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Abstract
We model a regression density nonparametrically so that at each value of the covariates the
density is a mixture of normals with the means, variances and mixture probabilities of the com-
ponents changing smoothly as a function of the covariates. The model extends existing models
in two important ways. First, the components are allowed to be heteroscedastic regressions as
the standard model with homoscedastic regressions can give a poor �t to heteroscedastic data,
especially when the number of covariates is large. Furthermore, we typically need a lot fewer
heteroscedastic components, which makes it easier to interpret the model and speeds up the
computation. The second main extension is to introduce a novel variable selection prior into
all the components of the model. The variable selection prior acts as a self-adjusting mech-
anism that prevents over�tting and makes it feasible to �t high-dimensional nonparametric
surfaces. We use Bayesian inference and Markov Chain Monte Carlo methods to estimate the
model. Simulated and real examples are used to show that the full generality of our model is
required to �t a large class of densities.
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1. Introduction

Nonlinear and nonparametric regression models are widely used in statistics, see

e.g. Ruppert, Wand and Carroll (2003) for an introduction. Our article considers the

general problem of nonparametric regression density estimation, i.e., estimating the

whole predictive density while making relatively few assumptions about its functional

form and how that functional form changes across the space of covariates. This is an

important problem in many applications such as the analysis of �nancial data where

accurate estimation of the left tail probability is often the �nal goal of the analysis

(Geweke and Keane, 2007), and so called inverse problems in machine learning, where

the predictive density is typically highly nonlinear and multimodal (Bishop, 2006).

Our approach generalizes the popular �nite mixture of Gaussians model (McLachlan

and Peel, 2000) to the regression density case. Our model is an extension of the Mixture-

of-Experts (ME) model (Jacobs, Jordan, Nowlan and Hinton (1991); Jordan and Jacobs

(1994)), which has been frequently used in the machine learning literature to �exibly

model the mean regression. The ME model is a mixture of regressions (experts) where

the mixing probabilities are functions of the covariates. This model partitions the space

of covariates using stochastic (soft) boundaries. The early machine learning literature

used ME models with many simple experts (constant or linear).

Some recent statistical literature takes the opposite approach of using a small number

of more complex experts. The most common approach has been to use basis expansion

methods (polynomials, splines) to allow for nonparametric experts, see e.g. Wood,

Jiang and Tanner (2002). One motivation of the few-but-complex approach comes from

a growing awareness that mixture models can be quite challenging to estimate and

interpret, especially when the number of mixture components is large (Celeux, Hurn

and Robert (2000), Geweke (2007)). It is then sensible to make each of the experts very

�exible and to use extra experts only when they are required.
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The ME model with homoscedastic experts can in principle �t heteroscedastic data

if the number of experts is large enough. See for example Jiang and Tanner (1999a,b)

for some results on approximating the mean function and the density of a generalized

linear model by a ME, but it is unlikely to be the most e¢ cient model for that situation.

Simulations in Section 3 show that the ME model can have di¢ culties in modelling

heteroscedastic data, and that its predictive performance quickly deteriorates as the

number of covariates grows. If the experts themselves are heteroscedastic, we would

clearly need fewer of them.

Our article generalizes the ME model by using Gaussian heteroscedastic experts with

the three components of each expert, i.e. the means, variances and the mixing prob-

abilities, modeled �exibly using spline basis function expansions. We take a Bayesian

approach to inference with a prior that allows for variable selection among the covariates

in the mean, variance and expert probabilities. The centering of the spline basis func-

tions (knots) is therefore determined automatically from the data as in Smith and Kohn

(1996), Denison, Mallick and Smith (1998) and Dimatteo, Genovese and Kass (2001).

This is particularly important in ME models as it allows the estimation method to auto-

matically downweight or remove basis functions from an expert in the region where the

expert has small probability. Such basis functions are otherwise poorly identi�ed and

may cause instability in the estimation and over�tting. In particular, variable selection

makes the Metropolis-Hastings (MH) steps computationally tractable by reducing the

e¤ective number of parameters at each iteration. The variable selection prior we use for

the component means and variances is novel because it takes into account the size of

the probability of each expert when deciding whether to include a basis function in an

expert. The variable selection prior is very e¤ective at simplifying the model and in par-

ticular allows us to reach the linear homoscedastic model if such a model is warranted.

Section 3 illustrates the methods using real and simulated examples which show that

each aspect of our model may be necessary to obtain a satisfactory and interpretable �t
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of the predictive distribution. We use the cross-validated log of the predictive density

for model comparison and for selecting the number of experts in the model to reduce

sensitivity to the prior.

The �rst Bayesian paper on ME models is Peng, Jacobs and Tanner (1996) who

used the random walk Metropolis algorithm to sample from the posterior. Wood et al.

(2002) and Geweke and Keane (2007) propose more elaborate homoscedastic Gaussian

ME approaches. Leslie, Kohn and Nott (2007) propose a model of the conditional

regression density using a Dirichlet Process (DP) mixture prior whose components do

not depend on the covariates. Green and Richardson (2001) discuss the close relationship

between �nite mixture models and DP mixtures. A more detailed discussion of these

estimators is given in Section 2. An alternative approach to regression density estimation

is given by De Iorio, Muller, Rosner and MacEarchen (2004), Dunson, Pillai and Park

(2007) and Gri¢ n and Steel (2007) who use a dependent DP prior. An attractive

feature of this prior is that di¤erent partitions of the data can have di¤ering numbers

of components. However, it is unclear to us how to extend their implementations in

a practical way to allow for �exible heteroscedasticity, especially when the number of

covariates is moderate to large. Our simulations in Section 3 show that such extensions

are necessary in some examples. To carry out the inference we develop e¢ cient MCMC

samplers which compare favourably to existing MCMC samplers in the (homoscedastic)

ME case as well. A comparison with existing samplers is given in Appendix D.

2. The Mixture of Heteroscedastic Experts Model

2.1. The model. Regression density estimation entails estimating a sequence of densi-

ties, one for each covariate value, x. A single density can usually be modelled adequately

by a �nite mixture of Gaussians. For example, the simulations in Roeder andWasserman

(1997) suggest that mixtures with up to 10 components can model even highly complex

univariate densities. To extend the basic mixture of Gaussians model to the regression

density case we need to make the transition between densities smooth in x. We propose
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that the means, variances and the mixing probabilities of the mixture components vary

smoothly across the covariate space according to theMixture of Heteroscedastic Experts

(MHE) model

(2.1) yij(si = j; vi; wi) � N [�0jvi; �
2
j exp(�

0
jwi)]; (i = 1; :::; n; j = 1; :::;m);

where si 2 f1; :::;mg is an indicator of group/expert membership for the ith observa-

tion, vi is a p-dimensional vector of covariates for the conditional mean of observation

i with coe¢ cients, �j, that vary across the m experts, and wi is an r-dimensional

vector of covariates for the conditional variance of observation i. Expert j�s responsi-

bility/competence for the ith observation is modelled by a multinomial logit (softmax)

gating function

(2.2) Pr(si = jjzi) = �j(zi; 
) =
exp(
0jzi)Pm
k=1 exp(


0
kzi)

;

where zi is a q-dimensional vector of regressors for observation i, and 
1 = 0 for iden-

ti�cation. The three sets of regressors, vi; wi, and zi can be (high-dimensional) basis

expansions (polynomials, splines etc.) of other predictors. For example, basis expansion

in the gating function gives us the �exibility to vary the number of e¤ective mixture

components quite dramatically across the covariate space. In the case of splines, let

�vk; �
w
k and �

z
k denote the position of the kth knot in the mean, variance and gating

functions, respectively. We shall denote the original vector of covariate observations

from which the basis expansions (vi; wi; zi) were constructed by xi.

