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Abstract

The analysis of this paper demonstrates that when the Phillips curve has forward-
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and price level targeting.
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1 Introduction

The past decade has seen a substantial reduction in inflation rates in the industrialized

world. While the average annual rate of inflation among the eleven major industrialized

countries was over 7.5 percent in 1973-1987, it fell to below 3 percent in 1988-1999.1 With

this reduction in inflation rates the meaning of ’price stability’ has changed. During the

high-inflation period, the strive for price stability most often meant simply an attempt

to curtail the rate of increase in the price level. A stable price level was considered

unattainable (and thus its desireability was not debated either). Now, in a low-inflation

environment, calls for price stability increasingly mean exactly that, i.e. a stable level of

prices.

Recent years has thus seen a renewed interest in the analysis of monetary policy

geared towards keeping a stable level of prices. One strand of the literature has shed

new light on the question of the relative merits of price level targeting and inflation

targeting (see e.g. Dittmar and Gavin 2000, Kiley 1998, Svensson 1999 and Vestin 2000.)

It has been demonstrated that a price level target can give a more favorable combination

of variability in inflation and output gap than an inflation targeting policy, when the

central bank is constrained to act under discretion. In particular, Vestin (2000) shows

in a forward-looking model that price level targeting under discretion comes closer to

mimicking a socially optimal policy of inflation targeting under commitment, than does

inflation targeting under discretion. The basic reason behind this result is that a price

level target will make inflation expectations change in such a way to help the monetary

policy maker; policy does not have to react as strongly as otherwise. More formally, price

level targeting introduces history dependence, which is a characteristic of commitment

solutions as shown by Woodford (1999b).

In this paper we investigate a set of policies that, as we argue below, may be considered

as lying between price level targeting and inflation targeting, namely average inflation

targeting. By this we mean a policy where the central bank’s objective is to keep average

inflation measured over several years stable. There are several reasons why we believe this
1Unweighted average for the G10 countries plus Switzerland. Source: IFS.
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may be interesting. First, average inflation targeting also introduces history dependence,

but to a varying degree, depending on the width of the window used when calculating

the average inflation rate.2 Therefore it is of theoretical interest to see if average inflation

targeting under discretion produces policy responses closer to the optimal, commitment

responses. Second, since there is (at least) one central bank pursuing an average inflation

target, the Reserve Bank of Australia, such a policy deserves to be analyzed.3,4

The results of the paper are the following. Most importantly, we show that hav-

ing an average inflation target results in inflation expectations adapting in such a way

that will improve the short-run trade-off faced by the monetary policymaker, leading to

smoother policy responses. Thus, given the assumption that the optimal commitment

solution cannot be achieved (e.g. due to institutional constraints), average inflation tar-

geting is an example of a ’modified’ loss function, which when pursued in a discretionary

setting produces more efficient outcomes than the discretionary pursuit of the true ob-

jective.5 In a purely forward-looking model, such average inflation targets are typically

dominated by a price level target (i.e. the price level targeting case comes closer to the

optimal, commitment solution). But we also show that in a model with both forward- and

backward-looking components, there are cases where an average inflation target provides

more efficient outcomes than a price level target.

The remainder of this paper is structured as follows. In Section 2 we discuss societal

preferences and different alternatives for the loss function assigned to the central bank.

In the following section we compare the properties of a price-level targeting regime and

inflation targeting regimes with varying definitions of ’inflation’ in a very simple, wholly

forward-looking model of the economy. Section 4 examines a ’hybrid’ model, one which

accomodates both backward-looking and forward-looking behavior, and which provides
2See e.g. Nessén (1999).
3One could perhaps also argue that the ECB, with its emphasis on monetary stability in the medium

term, is another example of a central bank (implicitly) pursuing an average inflation target.
4See also King (1999) for a discussion on average inflation targeting.
5See Woodford (1999b) and Svensson and Woodford (1999) for a discussion. Other examples of such

modified loss functions include nominal income growth targeting (Jensen, 1999) inflation-and-monetary

targeting (Söderström, 2000) and inflation targeting cum interest rate smoothing (Woodford, 1999a).
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some indication of the robustness of the results from Section 3.6 The final section con-

cludes. Most of the mathematical derivations have been put in the Appendices.

2 Societal preferences, commitment, and delegation to the central

bank

Following Woodford (1999b), let society’s preferences be modelled as

(1 − β)
∞∑

τ=t

βτ−tL∗ (πτ , xτ ) , (1)

where πt is inflation between periods t− 1 and t (i.e pt − pt−1 ), xt is the output gap at

time t, and β is a discount factor (0 < β ≤ 1). The society period loss function is defined

as

L∗ (πt, xt) ≡ 1

2

[
(πt − π∗)2 + λx2

t

]
, (2)

λ being the relative weight on output stabilization versus inflation stabilization. Loss

functions of this form are very common in analyses of monetary policy, since they are

believed to capture the salient features of inflation targeting regimes: inflation is sta-

bilized around a target π∗, while output is stabilized around the natural level; and the

deviations of inflation and output from their respective targets are squared, making de-

viations equally undesireable regardless of sign (i.e. the inflation and output targets are

symmetric). Such loss functions have habitually been introduced into models of optimal

monetary policy in an ad hoc manner. But, as recently shown by Woodford (1999a), (2)

can be obtained as a second-order Taylor series approximation to the expected utility

level of the representative household in a theoretical model of the sort used in this paper,

i.e. it is an approximation of the theoretically correct welfare measure.

A critical assumption in the analysis of optimal monetary policy is whether or not

the central bank can act under commitment. A famous result due to Barro and Gordon

(1983) is that an inflation bias may arise if the central bank has a goal for output in

excess of the natural level, and is unable to commit to future paths of policy. More

recent results regarding monetary policy in forward-looking models (which are the kinds
6For robustness-checks with respect to credibility issues and uncertainty, see Yetman (2000).
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of models that will be analyzed in this paper) stress that a so-called stabilization bias

may arise, independent of the central bank’s output goal (see Backus and Driffil, 1986,

Currie and Levine, 1993, Clarida, Gali and Gertler, 1999 and Woodford 1999a, 1999b,

2000). What this means is that the short-run response of monetary policy to shocks will

differ depending upon whether the central bank acts under commitment or discretion.

Under commitment, a central bank can benefit today from the anticipation of future

policy actions. Thus a solution under commitment gives the socially optimal outcome in

the sense of producing the lowest discounted sum of losses; the discretionary solution will

result in a higher overall loss (see Woodford, 1999b, or Appendix C in this paper for a

further discussion).

Yet, there are strong reasons to believe that commitment is not a realistic assumption

to make regarding the way in which policy is conducted. Thus the point of departure in

this paper is that only discretionary policies belong to the set of feasible policies. The

question we subsequently study can be posed in the following manner. In the absence of

a commitment technology, can the discretionary solution be improved upon by assigning

another, ‘modified’ loss function to an independent central bank?

More specifically, we envision the central bank as being assigned the task of minimizing

the infinite discounted sum of period loss functions

min
{iτ}∞τ=t

Et (1 − β)
∞∑

τ=t

βτ−tLτ , (3)

where β is the same discount factor as before and it is the central bank instrument (to

be defined) at time τ . The question is, how should society design the mandate that it

delegates to the central bank, i.e. what should be period loss function Lt be?7 One

candidate is perhaps (2), i.e. the central bank is instructed to target the annual inflation

rate. But as already mentioned, it is the suboptimal properties of the solution generated

under this loss function that motivates the search for another, ‘modified’ loss function.

Another possible candidate, one which has received much attention in the the recent
7The maintained assumption throughout is that the delegation of this loss function is perfectly credible.

