt+1;

where zt+1 � N(0; I), independent of xt and yt+1 (conditional on K).
Proof.

p(yt+1jy0;t; xt;K) =
Z
p(yt+1jxt+1; y0;t;K)p(xt+1jxt; y0;t;K)dxt+1

=

Z
p(yt+1jxt+1; y0;t;Kt+1)p(xt+1jxt; y0;t;Kt+1)dxt+1:

Integration over xt+1 gives (17)-(18) since both densities in the integral are
Gaussian. We also have

p(xt+1jy0;t+1; xt;K) / p(yt+1jy0;t; xt+1; xt;K)p(xt+1jy0;t; xt;K):

Simple algebra shows that this density is Gaussian in xt+1 and depends only on
Kt+1 with mean and variance given by (19) and (20).

Lemma 2. For t = 1; : : : ; n � 1, the density p(yt+1;njxt;K; y0;t) is inde-
pendent of K1;t and can be expressed as

p(yt+1;njy0;t; xt;K) / expf�
1

2
(x0t
txt � 2�0txt)g;

where 
t and �t are computed recursively starting from


n = 0; �n = 0;

and moving backward


t = A
0
t+1(
t+1 � 
t+1Ct+1D�1

t+1C
0
t+1
t+1)At+1 + F

0
t+1ht+1r

�1
t+1h

0
t+1Ft+1;

(25)

�t = A
0
t+1(I � 
t+1Ct+1D�1

t+1C
0
t+1)(�t+1 � 
t+1(at+1 +Bt+1yt+1)) (26)

+ F 0t+1ht+1r
�1
t+1(yt+1 �Gt+1 � h0t+1Ft+1)
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where
Dt+1 = C

0
t+1
t+1Ct+1 + I:

Proof. The proof is by induction as in GCK. It is easy to check that the result
is true for t = n� 1: Suppose it is also true for t = j + 2. Then,

p(yj+1;njxj ; y0;j ;K) = p(yj+2;njxj ; y0;j+1;K)p(yj+1jxj ; y0;j ;K):

From (13) and (14)

p(yj+1jxj ; y0;j ;K) / jrt+1j�1=2 exp(�0:5w
0

t+1r
�1
t+1wt+1);

where
wt+1 = yt+1 � gt+1 � h0t+1(ft+1 + Ft+1xt)

and the �rst term on the right-hand-side is given by

p(yj+2;njxj ; y0;j+1;K) =
Z
p(yj+2;njxj+1; y0;j+1;K)p(xj+1jxj ; y0;j+1;K)dxj+1:

The �rst density in the integral depends only on Kj+1;n and the second density
depends only on Kj+1. Hence the rest of the proof follows GCK.

Lemma 3. Letmt � E(xtjy0;t;K), Vt � var(xtjy0;t;K) andRt � var(ytjy0;t�1;K).
The Kalman �lter for the state-space model (13) and (14) is given by

Rt = h
0
tFtVt�1F

0
tht + h

0
t�t�

0
tht +GtG

0

t (27)

mt = (I � Jth0t)(ft + Ftmt�1) + JtR
�1
t (yt � gt) (28)

Vt = FtVt�1F
0
t + �t�

0
t � JtR�1t J 0t (29)

where
Jt = FtVt�1F

0
tht + �t�

0
tht:

The conditional density p(ytjy0;t�1;K1;t) is given by

p(ytjy0;t�1;K1;t) / jRtj�1=2 exp(�0:5v
0

tR
�1
t vt); (30)

where
vt = yt � gt � h0tft � h0tFtmt�1:

We can write Vt = TtT 0t , where the matrix Tt has full column rank (if Vt 6= 0)
or is null (if Vt = 0). Then, conditional on K,

xt = mt + Tt�t;

where �t � N(0; I) and independent of y0;t.
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Proof. By assumption, p(xtjy0;t�1;K) = p(xtjy0;t�1;K1;t) and p(ytjy0;t�1;K) =
p(ytjy0;t�1;K1;t). Then,

p(xtjy0;t;K) =
p(ytjxt; y0;t�1;Kt)p(xtjy0;t�1;K1;t)

p(ytjy0;t�1;K1;t)

so that
p(xtjy0;t;K) = p(xtjy0;t;K1;t);

which is a normal distribution with mean mt and variance Vt as given by (28)
and (29). In addition,

p(xt+1jy0;t;K) =
Z
p(xt+1jxt; y0;t;Kt+1)p(xtjy0;t;K1;t)dxt

so that p(xt+1jy0;t;K) = p(xt+1jy0;t;K1;t+1). Finally,

p(ytjy0;t�1;K) =
Z
p(ytjxt; y0;t�1;Kt)p(xtjy0;t�1;K1;t)dxt

only depends on K1;t and is computed as in Lemma 1.