Many of the models in the nonparametric literature are special cases of the MHE

model in (2.1) and (2.2). The model in Wood, Jiang and Tanner (2002) is the special

case with �j = 0 and �j = �, for j = 1; :::;m. The model in Geweke and Keane

(2007) is obtained if we set �j = 0 for all j, and use polynomials expansions of the

covariates. Both of these articles use a multinomial probit gating function. This means

that the expert probabilities must be computed by numerical integration, which makes
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the evaluation of predictive densities/likelihoods very time-consuming. The model in

Leslie et al. (2007) is a heteroscedastic regression with a nonparametric modelling of the

disturbances using a Dirichlet process mixture prior. This can be viewed as a special

case of the MHE model with �j = � for all j, mixing probabilities that do not depend

on x, and means and (log) variances of the component that di¤er by constants for all

x. Bishop�s (2006) mixture density network is a related model in the neural network

�eld. The mixture density network model is more restrictive than the MHE, see Bishop

(2006) for details.

We will also allow for automatic variable selection in all three sets of covariates. Let

V denote a p � m matrix of zero-one indicators for the mean covariates in v. If the

element in row k, column j of V is zero, then the coe¢ cient on the kth v-covariate in

the jth expert is zero (�kj = 0) ; if the indicator is one, then �kj is free to take any

value. This is best viewed as a two-component mixture prior for �kj with one of the

components degenerate at �kj = 0. Similarly, let W (r�m) and Z (q�m) denote the

variable selection indicators for the variance and gating functions, respectively.

There are at least two restrictions on the model that are useful in practical work.

First, we may restrict the heteroscedasticity to be the same across experts: �1 = ::: =

�m = �. Given that we allow for nonparametric variance and gating functions, the model

will often be �exible enough even under this restriction. Second, we may restrict the

covariate selection indicators to be the same across experts. That is, either a covariate

has a non-zero coe¢ cient in all of the experts or its coe¢ cient is zero for all experts.

Our posterior sampling algorithms handle both types of restrictions.

We use the following notation. Let Y = (y1; :::; yn)0 denotes the n-vector of responses,

and X = (x1; :::; xn)
0 the n�px dimensional covariate matrix. Let V = (v1; :::; vn)0;W =

(w1; :::; wn)
0 and Z = (z1; :::; zn)0 denote the n� p, n� r and n� q dimensional matrices

of covariates expanded from X. The covariates are standardized to zero mean and unit

variance to simplify the prior elicitation. Let s = (s1; :::; sn)
0 denote the n-vector of
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expert indicators for the full sample. Furthermore, de�ne the p � m matrix of mean

coe¢ cients, � = (�1; :::; �m), and similarly the r � m matrix � = (�1; :::; �m) with

heteroscedasticity parameters. The corresponding disturbance variances are collected

in �2 = (�21; :::; �
2
m)

0. De�ne 
 = (
02; :::; 

0
m)

0 to be the q(m � 1) vector of multinomial

logit coe¢ cients.

2.2. The prior distribution and variable selection. The prior decomposes as

p(�; �2; �; 
; s;V ;W ;Z) = p(�; �2;V j 
)p(�;Wj
)p(
;Z; s):

Consider �rst p(�; �2;V j 
). We assume a priori that the coe¢ cients are independent

between experts. Let V = (V1; :::;Vm), where Vj contains the variable selection indi-

cators for the jth expert. Let �Vj and �Vcj denote the subvectors of �j with non-zero

coe¢ cients and zero coe¢ cients, respectively. The prior for expert j is then

�2j � IG( 1j;  2j)

�Vj jVj; �2j � N(0; � 2�j�
2
jH

�1
� )

and IG denotes the inverse Gamma distribution and �Vcj jVj is the zero vector with

probability one. H� is a positive de�nite precision matrix, often equal to the identity

matrix or a scaled version of the cross-product moment matrix V 0V . The prior for

variable inclusion/exclusion has a novel form to deal with a problem that has gone

unnoticed in the nonparametric ME literature. An a priori positioning of a knot at

location � in covariate space runs the risk that some of the experts may have very low

competence in the neighborhood of that point (�j(�; 
) � 0 for at least some j). The

coe¢ cients for that knot will then be poorly estimated, or may even be unidenti�ed, for

those low-competence experts. To deal with this problem, we use the prior

(2.3) Vkjj
 � Bern[!��j(�
v
k; 
)]; (k = 1; :::; p; j = 1; :::;m);
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where 0 � !� � 1, and Vkj are assumed to be a priori independent conditional on


. Note how the prior inclusion probability decreases as the expert�s responsibility for

the knot decreases. In the limit where the jth expert has zero responsibility for �vk,

that knot is automatically excluded from expert j with probability one. The variable

indicators for covariates other than those generated by the knots have prior Bern(!�).

It is possible to estimate !� as in for example Kohn, Smith and Chan (2001), but it

will require an extra MH step.

The prior on the variance function is essentially of the same form as the prior on the

mean function:

�Wj
jWj � N(0; � 2�jH

�1
� )

Wkjj
 � Bern[!��j(�
w
k ; 
)]; (k = 1; :::; r, j = 1; :::;m):

The prior on the gating function decomposes as

p(
;Z; s) = p(sj
;Z)p(
jZ)p(Z):

The variable indicator in Z are assumed to be iid Bern(!
). Let 
Z denote the non-zero

coe¢ cients in the gating function for a given Z. The prior on 
 is then assumed to be

of the form


Z jZ � N(0; � 2
H
�1

 );

and 
Zc = 0 with probability one. p(sj
;Z) is given by the multinomial logit model in

(2.2).

2.3. Bayesian inference and model comparison. We adopt a Bayesian approach

to inference using MCMC sampling from the joint posterior distribution of the model

parameters. Appendices A to C describe two e¢ cient algorithms which automatically

include variables selection in all three sets of covariates: mean, variance and gating.
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Appendix D shows that our algorithms compare favorably to existing samplers that

have been proposed for the (homoscedastic) ME model.

Ideally we would like to use the marginal likelihood as a basis for model comparison.

It is well known however that the marginal likelihood is very sensitive to the choice of

prior, especially when the prior is not very informative, see e.g. Kass (1993) for a general

discussion and Richardson and Green (1997) in the context of density estimation. By

sacri�cing a subset of the observations to update/train the vague prior we remove much

of the dependence on the prior. It also gives a better assessment of the predictive

performance that can be expected for future observations, and simpli�es computations.