It is only with regard to the implementation of a given loss function that credibility issues arise.
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literature, is a price level target:

LPT (pt, xt) ≡ 1

2

[
(pt − p∗)2 + λ̃ x2

t

]
, (4)

where λ̃ is the relative weight on output stabilization versus price level stabilization (see

the references mentioned in the Introduction). In this paper we examine these two al-

ternatives, inflation targeting and price level targeting, plus a spectrum of ‘intermediate’

regimes. These intermediate regimes correspond to the central bank being be instructed

to target the j-period average inflation rate:

LIT j (πj,t, xt) ≡ 1

2

[
(πj,t − π∗)2 + λx2

t

]
, (5)

where the preference parameter λ is the relative weight on output stabilization versus

j-period average inflation stabilization, the average inflation rate πj,t being defined as

πj,t ≡ 1

j

j−1∑
s=0

πt−s

=
1

j
(pt − pt−j) . (6)

In what way may average inflation targeting be seen as a sequence of intermediate

regimes, lying inbetween inflation targeting and price level targeting? If we let j = 1 in

(6) then we of course have the ’conventional’, one-period inflation target. Further, the

price level at any point in time may be expressed as the sum of the history of inflation

rates plus an initial price level, or

pt − p0 = πt + πt−1 + πt−2 + πt−3 + . . . + π1.

Thus, letting j become very large in (6) corresponds roughly (up to a proportionality

factor) to having a price level target. Later on in this paper, we will explore how large j

must be in order for the resulting policies to be roughly the same as the policies obtained

with a price level target.8

8Batini and Yates (2000) have an alternative way of formulating the intermediate regimes. They specify

a loss function where a convex combination of inflation and the price level is one of the arguments, along

with the output gap.
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3 A simple forward-looking model

We begin by examining the relative properties of policies implied by the different loss

functions (2), (4), and (5) in a very simple economy, consisting of what is commonly

referred to as a “New-Keynesian” Phillips curve linking the inflation rate πt to the output

gap xt and expected future inflation πt+1|t :9

πt = βπt+1|t + κxt + ut, (7)

where ut is an exogenous shock, κ is a positive coefficient and β is the same discount factor

as before. This equation can be derived as the log-linear approximation to the first-order

conditions for optimal price-setting in an economic environment with monopolistically

competitive firms and sticky prices10, and has been analyzed extensively by Clarida, Gali

and Gertler (1999) (henceforth CGG) and Woodford (1999b). Since prices cannot be con-

tinuously changed, firms take into consideration expectations of future marginal costs, in

addition to current conditions, when setting their optimal price.11 Variations in marginal

costs due to variations in excess demand are captured by the term involving the output

gap in (7). The shock ut may be labelled a cost-push shock, since it captures everything

else (other than demand conditions) that affects expected future marginal costs. We in-

troduce so-called exogenous persistence by letting this exogenous cost-push shock follow

an AR(1) process:

ut = ρut−1 + εt, (8)

where 0 ≤ ρ < 1.

For analytical simplicity, we assume that the output gap, xt, is the instrument of

the central bank. Typically, in analyses of monetary policy with inflation targets, an

aggregate demand relation is also specified, linking the interest rate (i.e. the instrument

in such models) to the output gap. However, as long as there are no separate concerns

about interest rate smoothing in the objective function such an equation is redundant for
9πt+1|t is shorthand notation for Et (πt+1) .

10More specifically, the sticky prices are modelled according to Calvo (1983), whereby the opportunity

for a firm to change its price arrives stochastically and exogenously.
11This can be seen most clearly by iterating forward on (7), as in Clarida, Gali and Gertler (1999).
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solving the model. In a sense the problem is separable: first the Phillips curve is used in

determining the optimal relationship between inflation and output; next, the aggregate

demand relation can be used to back out an interest rate path. For analytical simplicity,

we ignore this second step.

Nonetheless, analytical solutions are only available for a subset of the spectrum of loss

functions examined in this paper.12 Therefore, in Section 4.2 we use numerical solutions for

a characterization of the remaining regimes. Prior to that we discuss analytical solutions

for the four cases where such are available. Three of these have been derived previously

elsewhere; the price level targeting case under discretion was solved in Vestin (2000)

and the inflation targeting case with j = 1 under discretion and under commitment in

CGG. The new results pertain to the case when the target is a two-period average (i.e.

j = 2). We show in the following that delegating such a target to the central bank

produces outcomes that are more efficient than the outcomes produced by adherence to

an ‘ordinary’ one-period inflation target.

3.1 Analytic solutions

In this section we report optimal policy for (i) inflation targeting under commitment and

three discretion cases: when the central bank is assigned (ii) a price level target, (iii) an

inflation target where the inflation rate is calculated on a ‘one-period’ basis, and (iv) a

two-period average inflation rate target. As already mentioned, the first three cases have

been solved elsewhere but we reproduce the results here for ease of comparison. In each

case we pay special attention to the resulting behavior of the output gap (which in this

simple scaled-down model of the economy is the control variable), the price level and the

(one-period) inflation rate, in particular their variances. We begin with the benchmark:

inflation targeting under commitment.13

12A j-period moving average introduces j − 1 state variables. When j > 2 this becomes analytically

intractable.
13In the analysis below we will assume that the goal for inflation is zero (i.e. π∗ = 0) or that the goal

for the price level is a constant one. These assumptions are made for analytical convenience, and have

no effect on the results regarding the variances of inflation and output. The interpretation does however

vary somewhat depending on the target values. In the case of π∗ = k > 0, the variance of inflation should
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(i) The “inflation-targeting-under-commitment” solution

As shown in CGG, solving (1) subject to (7) and (8) results in

pt = a∗ pt−1 + b∗ ut,

πt = (a∗ − 1) pt−1 + b∗ ut, (9)

xt = −c∗ pt−1 − d∗ ut,

where the coefficients are defined by

a∗ =

(λ (1 + β) + κ2)

(
1 −

√
1 − 4β

(
λ

λ(1+β)+κ2

)2
)

2λβ
,

b∗ =
a∗

1 − a∗βρ
,

c∗ =
(1 − a∗β) (1 − a∗)

κ
,

d∗ =
1 − b∗ [1 + β (1 − a∗ − ρ)]

κ
.

Several features of the commitment solution should be noted. First, the price level is

stationary (since, as shown in CGG , 0 ≤ a∗ ≤ 1, and only when the central bank has

infinite concern for output stabilization is a = 1)14. Further, since c∗ is strictly positive,

optimal policy will be characterized by prolonged responses to one-time shocks (even

when ρ = 0): as long as pt−1 remains above (below) trend, output will be kept below

(above) trend. The coefficient b∗(> 0) is increasing in λ, while d∗(> 0) is decreasing in

λ, reflecting that a greater concern for output stabilization will imply a more cautious

response to shocks, the central bank allowing the shock to pass through to current inflation

to a greater extent.

The variances of the output gap and the inflation rate are

var {πt}||inflation target
= e∗ var {ut} ,

var {xt}||inflation target
= f ∗ var {ut} ,

be interpreted as the variance of the deviation of inflation from this value. The results regarding levels,

however, are of course affected, with constants being added in the case of non-zero target levels.
14Remember our assumption of π∗ = 0. With a positive inflation target, the price level would instead

be trend-stationary.
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where

e∗ ≡ 2b∗2 (1 − ρ)

(1 − a∗ρ) (1 + a∗)
,

f ∗ ≡ b∗2c∗2 (1 + a∗ρ) + d∗ (1 − a∗2) [d∗ (1 − a∗ρ) + 2ρb∗c∗]
(1 − a∗2) (1 − a∗ρ)

.