Lemma 4.

p(yt+1;njy1;t;K) =
Z
p(yt+1;njy0;t; xt;Kt+1;n)p(�tjK1;t)d�t

/ jT 0t
tTtj�1=2 expf�
1

2
(m0

t
tmt � 2�0tmt � �0t(T 0t
tTt + I)�1�t)g;
(31)

where
�t = T

0
t (�t � 
tmt):

Proof. Using Lemmas 2 and 3,

�2 logfp(yt+1;njxt; y1;t;Kt+1;n)p(�tjK1;t)g =
x
0

t
txt � 2�
0

txt + �
0
t�t =

(mt + Tt�t)
0
t(mt + Tt�t)� 2�

0

t(mt + Tt�t) + �
0
t�t:

Equation (31) is obtained by completing the squares and integrating out �t.
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A.2 Carter and Kohn (1994) when system matrices and
transition probabilities depend on lagged obverva-
tions.

We extend the proof in in Carter and Kohn (1994) to show that their algorithms
to draw the states fx1; : : : ; xng conditional on the indicators fK1; : : : ;Kng (and
viceversa) in one block can still be applied if latent values of the dependent
variables a¤ect one or both of (i) the system matrices (ii) the probability dis-
tribution of the indicators. To draw the indicators in one block conditional on
the states we need to assume that Kt is Markov conditional on y0;t�1; that is
p(KtjK1;t�1; y0;t�1) = p(KtjKt�1; y

0;t�1).
Consider the state-space model given in (13) and (14), where the system ma-

trices gt; ht; ft; Gt; Ft;�t are determined by y0;t�1, Kt and a vector of unknown
parameters, and where Kt is a random vector such that p(Ktjy0;t�1;Ks 6=t) is
known up to some parameters.

Lemma 5: Generating the state vector. The following holds:

p(xjy) = p(xnjy;K)
nY
t=1

p(xtjy0;t; xt+1;Kt);

where all densities are Gaussian. We can then generate xn from a Gaussian with
mean and variance given by the Kalman �lter. To generate xt given xt+1;n; we
observe that xtjy0;t;K1;t and xt+1jy0;t;K1;t+1 are jointly normal�
xt+1jy0;t;K1;t+1

xtjy0;t;K1;t+1

�
� N

��
ft+1 + Ft+1mt

mt

�
;

�
Ft+1VtF

0
t+1 + �t+1�

0
t+1 Ft+1Vt

VtF
0
t+1 Vt

��
;

(where mt and Vt are de�ned in Lemma 3). Hence we can draw xt from
p(xtjxt+1; y0;t;K1;t+1); which is normal with known moments.
Proof. Assume that p(x1jy0; x0;K1) is Gaussian. Then p(xt+1jy0;tK1;t+1) is
also Gaussian, since

p(xt+1jy1;t;K1;t+1) =

Z
p(xt+1jxt; y1;t;Kt+1)p(xtjy1;t;K1;t+1)dxt

=

Z
p(xt+1jxt; y1;t;Kt+1)p(xtjy1;t;K1;t)dxt

because

p(xtjy1;t;K1;t+1) / p(Kt+1jK1;t; y1;t)p(xtjy1;t;K1;t)

= p(Kt+1jKt; y
1;t)p(xtjy1;t;K1;t) / p(xtjy1;t;K1;t):
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Moreover, since

p(xt+1jy1;t+1;K1;t+1) / p(yt+1jxt+1; y1;t;Kt+1)p(xt+1jy1;t;K1;t+1);

the Kalman �lter equations for xt given in Lemma 3 hold. It is also easy to
show that

p(xtjy0;n; xt+1;n;K1;n) = p(xtjxt+1; y0;t;K1;t+1):

Lemma 5 follows straightforwardly.

