Rational Expectations in a VAR

with Markov Switching

by
Marten Blix

October 1997
Abstract

This paper shows how a well known class of rational expectations hypotheses
using linear vector-autoregressions (VAR:s) can be extended to allow for
unobservable Markov switching between discrete states. This statistical model
differs from those commonly used in the literature: the model here is easier to
estimate and has the appeal that the state dependence is symmetric. The
contribution of the paper is to derive simple expressions for the VAR forecasts
under Markov switching; these forecasts are then used to find testable restrictions
implied by rational expectations, which are linear when the forecast horizon is
infinite. As an illustration, I examine a test of the expectations hypothesis (EH)
on the short end of the maturity spectrum - three and six month US bills - and
find that a non-rejection of the hypothesis in a previous paper, also with regime
shifts, may be fragile.
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1 Introduction

Many economic models postulate relationships between currently observable
variables and expectations of future variables. Given a parametric (or semi-
parametric) form for the evolution of these variables, rational expectations (RE)
typically imply restrictions on the parameters of the statistical model. For
example, the present value model considered by Shiller (1979) posits that the
yield of a consol should equal discounted expectations of changes in future short
rates; when the dynamics of these variables are driven by a vector autoregression
(VAR), the hypothesis of RE implies restrictions on the parameters of the VAR
(Campbell & Shiller 1987).

This paper examines a class of RE hypotheses that is well known in a VAR
setting, and extends it to a VAR with unobservable Markov switching to ¢
different states. The regime shift model used falls into the general framework of
Hamilton (1990), but differs from the centered model implemented by Hamilton
and others. The model here has the advantage that it is generally easier to
estimate, and that the state dependence is symmetric (in a sense that will be
made clear below).

The contribution of the paper is to derive simple expressions for the
VAR forecasts under Markov switching; these forecasts are then used to construct
testable restrictions implied by RE. The restrictions are non-linear, but are
presented in compact matrix form allowing easy implementation. In the
important case of infinite horizon models, however, they are linear - and do not
involve the Markov transition probabilities. Moreover, the restrictions on the

autoregressive parameters are the same as those that would appear from the



centered regime model, although for the drift term they differ. Since most interest
lies with testing restrictions on the autoregressive parameters, the results in this
paper may have a wider appeal.

Some of the renewed interest in models with regime shifts since
Hamilton (1988) may stem from the failure - or statistical rejection - of simple
linear models. Markov models can provide an appealing alternative. First, a
model with Markov switching may provide a better characterisation of data. In
other words, it may provide a parsimonious way to express complicated dynamics,
which might otherwise require an autoregressive integrated moving average
(ARIMA) model with long lags, an issue briefly discussed in Hamilton (1989).
With this view the states do not necessarily have any explicit “interpretation”,
such as “high” or “low” risk, but this might also be justified, as in Warne (1996).

Second, discrete states may be a useful tool in economic modelling, for
which Markov switching provides a first step towards empirical work. Even when
discrete states cannot easily be mapped onto real environments, they may
provide an (arbitrary) approximation to some continuous phenomenon.

Finally, the question arises whether or not RE hypotheses hitherto
rejected in single-regime models will be resurrected in models with randomly
switching coefficients. For example, Hamilton (1988) considers a regime shift
model for the long end of the term structure. He finds that the single regime
model does not fit the data and that RE can no longer be rejected in his regime
shift model. Sola & Driffill (1994) reached similar conclusions for the short end

of the maturity spectrum. As an illustration of the methods developed in this



paper, we re-examine the Sola & Driffill (1994) non-rejection of the EH and find
that it may be fragile.

The rest of this paper is outlined as follows. The next section formally
introduces the VAR with Markov switching. Section 3 formalises the class of
hypotheses that are considered, and provides some examples. Although the
examples can be skipped, they are used to illustrate the main results of the paper,
given in section 4, where the restrictions on the parameters are derived and
discussed. Section b considers the same restrictions, but in a model with state
dependent discount rate. Section 6 discusses statistical tests of the restrictions,
and also gives the required derivatives. Section 7 illustrates how the methods in
the paper can be used: we test the expectations hypothesis of the term structure
on three and six month US bills. Section 8 makes some concluding remarks.

2 A VAR with Markov Switching

The model we consider is a VAR(p) of the form

Y= -t Z;Bs(,i)yf—/ tE, (1)

where 5;|S, ~ N(O,er), and s, 0{12,---,q} denotes the unobservable regime
variable, which is assumed to follow a first order Markov Chain (MC), y, isa nx1
vector of weakly stationary variables, Bf,i) is the nxn state dependent parameter
matrix for the i:th lag, y, is the state dependent drift term, and Q, is the state
dependent positive definite covariance matrix . The vector [yo’,--~,y1_p ’]’of initial

observations is taken to be fixed in repeated sampling. With the usual notation,

we define the Markov transition probabilities as p; = pr[s, = j|s,; =i], and collect



them into the matrix

where p, =1- z(j:pu ,;sothat1'P=1"

., »where 1 is a column vector of ones.