(ii) Price level targeting under discretion

Consider now the situation where the central bank is assigned a price level target, as in

(4). In this case, Vestin (2000) shows that the output gap, the price level and inflation

will evolve according to15

pt = ã pt−1 + b̃ ut,

πt = (ã− 1 ) pt−1 + b̃ ut, (10)

xt = −c̃ pt−1 − d̃ ut,

where the coefficient ã is defined by

ã =
ωλ̃

κ2 + ω2λ̃ + βλ̃ (1 − ωã)
,

ω = 1 + β (1 − ã) ,

(λ̃ being the relative weight on output stabilization versus price level stabilization) and

the remaining coefficients b̃ , c̃ , and d̃ are defined by

b̃ =
ωλ̃ + βρλ̃

[
2ωb̃−

(
1 + βρb̃

)]
κ2 + ω2λ̃ + βλ̃ (1 − ωã)

,

c̃ =
(1 − ã β) (1 − ã )

κ
,

d̃ =
1 − b̃ [1 + β (1 − ã − ρ)]

κ
.

The important feature of this solution is its similarities with the “inflation targeting under

commitment” solution. The coefficient ã has the property that 0 ≤ ã
(
λ̃
)
< 1, i.e. the

price level is, naturally, stationary when the objective of monetary policy is to keep it

stable. And as in the case of commitment above, the coefficient c̃ is strictly positive,
15See also Appendix A for the complete derivation.
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meaning that xt will below (above) trend as long as pt−1 is above (below) it. Also, the

coefficient b̃ is increasing in λ̃, while d̃ is decreasing in λ̃, with the same interpretation as

above.

With a price level target the variances of the output gap and the inflation rate are

var {πt}|price level target = ẽ var {ut} ,
var {xt}|price level target = f̃ var {ut} ,

where

ẽ ≡ 2b̃2 (1 − ρ)

(1 − ãρ) (1 + ã)
,

f̃ ≡ b̃2c̃2 (1 + ãρ) + d̃ (1 − ã2)
[
d̃ (1 − ãρ) + 2ρb̃c̃

]
(1 − ã2) (1 − ãρ)

.

(iii) Inflation targeting under discretion: one-period inflation targeting (j = 1)

If the central bank is instructed to target the one-period inflation rate as in (2), CGG

show that the output gap, the price level and the inflation rate will evolve according to

pt = pt−1 + b̂ ut,

πt = b̂ ut, (11)

xt = −d̂ ut,

where

b̂ =
λ̂

κ2 + λ̂ (1 − βρ)
,

d̂ =
κ

κ2 + λ̂ (1 − βρ)

(
=

κ

λ̂
b̂
)
,

(λ̂ being the relative weight on output stabilization versus inflation stabilization). The

major difference compared to the two previous cases is that â = 1 and ĉ = 0. This means

that the price level is no longer stationary; indeed, if ρ = 0 it would be a random walk.

Further, ĉ = 0 implies one-time responses to one-time shocks, or, differently put, policy

responses will be persistent only if the shocks themselves are persistent.
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In this case when j = 1, with inflation and output being functions of the exogenous

shocks ut only, the variances of the output gap and the inflation rate are particularly

straightforward to derive:

var {πt}|inflation target = b̂2 var {ut} ,
var {xt}|inflation target = d̂2 var {ut} .

(iv) Inflation targeting under discretion: two-period moving average (j = 2)

We now come to the case when the central bank is instructed to target the two period

average inflation rate (thus j = 2 in (6)). This case has not been solved earlier, and the

complete derivation can be found in Appendix A. There it is shown that the price level,

inflation and the output gap will evolve according to

pt = a pt−1 − (a − 1) pt−2 + b ut,

πt = (a − 1) pt−1 − (a − 1) pt−2 + b ut, (12)

xt = −c pt−1 + c pt−2 − d ut,

where a and b are determined simultaneously by

a = 1 − κ2

κ2 (1 + βa) + 4λ (1 − β (a− 1))2 ,

b =
4λ (1 − β (a− 1))

(
1 + βρb

)
− βρκ2b

κ2 (1 + βa) + 4λ (1 − β (a− 1))2 ,

and

c ≡ (a− 1) (aβ − β − 1)

κ
,

d ≡ 1 − b (1 + β (1 − a− ρ))

κ
,

where λ is the relative weight on output stabilization versus two-year-average inflation

stabilization.

The general form of the equations for inflation and output have changed somewhat

compared to the earlier cases, e.g. pt−2 also appears. Now, with a goal formulated

in terms of a two-period average, it should not be surprising that variables dated two
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periods ago affect the conduct of optimal monetary policy. A fundamental consequence

of the two-period average is that bygones are no longer bygones. Consideration must be

taken to what ‘one-period’ inflation was last period — if it was below the target π∗, this

period’s inflation must be above π∗ in order to keep the average ‘close’ to π∗ (i.e. with

due consideration taken to output concerns). And, of course, lagged inflation affecting

policy is the same as the price level lagged two periods affecting policy.

The following can be said about the properties of the coefficients. First, 0 ≤ a < 1, the

consequence being that (one-period) inflation will for a time oscillate around zero following

a temporary shock.16 The reason why this is optimal is, as was just explained, that it will

result in the two-year average being ‘close’ to target (the target being normalized to 0).

Further, the coefficient b ≥ 0 and is increasing in λ, while d ≥ 0 and is decreasing in λ with

the same interpretion as before - the greater the concern for real variability the more will

a given shock be allowed to feed through to current inflation. Finally, the coefficient c ≥ 0

and is decreasing in λ. This means that with a goal for the two-year average inflation rate,

monetary policy will be characterized by persistence, even following temporary shocks.

This feature of the solution is a central one, since it means that the solution exhibits

history dependence.

The variances of the output gap and the inflation rate are

var {πt}|inflation target, j=2 = e var {ut} ,
var {xt}|inflation target, j=2 = f var {ut} ,

where

e ≡ b
2
(1 + aρ− ρ)

(1 − aρ + ρ) a (2 − a)
,

f ≡
b
2
c2 (1 + aρ− ρ) + a (2 − a) d

[
d (1 − aρ + ρ) + 2bcρ

]
(1 − aρ + ρ) a (2 − a)

.

Comparison of regimes

Using the analytical solutions for the variances of output and inflation under the four

regimes we have studied so far, we can compare the monetary-policy trade-offs faced in
16Numerical simulations reveal that these oscillations only arise for very small values of λ.
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each case. This is done by constructing ‘variance frontiers’, i.e. combinations of var {πt}
and var {xt} for different values of the preference parameters λ, λ̃, λ̂,and λ. Such frontiers

are also called ‘efficient policy frontiers’ since points outside the frontier are inefficient,

while points inside are infeasible. Figure 1 contains the variance frontiers for the four

cases. When plotting these frontiers we have assumed that β = 0.96, κ = 0.2, and

ρ = 0.5.17 The commitment frontier (the thin dashed line) lies closest to the origin, and is

thus the most favorable one.18 The “j = 1 under discretion” frontier (thick dashed line) is

farthest to the north-east, and thus the least favorable. The price level targeting frontier

(thick dotted line) almost coincides with the commitment frontier as was shown in Vestin

(2000).19 The new result here pertains to the j = 2 case (the thin solid line). What we

see in Figure 1 is that it constitutes an intermediate case, i.e. with a target for two-period

average inflation a better trade-off is attained than with a one-period inflation target.

[Figure 1 about here:

Variance frontiers based on analytical expressions for var {πt} and var {xt}.]