To deal with the arbitrary choice of which observations to use for training and testing,

we use B-fold cross-validation of the log predictive density score (LPDS):

LPDS = B�1
BX
b=1

ln p(~ybj~y�b; x);

where ~yb contains the nb observations in the bth test sample, ~y�b denotes the remaining

observations and p(~ybj~y�b; xi) =
R Q

i2Tb p(yij�; xi)p(�j~y�b)d�, where Tb is the index set

for the observations in ~yb. Here we have implicitly assumed independent observations

conditional on � and the covariates, but see also the time series example in Section

3.4. The LPDS is easily computed by averaging
Q

i2Tb p(yij�; xi) over the posterior

draws from p(�j~y�b). This can be computed from B complete runs with the posterior

simulator, one for each training sample. Alternatively, importance sampling can be used

to compute the LPDS using only draws from the full posterior p(�jy) (Gelfand, 1995).

This leads to the estimate p̂(~ybj~y�b; x) = 1=[N�1PN
i=1fp(~ybjxb; �

(i))g�1], for b = 1; :::; B,

where f�(i)gNi=1 are the MCMC draws from the full posterior p(�jy).

One way to calibrate the LPDS is to transform a di¤erence in LPDS between two

competing models into a Bayes factor. One can then use Je¤reys�(1961) well-known

rule-of-thumb for Bayes factors to assess the strength of evidence. It should be noted

however that the original Bayes factor evaluates all the data observations, whereas
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the cross-validated LPDS is an average over the B test samples. The Bayes factor is

therefore roughly B times more discriminatory than the LPDS; this is the price paid by

the LPDS for using most of the data to train the prior. Other authors have proposed

summing the log predictive density over the B test samples (see Geisser and Eddy (1979)

for the case with B = n, and Kuo and Peng (2000) for B < n), which would multiply

any LPDS di¤erence by a factor B. We have chosen not to do so as the LPDS can then

no longer be calibrated by Je¤reys scale of evidence.

3. Empirical illustrations

3.1. Inverse Problem. Our �rst example is a prototype of an inverse problem from

robotics, e.g. how to set the angles of a robot arm to move the end e¤ector to a speci�c

position. Bishop (2006) generates data from the following simple model to illustrate

such a problem: ai = bi + 0:3 sin(2�bi) + ui, where bi are equally spaced points on the

interval [0; 1] and ui
iid� U(0; 1). Now, let yi = bi and xi = ai. We generated 1000

observations from this model and �tted several di¤erent MHE models to it. The data

are plotted in the �rst column of Figure 1. The prior �� = � � = 10, � 
 = 1000 (the

choice of � 
 is explained below); and  1 =  2 = 0:01 (in the IG prior for the �2j�s)

was used for all models. We used truncated quadratic splines (Hastie, Tibshirani and

Friedman, 2003) with 20 equally spaced knots, and variable selection among the knots

with inclusion probabilities !� = !� = !
 = 0:2. Figure 1 displays the estimated 95%

Highest Posterior Density (HPD) intervals in the predictive distribution, the gating

function and the predictive standard deviation as a function of x for four di¤erent

models. The HPD intervals of the true density (obtained by simulation) are the black

thin lines in the �rst column of Figure 1. The seemingly odd behavior of the intervals at

points in covariate space where the number of modes of the density is changing (e.g. at

x � 0:27) is an artifact of the HPD interval construction, the actual predictive densities

are well behaved. The �rst row displays the results for the nonparametric MHE with

a single expert, which clearly is not �exible enough to cannot capture the true density
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or the standard deviation. The MHE(3) model in the second row of Figure 1 does an

excellent job in capturing the true density and standard deviation. The same model is

�tted in the third row of Figure 1, but with the knots excluded in the gating function

(the mean and variance are still nonparametric). The terrible �t of this model clearly

demonstrates the importance of a �exible gating function. In fact, with a nonparametric

gating function it is important that � 
 is not made too small, for then the gating function

cannot change rapidly enough to �t the data (hence the choice of � 
 = 1000 for this data

set). Finally, the last row of Figure 1 again analyzes the MHE(3) with nonparametric

mean, variance and gating function, but this time without knot selection. As expected,

this model is very adaptive, but the �t is too wiggly. Note also that a smaller smoothing

parameter (� 
) is not a solution here as that would not give us enough �exibility in the

regions where this is needed. Estimating � 
 will not help here either.

3.2. Simulated heteroscedastic data. We now investigate how well the ME model

with homoscedastic experts can capture heteroscedastic data in �nite samples, and in

particular how this ability depends on the number of covariates. We simulated data from

a single linear heteroscedastic expert with 1; 2; 3 and 5 additive covariates generated

uniformly in the hypercube [�1; 1]p. A zero mean was used to isolate the e¤ects of the

heteroscedasticity. The heteroscedasticity parameters were set to � = (�2;�1; 0; 1; 2) in

the model with 5 covariates, � = (�2;�1; 0) in the model with 3 covariates, � = (1;�1)

in the model with two covariates and � = 1 in the model with a single covariate. We

used � = 0:1 in all simulations. For each model we generated 25 data sets, each with

a 1000 observations, from the DGP, and then �tted ME and MHE models with linear

experts. We use cross-validation (see Section 2.3) here even if we know the true DGP

to simplify the comparisons of strength of evidence with the real data examples later

in this section. The prior with �� = � � = � 
 = 10 and  1 =  2 = 0:01 was used

for all models. Variable selection was not used for simplicity. Both the ME and MHE

models were �t with one to �ve experts. Figure 2 displays box plots of the di¤erence
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in LPDS between the ME models with a given number of experts and the estimated

MHE(1) model. With a single covariate the predictive performance of the ME models

with m � 3 is fairly close to that of MHE(1). As the number of covariates grows, the

ME model has increasing di¢ culty in �tting the data, relative to the MHE(1) model,

and it seems that its predictive performance cannot be improved by adding more than

�ve experts. There are already some signs of over�tting with �ve experts. Even with

two covariates the evidence is decisively in favor of the MHE(1) model (Je¤reys, 1961).

We also simulated data from a model with 10 covariates (not shown), and the results

followed the same trend: the performance of the ME relative to the MHE(1) was much

inferior to the case with �ve covariates.

We also investigated the consequences of �tting an MHE model when the true DGP is

an ME model. 250 data sets were simulated from a �ve-covariate ME(2) model with the

coe¢ cients in � generated independently from the N(0; 1) distribution (i.e. a new � for

each data set). The gating coe¢ cients in the DGP were �xed to 
 = (1; 1;�1; 2; 0; 0).

We then �tted the ME(2) and MHE(2) models using 5-fold cross-validation exactly as

above. The ME(2) had a higher LPDS than the MHE(2) in 91.6% of the generated

data sets, but the di¤erences in LPDS were typically very small. A 95% interval for the

di¤erence in LPDS between the two models (LPDSMHE-LPDSME) ranged from�1:368

to 0:366, with a median of �0:640, suggesting that the over-parametrized MHE(2) had

at best only a marginally worse predictive performance than the true ME(2) model.

Note also that variable selection could have been used to exclude covariates in the

variance function of MHE, which should improve its performance relative to the ME

model.