We assume that all probabilities are positive, so that we have an
irreducible chain. The ergodic (stationary) probabilties are defined by the
property that P7. =7. If each column of the transition matrix is equal to 7, we
have a serially uncorrelated MC, in which the probability of staying in a particular
state is the same as the probability of returning to it from all the other states.
Such a transition matrix has rank one.

The Markov assumption implies that the only relevant information for

predicting future states is the current state, so that
pris, ‘?/,_l,s,_l,s,_z,m] = pr[s,|s,_l] , where ¥, =[y,4,¥,5, "] . We further assume that

the current state is not known with certainty, and collect all the probabilities of

being in a particular state based on the information set ¥, in the g x1 vector

prls, = 1]

E/y = (3)

prls, =]
This model is conveniently cast in companion form, in which a VAR (p)
is compactly re-written as the VAR(1) system
Y=Jp +B Y+, )

where



v, B(l) B(Z) B(P)
Y- I 0

Y = :1’ B =| " ' o J:[]n 0 --- 0], (5)
Viopu 0 ]n 0

which are of dimensions np X1, npxnp, and n Xnp respectively. Pre-multiply (4)
by J and we obtain
Vi :ﬂs, +JBS,Y;—1+‘SI' (6)
A sufficient condition for weak stationarity from Karlsen (1990) is that

the largest eigenvalue of the (np)°q % (np)’q matrix

(Bl [ Bl)pll (Bl [ Bl)p 1

B = (7)

(BOB)p, - (BOB)p
should be less than unity. The results in Warne (1996) indicate that it may also
be a necessary condition.

Finally, let us comment on the differences between the regime shift
model in (1), which we will label the Warne model, and those used in Hamilton’s
papers, which might be referred to as cenlered regime shift models. Although
both belong to the general class of regime switching models in Hamilton (1990),
they are not nested. To see this, consider the fairly general centered regime shift
model given by

Vi~ =BP (o, )H+BI (v, — ) TE (8)

For a given lag length p and number of regimes ¢, (1) and (8) ditfer in
the drift term. Moreover, the centered model is non-linear in some parameters
even after conditioning on current and past states. By contrast, the Warne model

is linear after conditioning on the current state, and is therefore much easier to



estimate. Moreover, the regime dependence in the centered model is asymmetric

in that some parameters depend on the current state, while others depend both

on the current and past states. Even if the i:th lag of (8) is replaced by B\(”_) - or

by a state invariant term as in Hamilton (1988, 1989) - the regime dependence is
still asymmetric in the sense that some parameters depend only on the current
state, while others depend only on past states.

How might we choose between them? It is shown in Warne (1996) that
the (un)conditional autocovariances of (8) are the same as those for (1) under
certain conditions. Both models allow for rich dynamics, but a priori it is not

clear which is more suitable to a given economic model, a question left to future
research. Note, however, that the model with Bf,i) = BY has much more

restrictive dynamics than the Warne model. Moreover, from a practical
viewpoint, the Warne model is easier to handle. But for the purposes of this
paper, the choice of using (1) or (8) does not matter: the restrictions on the
autoregressive parameters are the same; conditional forecasts from the two
models differ only in the drift term.

3 Rational Expectations Hypotheses

The question that will be pursued here is how to formulate RE restrictions of the

form

Yos|=A,, (9)

k
ZFO N,/’ E[yl+j
where N isasxn selection matrix, and A, isa s X1 vector that depends on the

current state only. Since by assumption we do not observe the current state

directly, we take expectations of (9) conditional only on the observable



information Y to obtain

SN Ev[n]=E[AJu ] (10)

where we have used the law of iterated expectations.

For standard (single-regime) VAR:s, the survey by Baillie (1989) discusses
several RE applications in some detail. The form of the hypothesis differs only
slightly from Baillie in that the RHS of (10) is a state dependent vector, but this
will not make a difference for many applications (i.e. A, =0,0i 0{1,---,4} ). To
motivate the discussion below, we will briefly provide some examples of RE
hypotheses that fall into the category of (10), either directly or after some
suitable transformation. The examples will also serve to illustrate some possible

interpretations for A, . Although the rest of this section can be skipped without

loss of continuity for the theoretical exposition, some of the examples in this
section will be used to illustrate how the results in the paper can be applied.
Example 1: Term Structure

One version of the linearized expectations model for discount bonds is

R® = 056 R + RY),

Yos | +e®, (11)
where R,(’) is the yield at time ¢ on a bond with maturity #+i, and wﬁ_j>(= /]s,) isa
premium on 7 period bonds. Thus, this version of the expectations hypothesis
states that the yield of a two period bond should equal the expected value of
holding two one-period bonds over the life of the two-period bond. The only
non-standard feature of (11) is that the premium is assumed to be state
dependent. This approach is used in Blix (1997) to model a conditional term

premium.