To explain the intuition behind this result, we note that inflation expectations, when

the two-period average inflation rate is targeted, are given by

πt+1|t = (a− 1 )πt + b ut+1|t. (13)

Since 0 ≤ a ≤ 1, an inflation rate above target (the target being normalized to zero)

leads to expectations of inflation being lower than target in the subsequent period, i.e.

following a positive shock the two-year average target automatically generates expectations

of deflation. By inspecting the Phillips relation (7), it follows that the instrument xt does

not have to be depressed as much since inflation expectations simultaneously fall. It is in

this sense that the monetary policy maker is helped by suitably changing expectations, the

result being an improved short-run monetary-policy trade-off compared with the inflation
17We think of this model as being an annual one. Setting β = 0.96 corresponds to a quarterly discount

rate of 0.99. The value for κ is a simple average of the estimates obtained by Rotemberg and Woodford

(1997) and Roberts (1995), respectively. Finally, the value for ρ was simply assumed.
18See Appendix C for a further discussion on this.
19For values of ρ close to 1, the difference becomes discernable to the eye.
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targeting (j = 1) case.20 This improved short-run trade-off in turn means that the variance

frontier lies closer to the origin, and closer to the commitment solution.

To end this section, a few words should be said about the robustness of the results

shown in Figure 1 with respect to the parameter values used. Changing the values of κ

and/or ρ does not alter the qualitative results. Larger values of κ increases var {xt}, while

larger values of ρ increases both var {πt} and var {xt}, but the ordering of the frontiers —

the price level target frontier being closest to the commitment solution, the j = 1 frontier

farthest from it, and the two-year average frontier lying in between — does not change.

The results are also robust for all reasonable values of β, i.e. remembering that it is a

discount factor.

Impulse responses - the ‘stabilization bias’

Another way of comparing the four regimes is with respect to their dynamic responses

to temporary shocks. As discussed in e.g. Woodford (1999b), the discretionary imple-

mentation of an inflation target will lead to suboptimal dynamic responses, the so-called

‘stabilization bias’.21 Here we examine how the discretionary dynamic responses change

— with a caveat, soon to be explained — when different ‘modified’ objective functions

are assigned to the central bank. Figure 2 contains the dynamic responses of inflation

and output to a temporary shock, i.e. here we assume that ρ = 0.22 Further, we set the

preference parameter equal to 0.2. However, (and this is the caveat) remember that the

preference parameters do not apply to the same comparisons (e.g. λ is the preference

parameter in relation to the choice between output variability and inflation variability,
20By equation (11) inflation expectations when j = 1 is simply πt+1|t = b̂ ut+1|t. Note that ‘suitably’

adapting expectations also materialize in the case of a price level target. By (10) it follows that inflation

expectations when the central bank targets the price level are given by

πt+1|t = (ã − 1 ) pt + b̃ ut+1|t.

Since 0 ≤ ã < 1, a positive value of pt (i.e. the price level is above target, the latter being normalized to

zero) will have a dampening effect on inflation expectations.
21For early references on this issue, see Backus and Driffil (1986) and Currie and Levine (1993). See

also Söderlind (1999).
22We continue to assume that β = 0.96 and κ = 0.2.
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while λ concerns the choice between output variability and variability in the two-year

average inflation rate). Thus the curves cannot be compared directly, e.g. absolute mag-

nitudes cannot be compared. But we can examine the graphs to learn something about

the general characteristics of the dynamic responses.

Consider first the response under commitment (thin dashed line): even though the

shock is temporary, the policy response is persistent. The reason why this is so is that it

produces deflation in the periods following the shock, expectations of which are desireable

since they imply that the response today can milder (and the overall loss smaller) (see

Woodford, 1999). In contrast, inflation targeting under discretion gives a one-time (and

‘large’) response to a one-time shock, and inflation is back to its pre-shock value after

one period. Consider now the two cases with ’modified’ objective functions. With a price

level target (dotted line) the response displays the same characteristic as the commitment

case, i.e. of a persistent response, and of ’undershooting’ of inflation. The same applies to

the two-period average case, i.e. the output response is persistent (even when the shock

is not) and there is deflation after the shock (however only for one period).

[Figures 2 and 3 about here:

Dynamic responses of inflation and output to a temporary shock. ]

3.2 Numerical solutions

As we have noted previously, we are unable to provide analytical solutions for j > 2.

Instead we rely on numerical solutions for a characterization of these regimes. Appendix

B shows how the simple model used in this section is written in state-space form. The

parameter values that we have used are the same as those that were used above (when

discussing the analytical solutions), i.e. β = 0.96, ρ = 0.5 and κ = 0.2. We have in mind

primarily an annual model, which means that our parameter values are comparable to

those used in Woodford (1999b) and McCallum & Nelson (2000).
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Variance frontiers

In Figure 4, variance frontiers are shown for four cases: j = 4 and j = 16, together with

the price level targeting case and j = 1 case for comparison.23 The figure shows that as

the window over which the average inflation rate is calculated increases, the corresponding

variance frontier moves closer to the origin — increasing j improves the monetary-policy

trade-off.

[Figure 4 about here:

Variance frontiers based on numerical solutions for var {πt} and var {xt}.]

When j = 16, the frontier almost coincides with the price level targeting frontier (which

in this simple model almost coincides with the commitment frontier). We mentioned in

the Introduction that our analysis of average inflation targeting can be said to explore

the intermediate regimes that lie between inflation targeting on the one hand, and price

level targeting on the other, and we argued that as j grows we approach the price level

targeting case. From Figure 4 we can get a rough estimate of how large j must be in

order for average inflation targeting to generate the same monetary policy trade-off as

price level targeting. In the particular model that employ in this section, that value of j

appears to be around 16.

Impulse responses

Figures 5 and 6 show the impulse responses obtained from the numerical solutions for

the same four regimes as in Figure 4; the caveat regarding the direct comparison of these

curves mentioned in conjunction with Figures 2 and 3 also applies here. In Figure 6 we

can see that the policy responses to a temporary shock24 are persistent also in the case

of ‘higher’ j. Figure 5 reveals that deflation arises in the periods following the shock,

and that inflation is back on its pre-shock value after three periods when j = 4 and after

fifteen periods when j = 16.
23The latter two frontiers of course coincide with the corresponding curves in Figure 1. We only show

two cases of ‘higher’ j, so as to not clutter the diagram.
24Remember that ρ = 0 in the impulse responses.
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[Figures 5 and 6 about here:

Dynamic responses of inflation and output to a temporary shock - numerical

solution. ]

4 A Hybrid Model

An important message from the analysis of the previous section is that with a forward-

looking Phillips curve, the policy trade-off will improve if inflation expectations can be

made to adjust in a suitable way. Earlier studies have shown that this can be accomplished

with a price level target. The new result in this paper is that an average inflation target

will also cause inflation expectations to change in a desireable direction, i.e. in such a

way that the monetary-policy trade-off is improved.

A natural question to ask now is how sensitive these results are to the particulur form

of the Phillips curve. The results above were obtained in a purely forward-looking specifi-

cation, where lagged inflation rates play no role in the determination of current inflation.

Such specifications have been criticized on the grounds of poor empirical performance,

and it has been argued that lagged inflation rates must also enter the Phillips curve in

order to properly account for actual inflation (see e.g. Fuhrer, 1997). Such ’hybrid’ for-

mulations, containing both expectations of future levels of inflation and lagged inflation,

can be obtained theoretically in a number of ways. Fuhrer and Moore (1995) do so by

assuming that relative real wages are set in a staggered fashion. In derivations based

on optimizing behavior, Hallsten (1999) obtains the hybrid formulation in a model with

quadratic price adjustment costs (thus extending results obtained by Rotemberg, 1982),

while Amato and Laubach (2000) obtain a hybrid Phillips curve by introducing habit

formation in consumption in a general equilibrium model with price stickiness à la Calvo

(1983).