3.3. LIDAR data. Our �rst real data set comes from a technique that uses laser-

emitted light to detect chemical compounds in the atmosphere (LIDAR, LIght Detection

And Ranging, see Holst et al. (1996)). The response variable (logratio) consists of

221 observations on the log ratio of received light from two laser sources: one at the
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resonance frequency of the target compound, and the other from a frequency o¤ this

target frequency. The predictor is the distance travelled before the light is re�ected

back to its source (range). We will use the model with common � in the experts. The

models with common � and the models with separate ��s give essentially the same LPDS.

Moreover, when the ��s are allowed to di¤er across experts, the posterior distributions

of the ��s are largely over-lapping. The prior �� = � � = � 
 = 10 and  1 =  2 = 0:01

was used, but other priors had very little impact on the �t and the LPDS.

The left column in Figure 3 displays the LIDAR data and the 68% and 95% Highest

Posterior Density (HPD) regions in the predictive distribution p(logratio j range) from

the ME model with 3 linear expert (top row) and 1; 2 and 3 thin plate spline experts

(second to fourth row). See e.g. Green and Silverman (1994) for details on thin plate

splines. We used 10 equally spaced knots in each of the mean, variance and gating

functions, and variable selection among the knots with !� = !� = !
 = 0:2 as prior

inclusion probability. The ME(3) models do fairly well, but fail to capture the small

variance of logratio for the smallest values of range, and the predictive intervals also

have a somewhat unpleasant visual appearance.

The right column of Figure 3 displays the �t of the MHE model. The MHE(3)

model with linear experts performs rather well. The best �t seems to be given by

the MHE model with a single nonparametric expert. It is interesting to see that the

overparametrized MHE(2) and MHE(3) models with nonparametric experts do not seem

to over�t. This is due to the self-adjusting mechanism provided by the variable selection:

the more experts that are added to the model, the fewer the knots in all experts. For

example, the MHE(1) expert has a highly non-linear mean, but the experts in the

MHE(3) model with nonparametric experts are essentially linear, all the knots in the

MHE(3) model have very small inclusion probabilities. The prior in (2.3) is very e¤ective

in removing experts�knots in low competence regions, almost all such knots have zero

posterior inclusion probability. All the knots in the variance function of the MHEmodels
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have posterior probabilities smaller than 0:1, suggesting strongly that the (log) variance

function is linear in range. There is some evidence of smoothly changing nonlinearity in

the (log odds) gating function where most of the knots have posterior probabilities in

the range 0:2-0:4. This is true for both ME and MHE models.

Table 1 displays the mean of the log predictive score (LPDS) over the B = 5 test sam-

ples as a function of the number of experts. All three MHE models with nonparametric

experts and the MHE(3) model with linear experts give very similar LPDS values. In

particular, a single nonparametric heteroscedastic expert is su¢ cient to �t the data.

The ME models need three experts to come close to the LPDS of the MHE model with

a single nonparametric expert, and even then do not quite reach it.

3.4. US stock returns data. Our second real data example analyzes the distribution

of 3674 daily returns on the S&P500 stock market index from January 1, 1990 to

January 30, 2004. The response variable is Return: yt = 100 ln(pt=pt�1), where pt is

the closing S&P500 index on day t. This series is plotted in the left panel of Figure 4.

Following Geweke and Keane (2007) we construct two predictors Return Yesterday yt�1

and a geometrically declining average of absolute returns, GeoAverage, which is de�ned

as (1� 0:95)
P1

s=0 0:95
s jyt�2�sj.

Geweke and Keane (2007) conducted an out-of-sample evaluation of the conditional

distribution p(Return j Return Yesterday, GeoAverage) where the ME model dramatically

outperformed the popular t-GARCH(1,1) and several other widely used models for

volatility in stock return data. Our aim here is to see if the MHE can do a better job

by having the heteroscedastic experts capturing the heteroscedasticity in Return so that

the mixture can concentrate more heavily on modelling the fat tails.

We �t ME and MHE models with the experts modelled as two-dimensional thin plate

spline surfaces. The mean of each expert is restricted to be constant, in line with the

literature on stock market data. 20 knots in R2 are used in both the variance and gating

functions. The locations of the 20 knots were chosen by the algorithm in Appendix E.
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We apply variable selection among the knots with inclusion probabilities !� = !
 = 0:2.

We used the prior �� = 1, � � = � 
 = 5 and  1 =  2 = 1, but the predictive distribution

is not sensitive to non-drastic changes in the prior hyperparameters. We report results

from the model where the heteroscedasticity is common to all experts as it outperformed

the model with separate �.

Table 2 displays the LPDS for ME and MHE models evaluated on the 1000 most

recent trading days as a single test sample. The best model is the MHE(4) model which

is more than 6 LPDS units better than the best ME model (the Bayes factor is 415:72).

This is decisive evidence in favor of the MHE (Je¤reys, 1961). It is interesting to note

that MHE(1) is only slightly inferior to MHE(4). This result is however particular to

this speci�c test sample, which happens to be essentially free from outliers. To show

this, we plot in Figure 4 (right panel) Return against GeoAverage (the main driver of

the heteroscedasticity, see the standard deviation graphs in Figure 6 below) in the

training and test sample. It is clear from Figure 4 that a single heteroscedastic expert

will perform well in the test sample, but will most likely fail to capture the training

observations with extreme returns but low GeoAverage value, if they had been in the

test sample. To investigate this more formally we evaluate the LPDS using 5-fold cross-

validation with the test samples systematically sampled through time (the �rst test

sample consists of observation 1, 6, 11, etc.), even if this exercise may be regarded as

somewhat unnatural for time series data. Table 3 shows that the MHE(1) now performs

substantially worse than, for example, the MHE(3) model. The average LPDS di¤erence

between the best MHE and the best ME is now smaller (the Bayes factor comparing

MHE(3) to ME(4) is 18:92), but the MHE(3) model outperforms the ME(4) in each of

the �ve test samples.

We also consider the e¤ect of using two additional covariates: Time and LastWeek, a

moving average of the returns from the previous �ve trading days. The LPDS on the

last 1000 observations is reported in Table 4. A comparison of Tables 2 and 4 shows that
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the two new covariates bring a very substantial improvment in predictive performance

of the MHE model, whereas the performance of the ME is more or less unchanged.

The relative support for the MHE model is now dramatically stronger: the Bayes factor

comparing the best �tting ME and MHE models is 7:26 �107 in favor of the MHE model.

Figure 5 display quantile-quantile plots (QQ-plots) of the normalized residuals (see

e.g. Leslie et al., 2007) for the ME and MHE models with two covariates. The normal-

ized residuals are de�ned as ��1[F̂ (xi)], for i = 1; :::; n, where F̂ (xi) is the posterior

expection of the predictive distribution function at xi. The QQ-plot graphs the empir-

ical quantiles of the normalized residuals against the quantiles of the standard normal

density. Deviations from the 45� degree line signal a lack of �t. The models with one

expert both do a poor job in the tails of the distribution (not shown in Figure 5 for

scaling considerations). Adding another expert to the MHE(1) model gives a substan-

tial improvement in �tting the tails, and the �t of the MHE(3) is excellent. The ME

model improves as more experts are added, but even the ME(4) model is not able to

fully capture the tails of the distribution.