Subtract R® from both sides, and take expectations conditional on Y s

S, = 05E[ AR

W]+ ey, (12)
where S, = R® —R® is the spread between the long and the short rate. It can
now be written as

'y, _O-Sez’E[yHll?/r] = E[w,(f)l?/z]' (13)
where y, = (St ,ARt(l))’, and e, is the i:th column of an identity matrix of order
two.
Example 2: Asset Pricing Models
The present value model for stock prices states that the current price is given by

the discounted value of future expected dividends, or alternatively in the form

discussed in Campbell & Shiller (1987),

¢ w .
LI s

is the spread between the stock price P, and the

t t

where S, = P, - (1~ 5)_ld
dividend d,, and ¢ is the discount factor. This can be put into the framework of

(10) as

el’yr - 5(1_ 5)_162’ Zj:l 5j E[yr+v/

where y, =[S, Ad,]’. Here we have just ignored the premium, but it could of

%1=0 (15)

course be included as in example 1.
Example 3: Uncovered Interest Rate Parity
Engel and Hamilton (1990) consider the hypothesis of uncovered interest rate

parity (UIP) in a model with Markov switching. They let
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eG _eG:
¥, { s 1} (16)

— ;G
2 2

G

where e and i”® —i

are the exchange rate and the interest rate differential

between the US and Germany respectively. They assume that y,|s, ~ N(/J,\r, Q. )

t

The standard UIP holds that i~°—i® = E[e,G+l —e’

?/,] , which can be formulated as

?/,]:o. (17)

More complicated restrictions where N is a matrix are also easily

ey, _el,EI:yH-l

handled within this framework; this method of representing restrictions within a
VAR framework is well known. The value added of this paper is in calculating
the expectations in (10) for the regime shift VAR (p) introduced above, which is
the subject of the next section.

4 Rational Expectations Restrictions

The RHS of (10) is readily seen to be

.0 ]= Saprs =iofy]
= Aprls, =1y J+-+4,ps, = aly. ] (18)
=XE,,
where A=[A; -+ A,|". There are at least two ways to interpret A. First, we

might want to set A, arbitrarily to enunciate some a priori characteristic to that
state, such as a “high” or “low” level of return, or perhaps the more standard

A, =0,i {L---,q} . Second, under certain assumptions A might be estimated as
a non-linear function of the VAR parameters. As alluded to in example 1, this is

the approach used in Blix (1997) to let A’¢,, be a conditional term premium.

tl
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The next step is to consider the LHS of (10). We note that we are going

to need an expression for y ) and take into account expectations of future

regimes. For this purpose we introduce the following lemmas.
Lemma 4.1

For j=22,

Vs =l S (Moe B )T B+ [t B )Y

-1 h <19)
+£t+_j + JZh=l( |_| n1:lB“r+/+1—m ) J , £t+v/—h .
PROOF: Consider Y, and substitute “backwards” until the RHS contains
variables dated ¢, and then pre-multiply by J.
Lemma 4.2
Let ¢, be the i:th column of an identity matrix. For j =2,
. . . Jj=2 ’ ]
pr[szw’ =S Tl S = ’1‘%] :( y=0%, b e’/-,f-l)eil Py (20)
PROOF: In the appendix.
We will also use the relation
4 q . . _
E[y,_'_j %:I = Zi/.:.l.zifl E[y,+_,- Serj TlinSia 1 Tl S T lli%] X (21)
Pr[sl+j = ij 1141 = ij—l" S T il‘?/l ]
Concerning notation, let
B, 0 - 0 4 0 - 0
0 B, : 0 u, :
B = ’ = . ’
. 0 Hle o (22)
0 - 0 B, 0 - 0 4,

where Bisnpgxnpgand pisngxq. Alsolet b, =[B® .. B¥]=JB,, and
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a=[p, - u) b=[b, - b,],
®=P, B, W=(1,0J)P,u, (23)
P.=(POL), ¢, =(1,01,),

where C,isar1 X Ig, matrix, P, iSa1g X 1q matrix, ® is a npq Xnpq matrix
containing parameters, ¥ is a npg Xq matrix, and 1 denotes a g X1 vector of

ones.

Lemma 4.3

Let the npgx1 vector ¥ = (541 O] K) Then

{

antlt +anpY, forj=1
?/r:l_ (apf +bz;:q3mij_l_m)§(, +bq)j_l}31pg forjz2.

By, (24)

i
PROOQOF: Substitute (19) and (20) into (21). The details are in the appendix.
Note that we do not require @ or P to be non-singular.

This lemma is the building block of all results in the paper'. In

particular, it allows us to prove our main result, which gives a compact expression

for the hypothesis in (10).