Thus, consider a slightly richer model of the economy than in Section 3. It is still

a one-equation model (with an additional equation for exogenous persistence) but one

where we allow for both forward- and backward-looking behavior in the determination of
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current inflation:

πt = (1 − α) πt−1 + αβπt+1|t + κxt + ut, (14)

ut = ρut−1 + εt.

For simplicity we continue to assume, as in Section 3, that the output gap, xt, is the con-

trol variable. Also, as before, exogenous persistence is introduced via the autoregressive

process ut. The forward- and backward looking elements of the Phillips curve enter with

weights α and (1 − α), respectively.

When α = 1 we have exactly the model of Section 3, and there is no need to reiterate

the results here. Consider instead what happens to the variance frontiers when the weight

on expected inflation (the ‘forward-looking component’ of the Phillips curve), α, falls.25

Intuitively, as α falls there is less room for monetary policy being ‘helped’ by suitably

adjusting expectations, since expectations play a smaller role in the determination of cur-

rent inflation. Therefore one could easily suspect that price level targeting, e.g., should

not produce as favorable outcomes as with a purely forward-looking Phillips curve. And

this is also what happens. Consider Figure 7 which shows the variance frontiers for four

values of α.26 In the top left-hand panel the degree of ‘forward-lookingness’ is still high

(α = 0.8), and the ordering of the frontiers remains the same as when the Phillips curve

is entirely forward-looking; thus the j = 1 variance frontier is the least favorable, j = 2

generates a variance frontier that lies closer to the origin27, and the price level target-

ing frontier is closest to the commitment case.28 In the remaining panels the value of α
25Empirical estimates of α include Fuhrer (1997) who could not reject that α = 0 (although he argues

that a model with some forward-looking behavior has more realistic dynamics), and Rudebusch (2000)

who estimates an equation like (14) for the U.S. using quarterly data 1968:III to 1996:IV, and obtained

the estimate α = 0.29.
26The model has been solved numerically, assuming that {β, κ, ρ} = {0.96, 0.2, 0.5} .
27In Figure 7 we only show j = 2, but in separate graphs (not reported in this version of the paper)

higher values of j were tried, and they generated frontiers that move closer to the origin as j was increased.
28We are now implicitly using the same welfare criterion as in Section 3. It has recently been brought

to our attention that Steinsson (2000) presents a model with explicit microfoundations which results in

a Phillips curve with inflation persistence. He also derives the correct social welfare function in such an

economy. Ideally, one should use such a welfare measure in this section when comparing the regimes, and

we will explore this possibility in future work.
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falls, and the ordering of the frontiers changes. Generally speaking, as the importance

of expected inflation in the determination of current inflation diminishes, price level tar-

geting provides less favorable outcomes (i.e. the price level frontier begins to move out).

Furthermore, the j = 1 and j = 2 frontiers move closer to each other, eventually almost

coinciding for small values of α. But, as demonstrated in the bottom left-hand panel of

Figure 7 (corresponding to α = 0.4) there are values of α when the j = 2 frontier lies

closest to the origin. Thus, Figure 9 shows that there is a range of values for α where

a two-period average target provides more efficient outcomes than does both a price level

target and a one-period inflation target.

[Figure 7 about here:

Variance frontiers for hybrid model (numerical solutions).]

Thus, the relative merits of price level targeting, inflation targeting and average in-

flation targeting depend critically on the importance of forward-looking behavior in the

Phillips curve. In purely forward-looking specifications of the Phillips curve, price level

targeting provides the most favorable outcome. But as the importance of expected in-

flation diminishes, price level targeting begins to perform more poorly, with inflation

targeting and average inflation targeting starting to provide the better outcomes. For

intermediate values of α average inflation targeting dominates one-period inflation tar-

geting, while for very small values of α there is hardly any difference.

5 Conclusions

In “Optimal Monetary Policy Inertia”, Michael Woodford (1999a) shows that optimal

monetary policy is inertial. In other words, optimal policy responses — and also inflation

and output gaps — are characterized by persistence, even following purely temporary

shocks. These optimal solutions, obtained under commitment, are thus said to exhibit

history dependence.

This paper belongs to a line of research that asks what can be done when commitment

is not possible. The maintained assumption throughout the paper is that the social

optimum is given by inflation targeting under commitment. With this in mind, we ask
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how society should design the mandate delegated to, and implemented (in a discretionary

fashion) by an independent central bank. A recent paper by Vestin (2000) suggests

that, in a purely forward-looking model, a price level target will provide more efficient

outcomes than an inflation target. In this paper we also examine another set of policies,

average inflation targeting, whereby the central bank is instructed to minimize a quadratic

function in the output gap and average inflation measured over j years.

The results of this analysis show that when the Phillips curve has forward-looking

components, a goal for average inflation will provide better outcomes than a ’conventional’

one-period inflation target in the sense of producing variance frontiers that lie closer to the

origin. The basic intuition behind this result is that average inflation targeting introduces

history dependence in expectations. For example, with a target for two-period average

inflation, a positive shock to inflation in one period will lead to expectations of lower-than-

target inflation in the following period. And when the Phillips-curve is forward-looking,

this change in expectations will improve the short-run trade-off faced by the monetary

policymaker.

In purely forward-looking models (or more specifically models in which lagged inflation

rates have no role in the determination of current inflation) average inflation targeting is

dominated by price level targeting. The price level targeting variance frontier lies strictly

inside the frontiers generated by average inflation targeting, even though the latter move

towards the price level targeting frontier as j increases . But we also demonstrate that

in models where the Phillips curve has both forward- and backward-looking components,

there are cases when the average inflation target provides more efficient outcomes than

both ‘ordinary’ inflation targeting and price level targeting.

Thus, the relative merits of price level targeting, inflation targeting and average infla-

tion targeting depend critically on the structural parameters of the economy in general,

and more specifically on the degree of persistence in the Phillips curve. Needless to say,

theoretical and empirical work on these factors remains an important task.
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A Analytical solutions to the simple model

Price level targeting

As shown in Vestin (2000) the model is solved by setting up the value function

V (pt−1,ut) = Et

{
min

xt

[
1

2

(
pt

2 + λ̃ x2
t

)
+ βV (pt,ut+1)

]}
(A.1)

s.t. πt = βπt+1|t + κxt + ut,

ut = ρut−1 + εt.

Using the definition πt ≡ pt − pt−1, the Phillips curve may be rewritten:

pt − pt−1 = β
(
pt+1|t − pt

)
+ κxt + ut,

which solving for xt gives

xt =
1

κ
(1 + β) pt − β

κ
pt+1|t − 1

κ
(pt−1 + ut) . (A.2)

The linear-quadratice structure of the problem ensures that the state variable pt will

follow

pt+1 = at+1pt + bt+1ut+1, (A.3)

(where the coefficients at+1 and bt+1 remain to be determined) implying that

pt+1|t = at+1pt + bt+1ρut. (A.4)

Thus equation (A.2) may be written

xt =
1

κ
(1 + β) pt − β

κ
(at+1pt + bt+1ρut) − 1

κ
(pt−1 + ut) ,

= −1

κ
pt−1 +

1

κ
[1 + β (1 − at+1)] pt − 1

κ
[1 + βρbt+1] ut, (A.5)

or, solving for pt

pt =
κ

1 + β (1 − at+1)
xt +

1

1 + β (1 − at+1)
pt−1 +

1 + βρbt+1

1 + β (1 − at+1)
ut.

Thus
∂pt

∂xt
=

κ

1 + β (1 − at+1)
.
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The first order condition for the problem is:

0 = Et

{
∂pt

∂xt
pt + λxt + β

∂Vt+1

∂pt

∂pt

∂xt

}
.