Lemma 6: Generating the indicator variables. Assume that Kt is
Markov conditional on y0;t�1

p(Ktjy0;t�1; x1;t�1;K1;t�1) = p(KtjKt�1; y
0;t�1):

Then we have

p(Kjy) = p(Knjy; x)
nY
t=1

p(Ktjy1;t;Kt+1; xt):

Therefore we can generate K as in Carter and Kohn (1994), where the �ltering
equations work on p(Ktjxt; y1;t) rather than on p(Ktjxt; yt).
Proof. Suppose that we have evaluated p(K1jy0;1; x1). Then,

p(Kt+1jy0;t+1; x1;t+1) / p(yt+1jxt+1; y0;t;Kt+1)p(xt+1jxt; y1;t;Kt+1)p(Kt+1jy0;t; x1;t)

p(Kt+1jy0;t; x1;t) =
X
Kt

p(Kt+1jKt; y
0;t)p(Ktjy0;t; x1;t):

We also have

p(KtjKt+1;n; x1;n; y0;n) = p(KtjKt+1; x
1;t+1; y0;t+1)

/ p(yt+1jxt+1; y0;t;Kt+1)p(xt+1jxt; y0;t;Kt+1)p(Ktjy0;t; x1;t;Kt+1)

/ p(Ktjy0;t; x1;t;Kt+1):

Therefore we can generate Kt from

p(KtjKt+1;n; x1;n; y0;n) / p(Kt+1jKt; y
0;t)p(Ktjy0;t; x1;t):
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K1 K2 K3 K4

Kv;t 0 gv 0 0
K�;t 0 0 g�1 g�2

prior prob 0:978 0:020 0:001 0:001
post. prob 0:975 0:019 0:002 0:004

E(�jy) std(�jy)
gv 2:48 0:82
g�1 1:19 0:53
g�2 3:57 1:52
� 0:35 0:08

Table 1: Values of K(t) and probabilities for model of the U.S. real
interest rate. Values of K(t) in columns. First row: value of Kv (additive
outlier). Second row: value of Km (break in mean). Third row: prior probability
of each value of K(t). Fourth row: posterior probability of each value of K(t).
Further rows: mean and std of model parameters.

K1 K2 K3 K4 K5 K6 K7

Ke;t 1 2:5 1 1 1 1 1
Kc;t 0 0 0:2 0:2 1 0 1
Kb;t 0 0 0 0:2 0 0:2 0:2
prob 0:97 0:02 0:002 0:002 0:002 0:002 0:002

Table 2: Values of Km(t) and probabilities for AR(1) model of U.S.
in�ation. Values of K(t) in columns. First row: value of Ke (innovation
outlier). Second row: value of Kc (break in constant). Third row: value of
Kb (break in autoregressive parameter). Kv(t) can take values 0 and 1.39 with
prior probabilities 0.99 and 0.01, independent of Ke, Kc, Kb.

In�ation IF IF ratio RE Real rate IF IF ratio RE
c1 3:32 1:76 1:94 �1 1:26 1:14 3:13
b1 2:14 1:21 2:82 � 1:68 0:98 3:64
�1 2:89 1:16 2:94 � 1:58 1:03 3:47

Table 3: Ine¢ ciency factors. Ine¢ ciency factors of the adaptive MH algo-
rithm, the ratio of the ine¢ ciency factors of the adaptive MH algorithm over
the algorithm of Gerlach et al. (2000), and the relative e¢ ciency for selected
parameters in two models of U.S. in�ation and real interest rate.
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Figure 1: AR(1) model with mean shifts for the U.S. real interest rate. (a) real
interest rate and posterior mean of �t (b) posterior density of � (c) posterior
mean of Km;t (d) posterior distribution of �1976Q1 (e) posterior distribution of
�19822Q1 (f) posterior distribution of �2004Q4:
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Figure 2: AR(1) model of U.S. in�ation: (a) posterior mean of ct (b) posterior
mean of bt (c) in�ation and posterior median of ct=(1� bt) (d) posterior mean
of �t (e) posterior distribution of b1979Q1 (f) posterior distribution of b2004Q4:
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