' An equivalent expression for the forecast from the AR part is given by JC,, (BPnp)j )7; .

Although perhaps more intuitively related to the forecast for a linear VAR, it is less
convenient when we turn to constructing RE restrictions.
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Proposition 4.1

For equation (10) to hold, the parameters of the VAR must satisfy the restrictions

=Wp =0and AV -2=0, (25)

where =% = zk =, issxnpq, AW = Z;/\f issxq, and

J=0""

_ _[NyJC,, whenj=0 26
/| Nb® whenj=1, (26)
A = N,aP whenj =1 .
a Nj.an+Nj.bz;: " WP/ whenj 2. (27)

PROOF: Substitute (24) into (9). The details are in the appendix.
4.1 Interpreting the Restrictions

Let us focus on the restrictions on the autoregressive parameters given by

E(k)Pnp =0, since these are usually of more interest in hypothesis testing. There
are snpq equations, but there is no unique way in which these restrictions will be
satisfied. Some combinations of the parameters contain exactly snpg restrictions

on the parameters, but it is possible to have fewer. This will be illustrated in the

examples below. The maximum allowable number of restrictions for the Wald
test that we can have on the autoregressive parameters is n°pg +q(g —1) (the

number of parameters contained in b and P).

One obvious way in which the restrictions can hold is if =*) =

0, giving a

total of exactly snpq restrictions on b. We will argue that this is the most

interesting case, with some useful properties which will be examined below;
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another is if =¥ and Pnp are orthogonal. For this to occur, P must have

reduced rank, which can give rise to fewer than snpqg restrictions.

There is of course a number of ways in which P can have reduced rank,
but the most straightforward case occurs when we have a serially uncorrelated

Markov Chain (SUMC). For example, with ¢ =3

Pu Pan Pa Pu Pu Pu
P=\py Pn Pn|~|Pn Po Po (28)
Pz P Pz Pz Pz Pi3

where p, =1-p, - p,,. Asimple way to obtain a SUMC is to impose (g -1)?
restrictions on P such that
P=(p, p, = p,)=(pe P - p)=10p, (29)
where p, :[prl-np,q]’, Py =1- Zi:pu for some 7 [{1,---,q} .
To illustrate the use of proposition 4.1, let us consider a few examples.
As a matter of notation, let B'/" be the i, j:th element of the lag matrix /in
regime 7. We consider the case when n=¢ =2, and p =1, whence

_ Bl(l,l) Bl(1,2) 532(1,1) 32(1,2):| (30)

sz,l) B]FZ,Z) : Bz(z,l) B2(2,2)

where we have dropped the (redundant) superscript for the lag matrix. In what
follows, unless indicated otherwise, we confine the discussion to restrictions on

the autoregressive parameters.
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Example 1 continued: term structure
From (25), we see that restrictions on the autoregressive parameters implied by
the expectations hypothesis in example 1 are given by

e,'C, —05¢,’bP, =0, (31)

since C, P, =C, . The restrictions in (31) are

np~n

pllBl(m) +p1232(2'1) =2
plel(Zl) + pzsz(Zl) =2
pllBJFZYZ) +p1232(2’2) =0
plel(ZVZ) + pzsz(ZYZ) =0.

pll 1_pll B{Z’l) - 2 (33)
1-pyp P» Béz'l) 2

P 1-py 31(2'2) _ 0 (34)
1-p,, D2 Béz’z) 0)

since p..+ p., =1 (note that the matrix with the transition probabilities is the
pll p12 p

We can write (32) as

and

transpose of P). There are now two non-exclusive ways in which (33) and (34)

can hold, either

B =2
Putpn=1 Bl(z,l) -2

pllBl(Z’l) +(1-py) Béz’l) =2 or B(22,2) =0 (35)
pllBl(Z’Z) +(1- pll)BZ(Z’Z) =0 Bl(2,2) =0
5 )

The latter case with four linear restrictions (snpg =4) corresponds to =0 =,
and requires that selected elements in the lag matrix are equal across regimes.
The former represents a reduced rank condition on P, yielding three non-linear
restrictions. In the case of two regimes, this reduced rank condition is the same

as requiring the MC to be serially uncorrelated. Note that with a one period
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forecast horizon, =% does not contain P, and so the two alternatives (for k=1

only) are non-exclusive.

For the restrictions to hold when there are more than two regimes, the
cases with rank one and full rank for P remain, but there are some intermediate
possibilities as well. This is perhaps best illustrated by extending the above
example to three regimes.