Here we need a guess for the value function. It is:

V (pt−1,ut) = γ0,t + γ1,tpt−1 +
1

2
γ2,tp

2
t−1 + γ3,tpt−1ut + γ4,tut +

1

2
γ5,tu

2
t

=⇒
Et

∂Vt+1

∂pt
= γ1,t+1 + γ2,t+1pt + γ3,t+1ρut.

Thus we may proceed with the first-order condition:

0 =
κ

1 + β (1 − at+1)
pt + λxt + β

(
γ1,t+1 + γ2,t+1pt + γ3,t+1ρut

)( κ

1 + β (1 − at+1)

)
,

0 =
κ

1 + β (1 − at+1)
pt +

λ

κ
([1 + β (1 − at+1)] pt − pt−1 − [1 + βρbt+1]) ut

+β
(
γ1,t+1 + γ2,t+1pt + γ3,t+1ρut

)( κ

1 + β (1 − at+1)

)
,

and

κ2 + λ [1 + β (1 − at+1)]
2 + κ2βγ2,t+1

κ [1 + β (1 − at+1)]

 pt = − κβγ1,t+1

1 + β (1 − at+1)
+ λ

1

κ
pt−1

+

[
λ [1 + β (1 − at+1)] [1 + βρbt+1] − βγ3,t+1ρκ

2

κ [1 + β (1 − at+1)]

]
ut,

which solving for pt gives

pt = − κ2βγ1,t+1

κ2 + λ [1 + β (1 − at+1)]
2 + κ2βγ2,t+1

+
λ [1 + β (1 − at+1)]

κ2 + λ [1 + β (1 − at+1)]
2 + κ2βγ2,t+1

pt−1

+
λ [1 + β (1 − at+1)] [1 + βρbt+1] − βγ3,t+1ρκ

2

κ2 + λ [1 + β (1 − at+1)]
2 + κ2βγ2,t+1

ut,

=
λ [1 + β (1 − at+1)]

κ2 + λ [1 + β (1 − at+1)]
2 + κ2βγ2,t+1

pt−1 +
λ [1 + β (1 − at+1)] [1 + βρbt+1] − βγ3,t+1ρκ

2

κ2 + λ [1 + β (1 − at+1)]
2 + κ2βγ2,t+1

ut,

The envelope theorem applied to (A.1) gives

γ2,t =
λ

κ2
{1 − [1 + β (1 − at+1)] at} ,

γ3,t =
λ

κ2
{(1 + βρbt+1) − [1 + β (1 − at+1)] bt} .
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Substituting these expressions into the equation for pt above, and comparing with (A.3)

imply the following equations:

at = λ[1+β(1−at+1)]

κ2+λ[1+β(1−at+1)]
2+βλ{1−[1+β(1−at+2)]at+1} ,

bt = λ[1+β(1−at+1)]+βλρ{[1+β(1−at+1)]bt+1−(1+βρbt+1)+[1+β(1−at+2)]bt+1}
κ2+λ[1+β(1−at+1)]2+βλ{1−[1+β(1−at+2)]at+1} .

(A.6)

Thus the solution for pt is

pt = apt−1 + but, (A.7)

where a and b are the stationary solutions to (A.6).

To get an expression for xt, substitute these stationary solution for the equations above

into (A.5) to obtain:

xt = −1

κ
pt−1 +

1

κ
[1 + β (1 − a)] pt − 1

κ
[1 + βρb] ut

= −1

κ
pt−1 +

1

κ
[1 + β (1 − a)] (a pt−1 + but) − 1

κ
[1 + βρb] ut

=
1

κ

[
a + aβ − a2β − 1

]
pt−1 +

1

κ
[b + βb− abβ − 1 − βρb] ut

= −1

κ

[
1 − a− aβ + a2β

]
pt−1 − 1

κ
[1 − b− βb + abβ + βρb] ut

= −1

κ
(1 − a) (1 − aβ) pt−1 − 1

κ
[1 − b (1 + β (1 − a− ρ))] ut,

or

xt = −c pt−1 − dut. (A.8)

Variances

The variance for is πt obtained first by noting that, by (A.7)

πt = (a− 1) pt−1 + but.

Thus

var {πt} = (a− 1)2 var {pt−1} + b2var {ut} + 2 (a− 1) b cov {pt, ut} . (A.9)

Since, by (A.7)

var {pt} = a2var {pt−1} + b2var {ut} + 2ab cov {pt−1, ut} ,
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and

cov {pt−1, ut} = cov {apt−2 + but−1, ρut−1 + εt}
= aρcov {pt−2, ut−1} + bρvar {ut}
⇓

cov {pt−1, ut} =
bρ

1 − aρ
var {ut} ,

(due to stationarity) we can write

var {pt} = a2var {pt−1} + b2var {ut} + 2ab
bρ

1 − aρ
var {ut}

⇓
var {pt} =

b2 (1 + aρ)

(1 − a2) (1 − aρ)
var {ut} ,

Substituting into(A.9) gives

var {πt} =

[
(a− 1)2 b2 (1 + aρ)

(1 − a2) (1 − aρ)
+ b2 + 2 (a− 1) b

bρ

1 − aρ

]
var {ut}

=

[
(1 − a)2 b2 (1 + aρ)

(1 − a2) (1 − aρ)
+ b2 − 2 (1 − a) b2ρ

1 − aρ

]
var {ut}

= b2
(1 − a)

(1 − aρ)

[
(1 + aρ)

(1 + a)
+

(1 − aρ)

(1 − a)
− 2ρ

]
var {ut}

=
2 (1 − ρ)

(1 − aρ) (1 + a)
b2var {ut} .

Similarly, the variance of output is obtainen from (A.8)

var {xt} = c2 var {pt} + d2 var {ut} + 2cd cov {pt−1, ut} .

Substituting in the appropriate expressions we get

var {xt} =

[
b2c2 (1 + aρ)

(1 − a2) (1 − aρ)
+ d2 +

2bcdρ

1 − aρ

]
var {ut} ,

=

[
b2c2 (1 + aρ) + d (1 − a2) [d (1 − aρ) + 2bcρ]

(1 − a2) (1 − aρ)

]
var {ut} .

One period target

In this case the value function may be written

V (ut) = Et

{
min

xt

[
1

2

(
πt

2 + λx2
t

)
+ βV (ut+1)

]}
,

s.t. πt = βπt+1|t + κxt + ut.
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See Clarida, Gali and Gertler (1999).

Two period average target

The analytical solution for the case of a two-period average in the loss function is obtained

in the following manner is similar to the price level targeting case. The value function is

Vt (πt−1, ut) = min
xt

1

2

[(
πt + πt−1

2

)2

+ λx2
t

]
+ βEt [Vt+1 (πt, ut+1)] ,

s.t. πt = βπt+1|t + κxt + ut. (A.10)

The state variable will follow a linear path (which follows from the fact that a quadratic

loss function implies that the control variable will be a linear function of the state vari-

ables), i.e. πt+1 = at+1πt + bt+1ut+1, which implies

πt+1|t = at+1πt + bt+1ρut. (A.11)

Substitute (A.11) into (A.10) and solve for xt:

xt =
1 − βat+1

κ
πt − 1 + βρbt+1

κ
ut. (A.12)

Solving for πt we obtain

πt =
κ

1 − βat+1
xt +

1 + βρbt+1

1 − βat+1
ut. (A.13)

The first order condition for the optimization problem is:(
πt + πt−1

2

)
1

2

∂πt

∂xt

+ λxt + βEt

[
∂Vt+1 (πt, ut+1)

∂πt

∂πt

∂xt

]
= 0.