Figure 6 displays contour plots of the posterior mean of the predictive standard

deviation (SD) as a function of the two covariates. The estimated SD changes a lot as

more experts are added to the ME model, whereas in the MHE model the SD is much

more stable as more experts come into play, suggesting that the SD can be captured

quite well with a single heteroscedastic expert. It takes four homoscedastic experts to

come close to the SD function produced by the MHE(1) model.

To understand better the di¤erences in interpretation between the ME and MHE

models, Figure 7 displays the contours of the posterior mean of the gating function for

the ME(3) (left column) and MHE(3) (right column) models. The experts in the ME

model have been ordered by their variances in descending order from top to bottom.

Figure 7 shows that the ME model is using the experts to capture the heteroscedasticity

in the data (compare with Figure 6). The interpretation of the MHE model is quite
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di¤erent, with a global expert (expert no. 2) capturing the bulk of the heteroscedasticity.

Expert 1 and 3 in the MHE are much more local and take care of the heavy tails. This

has important consequences for the stock trader which we now explore through Value-

at-Risk (VaR) analysis. VaR is usually de�ned as the 1% quantile in the distribution

of returns. It provides traders with a form of probabilistic bound on how much money

they risk losing from one trading day to another. Figure 8 displays contour plots of

the 1% quantile of the predictive distribution. As for the predictive SD, the VaR varies

a lot as more experts are added to the ME model. For the MHE the situation is

again more stable, but there are larger di¤erences between the MHE models in Figure 8

than between the MHE models in Figure 6. This suggests that while one heteroscedastic

expert is enough to capture the variance of the S&P500, at least another expert is needed

to model the heavy tails. Finally, we note that there are large di¤erences between

even the ME(4) and MHE(4) in the modelling of the 1% quantile of the predictive

distribution, for some covariate values the di¤erence is more than 1% from one trading

day to the other, which is quite substantial for daily returns.

Appendix A. Variable dimension K-step Newton proposals for

Metropolis-Hastings updates

This appendix describes a general method for constructing tailored proposal densities

for the Metropolis-Hasting algorithm which are used in Appendices B and C to draw

from the non-standard conditional posteriors of (
;Z) and (�;W). We �rst brie�y

sketch the algorithm when the parameters do not change in dimension. Let � be a

vector of parameters with a non-standard density p(�jy) from which we want to sample

using the Metropolis-Hastings algorithm. p(�jy) may be a conditional posterior density

and the following algorithm can then be used as a step in a Metropolis-within-Gibbs

algorithm. Gamerman (1997) showed how to modify the Fisher scoring procedure to

produce e¤ective proposal densities. Gamerman�s procedure runs as follows. Assume
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that the target density p(�jy) can be written

p(�jy) / p(yj�)p(�) =
nY
i=1

p(yij'i)p(�)

where 'i = Xi� and Xi is a covariate matrix for the ith observation. As an example, if

� = � is the vector of parameters in the MHE variance function, then 'i = w0i�. Assume

also that the gradient and Hessian of the log posterior are available in closed form. We

can now use Newton�s method to iterate K steps from the current point �c toward the

mode of p(�jy), thereby obtaining �̂ and the Hessian at �̂. Note that �̂ may not be the

mode but is typically close to it already after onlyK � 3 Newton iterations. This makes

the algorithm very fast. Moreover, we can speed up the algorithm by computing the

gradient and Hessian on a (random) subset of the data in each iteration. The Hessian

can also be replaced with its expected value E
h
@2 ln p(�jy)
@�@�0

i
in the Newton iterations.

This typically improves numerical stability, with only a slightly worse approximation

of p(�jy). The proposal is now drawn from the multivariate t-distribution with c > 2

degrees of freedom:

�pj�c � t

"
�̂; �

�
@2 ln p(�jy)
@�@�0

��1�����
�=�̂

; c

#
;

where the second argument of the density is the covariance matrix.

Nott and Leonte (2004) generalized Gamerman�s (1997) Fisher scoring algorithm to

allow for covariate selection in generalized linear models within the exponetial family.

Their method was also used in Leslie et al. (2007). We present their algorithm in a

more general setting which is not restricted to the exponential family. The p-dimensional

parameter vector � is accompanied by a vector of binary covariate selection indicators

J = (j1; :::; jp). Here we need to propose � and J simultaneously, and we will do so

from the following decomposition

g(�p;Jpj�c;Jc) = g1(�pjJp; �c)g2(Jpj�c;Jc);
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where g2 is the proposal distribution for J and g1 is the proposal density for � conditional

on Jp. The Metropolis-Hasting acceptance probability then becomes

a[(�c;Jc)! (�p;Jp)] = min
�
1;
p(yj�p;Jp)p(�pjJp)p(Jp)g1(�cjJc; �p)g2(Jcj�p;Jp)
p(yj�c;Jc)p(�cjJc)p(Jc)g1(�pjJp; �c)g2(Jpj�c;Jc)

�
:

It should be noted that the proposal density in the current point g1(�cjJc; �p) is a

multivariate t-density with mode �̂R and covariance matrix equal to the negative inverse

Hessian evaluated at �̂R, where �̂R is the point obtained by iterating K steps with

the Newton algorithm, this time starting from �p. A simple way to propose Jp is to

randomly pick a small subset of Jp and then always propose a change of the selected

indicators (Metropolized move). This proposal can be re�ned in many ways, using e.g.

the adaptive scheme in Nott and Kohn (2005), where the history of J -draws is used to

adaptively build up a proposal for each indicator. It is important to note that �c and �p

may now be of di¤erent dimensions, so the original Newton iterations no longer apply.

We will instead generate �p using the following generalization of Newton�s method. Let

Xic denote the matrix of included covariates at the current draw (i.e. selected by Jc),

and let 'ic = Xic�c denote the corresponding functional. Also, let 'ip = Xip�p denote

the same functional for the proposed draw, where Xip is the matrix of covariates in

the proposal draw. The idea is to exploit that when the parameter vector � changes

dimensions, the dimensions of the functionals 'ic = Xic�c and 'ip = Xip�p stay the

same, and the two functionals are expected to be quite close. A generalized Newton

update can then be written

(A.1) �k+1 = A�1k (Bk�k � gk); (k = 0; :::; K � 1);
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where �0 = �c, and

gk =

nX
i=1

X 0
ip

@ ln p(yij'i)
@'i

+
@ ln p(�)

@�

Ak =

nX
i=1

X 0
ip

@2 ln p(yij'i)
@'i@'

0
i

Xip +
@2 ln p(�)

@�@�0

Bk =
nX
i=1

X 0
ip

@2 ln p(yij'i)
@'i@'

0
i

Xic +
@2 ln p(�)

@�@�0
;

all evaluated at � = �k. For the prior gradient this means that @ ln p(�)=@� is evaluated

at �k, including all zero parameters, and that the subvector conformable with �k+1

is extracted from the result. The same applies to the prior Hessian (which does not

depend on � however, if the prior is Gaussian). Note also that after the �rst Newton

iteration the parameter no longer changes in dimension, and the generalized Newton

algorithm in (A.1) reduces to the original Newton algorithm. The proposal density

g1(�pjJp; �c) is again taken to be the multivariate t-density in exactly the same way as

in the case without covariate selection. Once the simultaneous update of the (�;J )-pair

is completed, we make a �nal update of the non-zero parameters in �, conditional on

the previously accepted J , using the �xed dimension Newton algorithm.