The expression corresponding to (32) with three regimes is

pllBl(Zl) + plsz(Zl) +(1-py - plz)BsEm) =2
plel(Zl) + pzsz(2'1) +(1-py - pzz)Bs(’ZYl) =2
PslBl(z'l) + pssz(ZVl) +(1-py - psz)Bs(z’l) =2
pllB£2’2) + plzBéz’Z) +(1-py - plz)Bézyz) =0
PuBE? + ppBE? + (1= py = pp) BE? =0
PuB*? + py BY? + (1= pyy — py) BE? =0,

Clearly, one way for these restrictions to hold is if B/(Z’l) =2 and BJ(.Z’Z) =0 for

7={12,3 . This corresponds to =*) =0, which yields a total of six restrictions
(snpq =6).
A SUMC is obtained from the four restrictions on P given by

D= Po = Paiv P = P» = Psp» and the two non-linear restrictions

{ pllB:EZYl) + plzBéZl) +(1- P~ plz)Bs(ZYl) =2
pllB:EZYZ) + plsz(ZYZ) +(1-py, - plz)Bs(ZYZ) =0,

which also gives a total of six restrictions (this is just a coincidence).
Let us consider the intermediate case when P has rank two. One way in
which this can occur is if py = py # pgy » P, = Py # P giving the four non-

redundant restrictions
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B(Z’l)
1
(pn P 1=pu—po B2(2,1) :(2)’ (38)
Pa Pw 1=py—psp BED 2
3
Bl(z,z)
(pn P 1=pu—po BZ(2,2) :(O} (39)
Pa Pw 1= py—psp B22) 0
3

Again we obtain 6 restrictions on the parameters.

This example serves to illustrate two important points. First, having snpg
restrictions on the parameters is not the only possibility: there can be fewer, since

not all restrictions need to be independent when =) and P, are orthogonal.

Second, to obtain a SUMC in the above example (for given n and p) does not
require more than snpg restrictions, but this can occur for larger number of

regimes. For example, with ¢ =4, we would obtain 8 restrictions corresponding

to =) =0, and 11 for the SUMC case. There are then 3 overidentifying
restrictions on the parameters above those implied by RE. With more regimes
the number of overidentifying restrictions increases rapidly, a feature due to
requiring (¢ —1) restrictions to impose a SUMC. Consequently, only when we
have a small number of regimes is it possible to impose SUMC without imposing
restrictions unwarranted by RE, although we can still consider the “intermediate”
rank cases for P.

4.2 Long Forecast Horizon

In the example above, the short horizon makes the problem manageable, but for
many applications proposition 4.1 is too general to be of direct use. We need to

narrow the class of N, considered, and obtain simpler expressions. One



18

convenient way to do thisis to let N, ==0’N for j=1, where N isa sXn matrix
of constants and ¢ [J(0,1) is a discount factor. Formally, we focus on hypotheses
of the type

Noy,~NS ' '8y,

where in many applications N =e,’.

v]=0, (40)

The next corollary shows what happens to the restrictions when we
consider hypotheses spanning a long horizon, which allows us, for instance, to
consider perpetuity models. The practical use of corollary 4.1 is to provide
expressions for the restrictions that only require matrix multiplication (i.e.
without summation signs).

Corollary 4.1
Let N, = -0’N, ¢0(0,), and 6r =1, —(5CD)T L If 61 is non-singular, then
= = NoJC,, ~ Nb D, D%, (41)

PROOF: =¥ = Ny JC, =S where S = Nbd[I,,, + 5D+-+(3P)*™]. Solving for S,

np npq

we find S-S6® = Nbd(1,, - (3®)*). Thus, § = Nbd(I,, -(5P)*)(1,, -3®) ",

npyq npq
and the result follows.
This next corollary to proposition 4.1 considers the special case of

perpetuity models, which is of interest for a large number of hypotheses.
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Corollary 4.2

Let the snpg xn°pq matrix R=1, 0 J(N,+ N), the snpgx1 vector

npq

r =VecN,JC

> and = = =) Assume that the largest eigenvalue of ¢ ® is inside
the unit circle, then when £ — o the restrictions on the autoregressive

parameters in (25) hold if

Rvech =r, (42)
PROOF: Use (41) to obtain =F,, =[N,JC,, ~ Nbd®;*]|P,, =0. This holds if
NoJC,, = Nbd®;* =0. Post-multiply by ®,: éNJC, @+ Nbé = NoJC,, =0. Now,

JC, ®=b and thus (N, + N)b-N,JC, =0.

np np
This corollary has two remarkable implications. First, the restrictions are

linear, and second, they do not involve the transition probabilities. Both of these

are a bit surprising since the j:fh term in the summation is Nb5(5P,wB)>"_1, which

involves the transition probabilities. What the corollary tells us is that these
probabilities “wash out” when we let £k — o . This result can be seen as an
extension of the test on the autoregressive parameters in

Campbell & Shiller (1987) with a linear VAR, in the sense that if we let ¢ =1 we
obtain exactly their form of linear restrictions for the present value model of the
term structure.