In order to proceed we guess a value function:

Vt (πt−1, ut) = γ0,t + γ1,tπt−1 +
1

2
γ2,tπ

2
t−1 + γ3,tπt−1ut + γ4,tut +

1

2
γ5,tu

2
t .

Thus

Et

[
∂

∂πt
Vt+1 (πt, ut+1)

]
= Et

[
γ1,t+1 + γ2,t+1πt + γ3,t+1ut+1

]
= γ1,t+1 + γ2,t+1πt + γ3,t+1ρut,
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meaning that γ0,t, γ4,t and γ5,t will be of no interest. Furthermore, γ1,t+1 concerns only

the level of inflation, why we set it to zero. Continuing with the first-order conditions
[
πt

4
+

πt−1

4
+ β

(
γ2,t+1πt + γ3,t+1ρut

)] ∂πt

∂xt
+ λxt = 0,[(

1

4
+ βγ2,t+1

)
πt +

1

4
πt−1 + βγ3,t+1ρut

]
κ

1 − βat+1
+ λxt = 0,

where the last line follows from (A.13). Inserting (A.12) into the above equation gives

0 =
[(

1

4
+ βγ2,t+1

)
πt +

1

4
πt−1 + βγ3,t+1ρut

]
κ

1 − βat+1
+

+λ

(
1 − βat+1

κ
πt − 1 + βρbt+1

κ
ut

)
,

0 =

κ
(
1 + 4βγ2,t+1

)
4 (1 − βat+1)

+
λ (1 − βat+1)

κ

πt +
κ

4 (1 − βat+1)
πt−1

+
βγ3,t+1ρκ

2 − λ (1 + βρbt+1) (1 − βat+1)

κ (1 − βat+1)
ut,

0 =

κ2
(
1 + 4βγ2,t+1

)
+ 4λ (1 − βat+1)

2

4κ (1 − βat+1)

πt +
κ

4 (1 − βat+1)
πt−1

+
βγ3,t+1ρκ

2 − λ (1 + βρbt+1) (1 − βat+1)

κ (1 − βat+1)
ut.

Solving for πt gives

πt = − κ2

κ2
(
1 + 4βγ2,t+1

)
+ 4λ (1 − βat+1)

2
πt−1

+
4λ (1 + βρbt+1) (1 − βat+1) − 4βγ3,t+1ρκ

2

κ2
(
1 + 4βγ2,t+1

)
+ 4λ (1 − βat+1)

2
ut. (A.14)

From the guessed value function we have

∂Vt−1 (πt−1, ut)

∂πt−1

= γ2,tπt−1 + γ3,tut.

Also, the envelope theorem applied on the value function gives

∂Vt−1 (πt, ut+1)

∂πt−1
=

πt + πt−1

4

=
atπt−1 + btut + πt−1

4

=
(1 + at)

4
πt−1 +

bt

4
ut.
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Thus it must be that

γ2,t+1 =
1 + at+1

4
,

γ3,t+1 =
bt+1

4
.

Substituting these expressions into (A.14) then gives

πt = − κ2

κ2 (1 + β (1 + at+1)) + 4λ (1 − βat+1)
2πt−1+

4λ (1 + βρbt+1) (1 − βat+1) − βbt+1ρκ
2

κ2 (1 + β (1 + at+1)) + 4λ (1 − βat+1)
2 ut.

Since πt = atπt−1 + btut, we arrive at

at = − κ2

κ2 (1 + β (1 + at+1)) + 4λ (1 − βat+1)
2 ,

bt =
4λ (1 − βat+1) (1 + βρbt+1) − βρκ2bt+1

κ2 (1 + β (1 + at+1)) + 4λ (1 − βat+1)
2 ,

i.e. two equations that define a simultaneous recursion for a and b. The stationary

solutions will then imply

πt = aπt−1 + but. (A.15)

In order to compare this solution with the other cases, it is convenient to define (a− 1) ≡
a. Thus we will use

πt = (a− 1)πt−1 + but. (A.16)

To get an expression for xt, use (A.12):

xt =
1 − (a− 1)β

κ
πt − 1 + βρb

κ
ut

=

(
1 − (a− 1) β

κ

)
((a− 1) πt−1 + but) − 1 + βρb

κ
ut

=

(
(a− 1) (1 − (a− 1)β)

κ

)
πt−1 +

b (1 − β (a− 1)) − 1 − βρb

κ
ut

= −
(

(a− 1) (aβ − β − 1)

κ

)
πt−1 −

(
1 − b (1 + β (1 − a− ρ))

κ

)
ut,

or

xt = −cπt−1 − dut.
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Variances

To find the variance of inflation, note that

var {πt} = (a− 1)2 var {πt−1} + b2var {ut} + 2 (a− 1) b cov {πt−1, ut} .

Since

cov {πt−1, ut} = cov {(a− 1)πt−2 + but−1, ρut−1 + εt}
= (a− 1) ρ cov {πt−2,, ut−1} + bρ var {ut}
⇓

cov {πt−1, ut} =
bρ

1 − aρ + ρ
var {ut} ,

due to stationarity. Thus

a (2 − a) var {πt} =

[
b2 +

2 (a− 1) b2ρ

1 − (a− 1) ρ

]
var {ut} ,

var {πt} =

[
1 + aρ− ρ

(1 − aρ + ρ) a (2 − a)

]
b2var {ut} .

Next, to find the variance of output, note that

var {xt} = c2 var {πt−1} + d2 var {ut} + 2cd cov {πt−1, ut}
=

[
1 + aρ− ρ

(1 − aρ + ρ) a (2 − a)
b2c2 + d2 +

2bcdρ

(1 − aρ + ρ)

]
var {ut}

=

[
b2c2 (1 + aρ− ρ) + a (2 − a) d [d (1 − aρ + ρ) + 2bcρ]

(1 − aρ + ρ) a (2 − a)

]
var {ut} .
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B State-space representation and solution

General form

Following Söderlind (1999), we wish to express the problem in the following general form.

The economy evolves according to[
z1,t+1

Etz2,t+1

]
= A

[
z1,t

z2,t

]
+ Bxt +

[
εt+1

0

]
,

where z1,t is a vector of n1 predetermined (backward looking) variables, z2,t a vector of

n2 non-predetermined (forward looking variables), xt the policy instrument, and εt+1 the

vector of innovations to z1,t with covariance Σ.

The policy maker has a loss function of the form

L0 = E0

∞∑
t=0

βt (z′tQzt + 2z′tUxt + x′
tRxt) ,

where the vector zt ≡ (z1,t, z2,t). It is sometimes convenient to define a vector Yt of goal

variables, whereby the period loss function may alternatively be expressed as

Lt = Y ′
t KYt.

The vector Yt of goal variables is a linear combination of the zt and xt vectors:

Yt = Gzzt + Gxxt.

The solution assuming discretionary decision-making may be expressed as

z1,t+1 = M z1,t + εt+1,

where M is an n1 × n1 matrix,

z2,t = C z1,t,

where C is an n2 × n1 matrix, and the control variable will be

xt = F z1,t.
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The Simple Model in Section 3

The Phillips curve may be written

pt − pt−1 = β
(
pt+1|t − pt

)
+ κxt + ut,

which, solving for pt+1|t gives

pt+1|t =
1 + β

β
pt − 1

β
pt−1 − κ

β
xt − 1

β
ut.