Appendix B. Gibbs sampler for the MHE model

This appendix describes the updating steps of the Gibbs sampler in detail. We make

use of the following transformation from a heteroscedastic regression to a homoscedastic

one with � as the heteroscedasticity parameter vector

(Y; V )! (G�Y;G�V ) = ( ~Y ; ~V );

where G� = diag[exp(��0w1=2); :::; exp(��0wn=2)]. The Jacobian of this transformation

is jG�j = exp(��0
P
wi=2). The extension to case where � is di¤erent for each expert is

immediate. We use the following notation. Let nj denote the number of observations

allocated to the jth expert for a given s. Vj denotes the nj � p submatrix containing
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the rows of V corresponding to the jth expert�s observations given an allocation s. Zj,

Wj and Yj are analogously de�ned.

Updating �, �2 and V

Conditional on s and �, we can integrate out � and �2 to show that the Vj are indepen-

dently distributed, and that

(B.1) p(Vkj = 1jV�k;j; Y;X; s; �) /
��� ~V 0
j
~Vj + ��2�jH�

����1=2�dj
2
+  2j

��(nj+2 1j)=2
;

where ~Vj is the covariate matrix for the jth expert assuming the presence of the kth

covariate, V�k;j is Vj with Vkj excluded, dj = ~Y 0
j
~Yj � ~Y 0

j
~Vj( ~V

0
j
~Vj + �

�2
�j
H�j)

�1 ~V 0
j
~Yj is the

residual sum of squares of the regression of ~Yj on ~Vj.

The non-zero elements of � and the elements in �2 can now be generated conditional

on V from

�2j jVj; s; �; Y;X � IG

�
nj + pj + 2 1j � 1

2
;
dj + 2 2j

2

�
�Vj j�2j ;Vj; s; �; Y;X � N(��j ;
�j);

where �Vj contains the pj non-zero coe¢ cients in �j, 

�1
�j
= ��2j (

~V 0
j
~Vj + �

�2
�j
H�), ��j =

��2j 
�j
~V 0
j
~Yj. Note that ~Vj and ~Yj, and H� are here assumed to be conformable with the

current draw of V, so that for example ~Vj contains only the covariates with non-zero

coe¢ cients.

Updating � and W

We �rst consider the case without covariate selection. The full conditional posterior

of the variance function parameters is of the form

p(�j�2; �; Y;X) / p(Y j�; �2; �;X)p(�) = jG�j p( ~Y j�; �2; �;X)p(�)

/ exp(��0
P
wi=2)

nY
i=1

exp

�
� 1

2�2si
(~yi � �0si~vi)

2

�
exp

�
��

�2
�

2
�0H��

�
:
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The full conditional posterior of � is of non-standard form, and we use the K-step

Newton proposal (see Appendix A) to generate from it. The gradient and Hessians are

given by

@ ln p(�j�)
@�

=
1

2

mP
j=1

W 0
j(�j � �nj)�H��

@2 ln p(�j�)
@�@�0

= �1
2

mX
j=1

Wj diag(�j)W
0
j �H�;

where �j = ��2si (
~Yj � ~Vj�j)2. It is also possible to replace the Hessian with its expected

value E
h
@2 ln p(�j�)
@�@�0

i
= �1

2
W 0W in the Newton iterations. The case where the ��s di¤er

across experts is handled in exactly the same way since the �j are independent condi-

tional on s. The extension of the K-step Newton proposal to the case with covariate

selection follows from a direct application of the general method in Appendix A. Note

also that variable selection has the advantage of keeping down the dimension of � in

every iteration of the algorithm, which speeds up the algorithm and increases the MH

acceptance probability.

Updating 
 and Z

We �rst consider the case without covariate selection. The full conditional posterior

of the multinomial logit parameters 
 = (
02; :::; 

0
m)

0 is of the form

(B.2) p(
js;X) / p(sjX; 
)p(
) =
�

nQ
i=1

exp(
0sizi)Pm
k=1 exp(


0
kzi)

�
exp

 
�
��2

2

mP
j=1


0jH

j

!
;

which is a non-standard density. It is again possible to derive the gradient and Hessian

of this conditional posterior density in closed form, and use theK-step Newton proposal

to sample 
. The gradient is of the form

@ ln p(
j�)
@ vec 


= vec[Z 0(D � P )�H

];
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where D is an n�m matrix where the ith row is zero in all positions except in position

si where it is unity, and P is the n�m matrix of expert probabilities Pr(si = jjzi; 
).

The Hessian consists of (m� 1)2 blocks of q � q matrices of the form

@2 ln p(
j�)
@
j@


0
u

=

8<: Z 0[Iq 
 Pj(Pu � �n)]Z �H
 , if j = u

Z 0[Iq 
 PjPu]Z, if j 6= u

where Pj is the jth column of P . Note that D does not enter the Hessian, so the Hessian

is equal to its expected value. To handle covariate selection in the gating function we

can apply the generalized K-step Newton algorithm in Appendix A. The matrix Ak in

the generalized Newton update is here block-diagonal with blocks of the form

Ak;ju =

8<: Z 0j[Iq 
 Pj(Pu � �n)]Zu �H
;ju , if j = u

Z 0j[Iq 
 PjPu]Zj, if j 6= u
;

where Zj contains the selected covariates for 
j in the kth iteration of the Newton

algorithm, and Zu contains the selected covariates for 
u. The matrix P is evaluated at

the value of 
 at the kth iteration of Newton algorithm. The matrix Bk and the vector

gk in Appendix A are de�ned analogously. Note also that when the prior for V depends

on the value of the gating function at the knots (see Section 2.2), then the conditional

posterior of 
 equals the expression in (B.2) multiplied by

Ym

j=1

Yp

k=pv+1
Bern[Vkjj!��j(�k; 
)]:

A similar factor should be used for W when the ��s di¤er across experts.

Updating s

The expert indicator, si (i = 1; :::; n) are independent conditional on the other model

parameters, and can therefore be drawn all at once. The full conditional posterior of si
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is

p(si = jjY;X; �2; �; 
; �) / p(Y jX; �2; �; �; 
; si = j)p(si = jjZ; 
)

/ ��1j exp

�
� 1

2�2j
(~yi � �0j~vi)

2

�
exp(
0jzi); (i = 1; :::; n; j = 1; :::;m):

Unless otherwise stated, the reported results in this article were generated by 10; 000

Gibbs sampling draws after a burn-in of 2; 000 draws. We use K = 3 Newton steps in

the updating of � and 
, and c� = 10 and c
 = 10 degrees of freedom in multivariate-t

Newton-based proposal densities for � and 
. The expert allocation is initialized with

the k-means clustering algorithm.