Example 2 continued: asset pricing

Recall that the hypothesis in example 2 was ¢,'y, =0 e,’ z; o’ E[ylﬂ, 7/1] =0

where & =J(1-9)". In the notation of this section, we have N, =¢,’ and

N=0J0%¢,’. When p=1and ¢=2 thisimpliesthatrZ[l 01 O]’,and
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R= [5 55] . Using (42), the restrictions on the autoregressive parameters
implied by = =0 are then

B +5 B®Y =1/6
B{ +5 BV =110
B:El,Z) + J*B:EZ,Z) - O
B{* + 5 B*? =0,

(43)

Note that the form of the restrictions here is very different from that in

the example with the expectations hypothesis. In (35), the restriction =0 =0
required selected elements of the lag matrix to be equal across regimes. In (43),
by contrast, the restrictions are on selected elements of the lag matrix within each
regime.

5 State Dependent Discount Factor

The hypotheses embodied in (9) are fairly general, but we may want to let the

NJ. terms be state dependent. In particular, the case when the discount factor

depends on the state might be useful. There are of course many other ways in
which an individual’s time preference can change over time, but a discount
factor that depends on the unobservable state might provide an approximation.
Having more than one exogenous discount factor to change might provide more
information about the model’s performance. In particular, if a very large /small
discount factor is needed in order not to reject some hypothesis, then that might

be construed as further evidence against it.

Let N, = —N|_|’£:15sm . One way to extend (40) is then

Noy, ~N3 LB (a0, )] =0 (44)

The j:th term in the summation for j=2 is given by
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({0 R ) B S A A SR
pr[sw S, S T ?/,]
(45)
DIEDIMCELS ITAS)Y l(l'lm B s+ (T B
(15, Pe,, e, PE))
Proposition 5.1
Let 0= diag(é_l,---,é_q) and 00 =900 I.. For j=21, we can replace (26) b
=, = Nbo" (®3")/ ™, (46)
PROOF: Similar to the proof of proposition 4.1 and omitted.
Corollary 5.1
Let R; =o' 0 (Ng+N), and =, be defined from (46), and assume that the
largest eigenvalue of ®¢™ is inside the unit circle. Then the parametric
restrictions in = =0 can be written as
Rsvech =r. (47)

PROOQOF: Similar to proof of corollary 4.2 and omitted.

Note that although the discount factor is state dependent, we still obtain
linear restrictions on the autoregressive parameters.
6 Testing the Restrictions
6.1. The Wald test
In general, the restrictions on the parameters derived in the previous section are
non-linear, and involve the Markov transition probabilities. Estimation of the
VAR subject to these restrictions is likely to be cumbersome, and thus when we
turn to testing them the Wald framework seems most appropriate, since it entails

estimating only the unconstrained model. The Wald test, however, is not
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invariant to transformations of the restrictions in finite samples, see for example
Gregory and Veall (1985). The non-linear restrictions we consider are subject to
this criticism, and so whenever possible it is desirable to estimate the constrained
model as well. We could then compute Lagrange Multiplier (LM) or
Loglikelihood Ratio (LR) tests for comparison with the Wald.

The object of this section is to consider statistical tests of the restrictions

in (25). To be concrete, suppose

T(8-6,) > N,(0,Q) (48)

where 6, (d %1) is the vector of “true” values of the population parameters for

the regime shift VAR(p), & is its maximum likelihood estimate (MLE), and Q is
the covariance matrix.
Let g(6,) =0 be a r x1 vector of restrictions on 6 and let the r xd

matrix

_og
-9 49
20 (49)

Given the number of regimes, the Wald test is then

W=Tg@[GOGT ¢® > x*() onHy: 2(6,) =0, (50)
where Q is an estimate of the covariance matrix O, and G= G(@) Clearly, a
necessary condition for the test to be well defined is that » <d , i.e. there cannot
be more restrictions than parameters. Moreover, G(@) must have full row rank
with probability one. If either of these conditions fail GQG will be singular in
the limit and the asymptotic distribution of W unknown. Further, as a regularity

condition we require that G not change rank in a neighbourhood of 6.
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Calculation of 6 is done with the methods described in Lindgren

(1978), Holst, Lindgren, Holst, and Thuvesholmen (1994), and Hamilton

(1990,1994), and will not be dwelt on further here. Consistency of the MLE & in
a VAR with Markov switching has only been shown quite recently in a paper by
Krishnamurthy and Rydén (1996). Asymptotic normality of the MLE is still an
open question, but we will nevertheless assume it; Bickel, Ritov, and Rydén
(1997) have proved asymptotic normality of the MLE for a Markov switching
model with no autoregression.

To implement the test above we need the first derivatives of the
constraints with respect to the parameters in the model. For the restrictions on

the autoregressive parameters, the relevant parameter vector is

SR

which is of dimension d =n’pg +q(g —1), and where the ¢ —1 xg matrix

Pu " Pa
r=| : : (52)

plq—l o pqq—l

contains only the unique elements of P.