Thus the state-space representation of the model may be written as ut+1

pt

pt+1|t

 =

 ρ 0 0
0 0 1

− 1
β

− 1
β

1+β
β


 ut

pt−1

pt

+

 0
0
−κ

β

 xt +

 εt+1

0
0

 .
Hence

z1,t ≡
[

ut

pt−1

]
, z2,t ≡ pt

i.e. the price level is the forward-looking variable and the exogenous shock and the lagged

price level are the predetermined variables. If price-level targeting is the objective, the

loss function is

LPT
t ≡ p2

t + λPTx2
t

=
[
ut pt−1 pt

]  0 0 0
0 0 0
0 0 1


 ut

pt−1

pt

+ λPTx2
t

= z′tQ
PT zt + x′

tλ
PTxt.

If the objective is to target the one-period inflation rate, the loss funtion may be written

LIT1
t ≡ π2

t + λIT1x2
t

=
[
ut pt−1 pt

]  0 0 0
0 1 −1
0 −1 1


 ut

pt−1

pt

+ λIT1x2
t

= z′tQ
IT1zt + x′

tλ
IT1xt.

In order to account for average inflation targeting (i.e j > 1), is it convenient to rewrite

the state-space representation as follows. Insert a vector of lagged price levels into the

state vector:

z̃t ≡
[
ut pt−j pt−j+1 · · · pt−1 pt

]′
,
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which means that z̃t will be a (2 + j) × 1 vector. The general state-space representation

is then

z̃t+1 = Aj z̃t + Bjxt + εj,t+1, (B.1)

where the matrices Aj , Bj and εj,t+1 will vary depending on the value of j (zeros and ones

are added in the appropriate places). For example, if j = 4, then

z̃t+1 = A4z̃t + B4xt + ε4,t+1,

=



ρ 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− 1
β

0 0 0 − 1
β

1+β
β





ut

pt−4

pt−3

pt−2

pt−1

pt


+



0
0
0
0
0
−κ

β


xt +



εt+1

0
0
0
0
0


.

The loss function is now easily expressed in terms of this ’extended’ state vector:

LIT j (πj,t, xt) = z̃′tQj z̃t + x′
tλxt,

where

Qj ≡



0 01×(j+1)

0(j+1)×1

1
qj

0 · · · − 1
qj

0 0 · · · 0
... ... . . . . . .

− 1
qj

0 · · · 1
qj

 ,

and where qj = j2. For example, if j = 4, then

LIT4 (π4,t, xt) =
[
1

4
(pt − pt−4)

]2
+ λx2

t

=
[
ut pt−4 pt−3 pt−2 pt−1 pt

]


0 0 0 0 0 0
0 1

16
0 0 0 − 1

16

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 − 1

16
0 0 0 1

16





ut

pt−4

pt−3

pt−2

pt−1

pt


+ λx2

t

= z̃′tQ4z̃t + x′
tλxt.
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C The gains from commitment in forward-looking models

The influential paper by Barro and Gordon (1983) explained how an inflation bias could

arise when the central bank had an incentive to spring surprises on the private sector. They

used a Neo-Classical supply curve (i.e. with predetermined expectations) and showed

that a discretionary solution to the central banks problem resulted in an outcome with

the same level of output, but a higher level of inflation than in the commitment solution.

In forward-looking models, another kind of inefficiency arises, which is independent of

the central bank’s output goal. To provide an illustration of this so-called stabilization

bias, consider the model used in Section 3. Private sector behavior is summarized by the

New-Keynesian Phillips Curve

πt = βπt+1|t + κxt + ut, (C.1)

where the inflation rate πt is determined by today’s value of the output gap xt, expected

future inflation πt+1|t, and an exogenous shock ut; β and κ are positive coefficients. Here

we will assume that the exogenous shock is serially uncorrelated. As before, the output

gap is considered as being the instrument of the central bank. The central bank’s objective

is to minimize an infinite sum of discounted losses,

min
{xτ}∞τ=t

Et (1 − β)
∞∑

τ=t

βτ−tLτ , (C.2)

where the period loss function is

L (πt, xt) ≡ 1

2

[
(πt − π∗)2 + λx2

t

]
.

Consider now the response of inflation and output to a unit shock to ut. Figure C1

shows these impulse-responses for two cases, commitment (the dotted line) and discretion

(the solid line). Consider first the case of discretion. Since the shock is temporary,

discretionary decision-making will result in inflation and output being back on target

from t = 2 and onwards. After all, at that point the shock is a bygone, and there is no

reason to take it into consideration in a discretionary setting – this is the time-consistent

solution. The only period in which output and inflation deviate from their steady-state
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values is the period in which the shock occurs. Output is depressed in order to minimize

(with due consideration to output variability, i.e. the value of the preference parameter

λ matters here) the deviation of inflation from its target.

However, this is not the most efficient response, i.e. it does not minimize the loss

function. The efficient response is given by the commitment responses. As is shown in

Figure C2, output is kept below the natural level for several periods following the shock,

since this will produce inflation rates that are below target – this is the much-emphasized

persistence induced by commitment.29 And the anticipation of these negative inflation

rates improves the monetary policy trade-off today. To see this, consider equation (C.1):

when the shock ut takes on a positive value, inflationary expectations πt+1|t fall, which in

turn helps the policy-maker – output does not have to be depressed as much, and inflation

today does not rise as much, compared to the discretion case.

[Figure C1 about here.]

The milder responses of output and inflation under commitment compared to discre-

tion as demonstrated in Figure C1 also implies that the variances of inflation and output

are lower under commitment. Figure C2 displays the two variance frontiers (the convex

curves), and the variance frontiers obtained with a price level target and an average in-

flation target, plus a few negatively sloped straight lines that are to be explained below.

The commitment frontier lies closest to the origin (and as mentioned in the main text,

the price level target lies very close). The desireability of being closest to the origin can

be seen in several equivalent ways. Easiest is perhaps to say that for any given level of

inflation variance, output variance will be lower with commitment than with discretion,

which given the form of the loss function results in lower overall loss.

[Figure C2 about here.]

An equivalent proof starts from a convenient way of rewriting the central bank’s ob-

jective function. As β → 1 the scaled loss function in (C.2) approaches the unconditional

mean of the period loss

E {Lt} = var{π} + λvar{x}. (C.3)
29To emphasize this point: even though the shock is temporary, the responses are persistent.
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In var{π}−var{x} space equation (C.3) describes what may be labelled an iso-loss curve.

Thus it gives combinations of var{π} and var{x} that imply the same level of loss. The

slope of the iso-loss is -λ−1. Figure C2 provides three examples of iso-losses.

Consider the iso-loss curve closest to the origin.30 This straight line represents the

preferences of the central bank, while the convex (commitment) frontier may be inter-

preted as the opportunity set. Thus points outside the variance frontier are inefficient,

while points inside it are infeasible. As usual, the optimal solution is to be found at the

point of tangency. The overall loss at this optimal point can be read off the horizontal

axis at the point where the iso-loss intersects it.

Consider next the iso-loss farthest from the origin, which is tangent to the discretion

frontier. Following this iso-loss to the horizontal axis, it is easily seen that the discretion

solution does indeed result in a higher overall loss (the iso-loss intersects the horizontal

axis to the right of the first iso-loss curve). Finally, the intermediate iso-loss, tangent to

the j = 2 variance frontier, shows that average inflation targeting provides an overall loss

that is lower than j = 1.

30This line has been constructed assuming a particular value of λ.
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Figure 1: Variance Frontiers in Simple New-Keynesian Model
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Figure 2: Dynamic response of inflation

Figure 3: Dynamic response of output
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Figure 4: Discretion: Variance frontiers with different modified loss functions

41



Figure 5: Dynamic response of inflation under discretion

Figure 6: Dynamic response of output under discretion.
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Figure 7: Hybrid model. Variance frontiers for different values of α.
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Figure C.1: Dynamic responses following shock. Commitment and discretion.
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Figure C.2: Variance frontiers and iso-losses (when λ = 0.2)
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