Appendix C. A collapsed sampler for the MHE model

An alternative algorithm, which we refer to as the collapsed Gibbs sampler, simulates

from the joint posterior using the decomposition

p(�; �2; 
; s; �jY;X) = p(�; �2jY;X; 
; s; �)p(
; s; �jY;X).

This is possible since � and h may integrated out once we condition on s, and hence

p(
; s; �jY;X) is available in closed form. One can then sample from p(
; s; �jY;X) by a

three-block Metropolis-Hastings algorithm and subsequently use these draws to generate

from p(�; �2jY;X; 
; s; �) by direct simulation. The latter simulation is straightforward

and we will only give the details of sampling from p(
; s; �jD). Liu, Wong and Kong

(1995) prove in a general setting that sampling schemes based on collapsing (integrating

out) are expected to be more e¢ cient than pure Gibbs sampling schemes, and we present

some support for this claim in Appendix D. The collapsed Gibbs sampler is for most

problems more time-consuming than the Gibbs sampler in Appendix B and the increased

e¢ ciency must be weighed against increased computing time. We present the algorithm
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for a �xed set of covariates, but the extension to covariate selection is exactly as for the

Gibbs sampler if V ;W and Z are simulated in the (
; s; �)-block.

Updating 


This step is exactly as the 
-step in the Gibbs sampler.

Updating �

This MH step is similar to the corresponding step in the Gibbs sampler. The pro-

posal is now obtained by taking K Newton steps toward the mode of p(�j� = �̂; �2 =

�̂2; Y;X; s; 
), where �̂ and �̂2 are the posterior mean of � and �2 conditional on the

current values of s and �. Conditional on � = �̂; �2 = �̂2, this step is directly analo-

gous to the �-step in the Gibbs sampling algorithm, except that the posterior density

function in the MH acceptance ratio is now a product of m marginal likelihoods (since

we have integrated out � and �2), one for each expert.

Updating s

When we integrate out � and �2, the expert indicators, si (i = 1; :::; n) are no longer

independent. It is straightforward to show that the conditional posterior of si is of the

form

p(si = jjY;X; s�i; 
; �) /
 

mY
j=1

p(YjjXj; s; 
; �)

!
p(si = jjX; 
)

/ exp(
0sizi)
mY
j=1

��� ~V 0
j
~Vj + ��2�jH�

����1=2�dj
2
+  2j

��(nj+2 1j)=2
;(C.1)

where s�i denotes s with the ith element deleted, and dj = ~Y 0
j
~Yj � ~Y 0

j
~Vj( ~V

0
j
~Vj +

��2� H�j)
�1 ~V 0

j
~Yj is the residual sum of squares of the regression of ~Yj on ~Vj. Note how the

marginal likelihood p(Y jX; s; 
; �) splits up into m marginal likelihoods, one for each

expert. We refer to p(Y jX; s; 
; �) as the marginal likelihood and p(YjjXj; s; 
; �) as
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expert j�s marginal likelihood. p(YjjXj; s; 
; �) can be e¢ ciently computed as follows.

Let Rj be the upper triangular Choleski factor of ~V 0
j
~Vj + ��2�jH�. Then

��� ~V 0
j
~Vj + ��2�jH�

����1=2 = ��R0jRj

���1=2 = � pQ
i=1

r
(j)
ii

��1
;

where r(j)ii is the ith diagonal element of Rj. Moreover, dj = ~Y 0
j
~Yj � a0jaj, where aj =

R
0�1
j
~V 0
j
~Yj. aj is thus e¢ ciently solved from the system of equations Rjaj = ~V 0

j
~Yj by

back-substitution.

Note, however, that we need to compute the marginal likelihood p(Y jX; s; 
; �) in

(C.1) nm times for a single update of all expert allocations. Fortunately, the change from

one computation to the next consists of a simple re-allocation of a single observation

from one expert to another. For example, computing p(si = jjY;X; s�i; 
; �) requires

that we move the ith observation from its current allocation with expert j� to expert

j. This requires that we modify the Cholesky factors from ~V 0
j�
~Vj� + �

�2
�
j�
H� to ~V 0

j�
~Vj� +

��2�
j�
H� � ~vi~v0i (i.e. removing observation i from expert j�, which is called a downdate

of the Choleski with ~vi) and from ~V 0
j
~Vj + ��2�jH� to ~V 0

j
~Vj + ��2�jH� + ~vi~v

0
i (i.e. adding

observation i to expert j�, which is called an update of the Choleski with ~vi).

Even with the sequential Choleski updating, the updating of s can be slow when

m and n are large. One way to improve the speed of the algorithm is to sample s

using the Metropolis-Hasting algorithm. There are two important advantages to this

approach: i) we only need to evaluate p(si = jjY;X; s�i; 
; �) for the observations where

we propose a change (i.e. if observation i is proposed to stay with the same expert as

before, then the acceptance probability is unity), and ii) whenever a change of expert

allocation is proposed we only need to evaluate p(si = jjY;X; s�i; 
; �) at the current

and proposed allocations. If nc denotes the number of observations where a change is

proposed, then a draw of the vector s has been reduced from an O(nm) operation to an

O(2nc) operation, which is typically a quite substantial reduction since in the typical

case nc << n. There are many ways to propose s. Among them is to propose from
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the gating function p(si = jjzi; 
), where 
 is the most recently accepted draw of the

gating function coe¢ cients. Another option is to use an adaptive scheme where si is

proposed from the empirical distribution of past allocations (after generating a suitable

number of draws to build up the empirical distribution). Nott and Kohn (2005) prove

that this type of adaptation produces draws that converge in distribution to the target

distribution. It is also possible to combine the di¤erent updating schemes in a hybrid

sampler where the schemes are selected at random with �xed selection probabilities.

For example, with a (small) probability � we go through all observations and sample

s directly from p(si = jjY;X; s�i; 
; �); and with probability 1 � � we sample s using

an MH step. This combined strategy reduces the possibility of getting stuck in a local

mode because of a poorly chosen MH proposal kernel.

Appendix D. A comparison of MCMC algorithms on the LIDAR data

Table 5 reports performance summaries of the MCMC algorithms for the MHE(3)

model with linear experts for the LIDAR data. The ine¢ ciency factor (IF) in Table 5 is

a commonly used measure of numerical e¢ ciency for MCMC samplers and it is de�ned

as 1+ 2
PK

k=1 �k, where �k is the autocorrelation at the kth lag in the MCMC chain for

a given parameter and K is an upper limit of the lag length such that �k � 0 for all

k > K. The IF approximates the ratio of the numerical variance of the posterior mean

from the MCMC chain to that from hypothetical iid draws. The collapsed Gibbs sampler

where every si is generated directly from its conditional posterior (Collapse) is the most

e¢ cient, but it is also the most time-consuming.1 The collapse Gibbs samplers with MH

updating of the si (Collapse-Gating proposes s from the gating function, Collapse-Adapt

is the adaptive scheme discussed in Appendix C) are substantially faster and, at least

the adaptive version is almost as e¢ cient as the pure collapsed algorithm. The fastest

algorithm is the Geweke-Keane sampler which is based on the multinomial probit gating

function augmented with latent utilities. The Geweke-Keane algorithm gives large IFs