What is an appropriate way to formulate the Wald statistic? It was shown

above that if =*) =0, the RE restrictions are satisfied, but it was also

demonstrated that this was not the only way they might hold. In particular, with
reduced rank on P the restrictions may also hold if =% and P are orthogonal.

As illustrated in the examples, the number of restrictions being tested under the

null depends crucially on which case is being considered. If we were to test
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E(k)Pm7 =0 the test would have “different degrees of freedom” depending on if

the matrices were orthogonal or not, and such a statistic is not well defined.

There seem to be at least two good reasons for focusing on testing
=" =0 only. First, it seems that most of the MC estimated in the literature are
serially correlated, such as those in Hamilton (1988,1989), Engel and Hamilton
(1990), Hamilton and Susmel (1994). On the strength of this it seems innocuous
to assume that the MC is serially correlated as part of the maintained hypothesis
(a testable assumption). Further, itis clear that when P has full rank, =M =0 s
the only way the RE restrictions can be satistied. Second, we gain much in terms
of simplicity. This is most apparent when considering the infinite horizon case,
where RE restrictions are linear.

Nevertheless, a SUMC can sometimes have interesting economic
implications. For example, the conditional term premium in Blix (1997) for a

correlated MC is conditionally heteroskedastic; for a SUMC, by contrast, it is

white noise. However, if we want to impose the additional restrictions of a
SUMC, we cannot just append it to vec(E‘k’Pnp) , because not all the restrictions
are independent. In the example above with n=2, p=1, and ¢ =2 we had 4
restrictions when testing =) =0, but 3 when also imposing a SUMC. What this
means is that the restrictions of a SUMC have to be substituted into vec(E""Pnp)

to obtain only the independent restrictions”. Although this is easy for the

example above, in general it might be quite difficult.

*If this is not done G will not have full row rank, and the Wald test will not be well
defined.
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Let us now turn to formally introducing the RE hypothesis we want to

test. In the rest of the paper, we will focus on tests of vec=¥) = Q. Implicit in the
rest of the discussion is also that for hypotheses spanning a finite horizon,

different weights N]. are used, while for the infinite horizon case, a constant

declining weight is assumed. Note also that it is assumed that ¢, the number of

regimes, is known.

Formally, we can test the hypothesis that

Hy: =% =0 (53)

in which case, with the assumptions in corollary 4.2, we have

vec=® k<o
A = 4
© {Rﬁ_r o (54

A necessary requirement for the test is that snpg < n’pg+q(g-1),i.e. the number
of restrictions should be less than the number of parameters.

Finally, let us briefly discuss how a hypothesis that includes the
restrictions on the drift term. In this case the gn+n°pq +q(q —1) vector with
parameters takes the form

a
0=\ (55)
y

where a =veca. The complete set of RE restrictions are then
HY: =¥ =0 and A®-X=0, (56)

so that

"B
0= [Vec[g,\é) ! Aﬂ- (57)

We now require that snpg +sq <gn +n2pq +q(q-1).
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6.2. Finding the derivatives of g

The rest of this section is devoted to introducing the notation needed to find the
first derivative of g(6), and can be skipped without loss of continuity. At the end
of this section we display different versions of G, based on the hypotheses

discussed above, and also on the horizon.

First, let the g® xg(g —1) matrix Y be such that vecdP =Y'd} , for which

an explicit expression is Y=17_[ (Iq_l —Zl.q_l) '. Further, let the k,,, (mn Xmn)

commutation matrix be defined by the property that k

mn

vecX =vec X’ for any

m Xn matrix X (when X is square we simply write &, ). An explicit expression
for k,, is k,,, = z:”:l(e,. 071,0¢’), see Magnus (1988, p 38).
Finally, let E, = el.ej’, and define

k.=, 0k, 0O 1,)(1{12 Ovecl,),

q (58)
A, =(1,0k,0L)5 7 ((vecE,)e O1,)

which are of dimensions (17g)° xg® and rsq” Xrsq respectively’. When r =, we
simply write A,. We can now give the required derivatives for the above

hypotheses.