1We used Matlab 7 on a 2 GHz Pentium M processor.
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when used on the LIDAR data, however. The fact that latent variable augmented

sampling schemes can be highly ine¢ cient has been documented in the literature. One

recent example for the probit regression is Del Moral, Doucet and Jasra (in press). In

our experience, the Geweke-Keane sampler is least e¢ cient when at least some of the

gating function parameters are large in absolute value, i.e. when the experts are fairly

sharply separated in covariate space. Note also that these ine¢ ciencies spill over to the

mean parameters. It may be that these ine¢ ciencies are not too bad if one only cares

about the predictive density, but they will matter when the model is interpreted. It is

interesting to compare the time to obtain the equivalent to a 1000 iid draws from the

algorithms. The median of this time over the parameters is 430:23 seconds for Geweke-

Keane, 72:54 for Gibbs Logit, and 363:94, 110:96, and 105:01, for the three Collapse

samplers. The best compromise between computing time and e¢ ciency on the LIDAR

data is therefore obtained from the Gibbs sampler, closely followed by Collapse-Gating

and Collapse-Adapt. The results in Table 5 were obtained using K = 3 Newton steps in

the updating of � and 
. We also ran the Gibbs sampler with K = 1 for � and K = 3 for


. This sampler is faster (152:23 iterations per second), with no notable e¢ ciency loss

(the IFs and the MH acceptance probabilities were unchanged). Finally, we also tried

K = 1 for both � and 
. Here the MH acceptance probability for 
 droped to 45:66%

and the IFs doubled for 
; the IFs for the other parameters were essentially unchanged.

This sampler generates 188:23 draws per second. We have found in general that K = 1

is su¢ cient for �, whereas the parameters in 
 may require K = 3, at least when the

experts clearly divides the covariate space (c.f. the experience with the Geweke-Keane

sampler above).
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Appendix E. A simple algorithm for knot placement

Let xi denote the p-dimensional covariate vector for the ith unit in the sample. Let

dA(xi; xj) = [(xi � xj)
0A�1(xi � xj)]

1=2 denote the Mahalanobis distance in p-space,

where A is a p.s.d. matrix. A Mahalanobis �-ball around ~x in Rp is de�ned to be the

set fx 2 Rp: dA(xi; xj) � �g. The following algorithm determines the knot locations for

a given global radius � > 0 and local radius shrinkage factor �.

Algorithm E.1.

0. Form X = (x01; ::::x
0
n)
0. Compute S =

Pn
i=1(xi � �x)(xi � �x)0, where �x is the

sample mean.

1. Compute the mean �x of X:

2. Find the observation xc in X that is closest to �x according to the Mahalanobis

distance dS(�; �).

3. Form a Mahalanobis �-ball around xc. Let nc denote the number of observations

in X that belong to this �-ball .

4. Locally adapt the radius to �c = �=(nc)
�.

5. Place a knot at the observation that is closest to the mean of the observations in

the �c-ball in step 4.

6. Remove the observations that belong to the �c-ball in step 4 from X.

7. Repeat steps 1-6 until X is empty.

The radius shrinkage factor � determines the extent to which regions of high density

are given more knots in comparison to lower density regions; � = 1=p is a good choice.

We typically use a root-�nding algorithm to search for the global radius � that gives

exactly a pre-speci�ed number of knots.
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Linear experts Thin plate experts
m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

ME 26:564 59:137 63:162 48:399 61:571 62:985
MHE 30:719 61:217 64:223 64:267 64:311 64:313

Table 1. LIDAR data. Average log predictive density score (LPDS) over
the 5 cross-validation samples.

m = 1 m = 2 m = 3 m = 4 m = 5
ME �1579:16 �1430:39 �1413:96 �1410:50 �1410:92
MHE �1404:95 �1409:02 �1407:99 �1404:47 �1409:06

Table 2. SP500 data - two covariates. Log predictive density score
(LPDS) on the last 1000 observations.

m = 1 m = 2 m = 3 m = 4 m = 5
ME �1058:85 �955:97 �945:69 �942:01 �942:02
MHE �955:24 �944:22 �939:07 �939:81 �939:51

Table 3. SP500 data - two covariates. Average log predictive density
score (LPDS) over the 5 cross-validation samples.

m = 1 m = 2 m = 3 m = 4 m = 5
ME �1579:16 �1428:05 �1412:02 �1412:83 �1414:11
MHE �1393:92 �1398:92 �1396:63 �1395:31 �1401:87

Table 4. SP500 data - four covariate model. Log predictive density score
(LPDS) on the last 1000 observations.
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Parameter Geweke-Keane Gibbs Collapse Collapse-Gating Collapse-Adapt
�11 160:20 5:19 3:42 5:33 6:12
�21 295:54 7:45 4:24 8:40 7:92
�12 141:87 11:45 6:56 17:48 10:35
�22 93:07 7:43 4:33 10:09 7:36
�31 31:92 2:97 2:30 2:84 2:81
�32 29:02 2:75 2:17 2:68 2:50
�1 4:17 3:34 1:97 2:36 2:52
�2 16:52 14:77 8:11 14:95 10:29
�3 11:33 12:58 5:68 5:82 6:03

11 764:12 12:33 10:95 15:92 15:05

21 1603:80 19:61 20:21 53:68 22:79

12 868:54 17:18 15:99 16:97 17:90

22 1711:63 5:45 6:81 5:90 6:83
� 13:57 15:43 10:47 9:89 10:72

MH acc. prob. � 91:22 91:48 99:79 99:81 99:82
MH acc. prob. 
 � 64:88 64:75 64:42 64:60
Iterations per sec 273:04 130:28 16:816 82:418 72:758

Table 5. LIDAR data. Ine¢ ciency factors and computing times with
the di¤erent MCMC algorithms for the MHE(3) model with linear ex-
perts.



NONPARAMETRIC REGRESSION DENSITY ESTIMATION 35

Figure 1. Inverse problem data. First column displays the data and
the 95 percent HPD intervals in the predictive density. The second and
third column depict the gating and predictive standard deviation function,
respectively. The rows correspond to four di¤erent MHE models.
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Figure 2. Simulated heteroscedastic data. Box plots of the di¤erence in
log predictive score (LPDS) between the estimated MHE(1) model and
the ME model as a function of the number of expert in the ME model.
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Figure 3. The LIDAR data overlayed on 68 and 95 percent HPD pre-
dictive intervals. The solid red line is the predictive mean. The thicker
tick marks on the horizontal axis locate the knots of the thin plate splines.
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Figure 6. SP500 data. Contour plots of the predictive standard devia-
tion as a function of the covariates for the ME (left column) and MHE
(right column) models.
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Figure 7. SP500 data. Posterior mean of the gating function for the
ME(3) (left column) and the MHE(3) (right column) models. The experts
in the ME(3) model are ordered in decreasing variance from top to the
bottom.
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Figure 8. SP500 data. Value at risk (VaR) analysis. Contour plots of
the 1 percent quantile of the predictive distribution.
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