’The A, , matrix is defined by the property that VeCZ = A, veCw(Z) where Z is a
matrix with the submatrices Z;, Z,--- on the main diagonal but zeros elsewhere, and
w(Z) stacks the Z;, matrices horizontally side by side. The explicit expression for A

given in the text is derived in lemma B.1 in the appendix. The derivation is a
generalisation of theorem 7.1 in Magnus (1989, p 109).
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Proposition 6.1

Consider testing the hypothesis in (53) that =® =0. When £ is infinite the

matrix with first derivatives takes the simple form
=[R O (59)

while when £ is finite then

Jvec=, Jvec=
Gt =3 , (60)
=By
where for j2>2,
e =((@yON,)+ S 2 ((@yON bo" P, )A,, (1, O J)
B’ - Zm =1 J ap ) S np\Fnpg
dvec_ J=1-my» m=1 <61)
zm (B YON ")k, Y,
while for j={0,1},
7 vec,_1 1, ON, ovec’:O 0
ap ~ 0",3_ (62)
Jvec=, _ 0 ovec=, _ 0.
oy’ oy’
PROOF: In the appendix.
Proposition 6.2
Consider testing the hypothesis in (56). The requred matrix in (57) is
Jvec=, Jvec=,
O J J
B _ <k ap’ oy’
Gy = Z/:o dvec\, JvecA, JvecA, | (63)
oa’ ap’ oy’

where Ay =0. The derivatives in the top submatrix are already given above, and

the other required derivatives are, for j =3,
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JvecA , —mys m
T,/—((PJ)DN)+Z “((P"YON po”)(1, 0 POJ)A,,
JvecA - s
5 L=$ (@ wp Yy ON,)
Zm lz (@™ wp/yON b P, )A, (1, OJ') 60
ovech\ . =
T’J zm ((P7"YON @ P"™Y
Zm O((P’ YON pe" w01, 00 )k, Y
zm Oz’ ((pryON b WP Y
+5 S (BO" WP YON bk, Y,
while for j={12},
Jvech, , : ;
T =((P*YON,)+(POND)1,0POJA,, d\,;c/\ (PON)
Jvech, o’
2202 - ((wpyD
) 0..,3/\ =((WPYON,) dvaiﬁ’/\lzo (65)
V& M\ m-
T_Zm (P YN, aP" ) Y+{(1, 0 N pW)Y dvec’/\ (1,0 My
+HP'O sz)(,u’DIq O J')KnY 24

PROOF: In the appendix.
7 Expectations Hypothesis
In this section the methods discussed above will be applied to testing the
expectations hypothesis of the term structure. We test the version of the EH
discussed in example 1 above, which states that the yield on a two period
discount bond should equal the average expected return of holding two one-
period discount bonds. This test has been performed in a paper by Sola &
Driffill (1994) for US treasury bills also in a model with regime shifts.

As noted above, the form of cenlered regime shift model used in their
paper differs from the one considered here. What does this imply for comparing

results in general? Since we are testing the autoregressive parameters, this does
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not make any difference for the form of the restrictions, i.e. the tests look
identical although the models are different (as discussed at the end of section 2).
The estimated dynamics, however, will be different for the two models, which will
of course affect the test statistics.

Unfortunately, this does not mean that we can directly compare the
restrictions, because the model in Sola & Driffill can be seen as a special case of
(8) where the i:th lag is replaced by a state invariant matrix, i.e. B\(”_) = B¥
Oi O{1,---, p} , which, of course, has more restrictive dynamics. The results in this
paper could still be used to test such restrictions, but then they are identical in
form to those in linear VAR:s - even if the drift and the covariance terms are state
dependent.

This gives rise to an important difference in the form of the restrictions.
The Sola & Driffill restrictions on the autoregressive parameters are identical to
those in standard VAR:s, while here all the restrictions on the autoregressive
parameters are across states. The only restriction on regime dependent terms in
Sola & Driffill is on the drift term, which might be interpreted as requiring the
premium to be equal across states. A constant premium in our setting would
require

Uy pyy + (1= p1y) = Uy (1= ppy) + Ly Dy s (66)

where f,, is the drift term for the i:th equation in state 7. This restrictions is

satisfied if either u,, = u,, or p,; =1-p,, , interpreted as requiring that selected

drift terms should be equal across states and a SUMC respectively. Though such

restrictions are of interest, they are not necessarily implied by the EH. Tests of
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the EH in the literature have focused on restrictions on the autoregressive
parameters, and left the drift term unrestricted; see the discussion in Blix (1997).

The restrictions are different in another sense as well. Although the EH
in this paper involves a one period ahead forecast, the Sola & Driffill procedure
is to take expectations conditional on information at time 7 —1 to control for an
assumed measurement error. This implies that the forecast of ARG, will be two
periods ahead rather than one, which gives rise to non-linear restrictions. In this
paper, the possibility of measurement error is not addressed, although the results
in section 4 suggest how it might be done, e.g. condition both sides of (10) on

Y instead. The advantage of ignoring it is that for the one period forecast

horizon, the restrictions are linear; for all other finite horizons, they are non-
linear.

We use the same frequency of data as Sola & Driffill, namely three and
six month US bills on a quarterly basis; the data here is London Interbank Offert
Rates (LIBOR) taken from the IMF for the period 63Q1-96Q3, and is plotted in
levels on an annual yields basis in figure 1. The transformed data in terms of

spread and first difference in the short rate are plotted in figure 2.

Figure 1. USInterest Rates
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Next, we estimate the regime shift VAR on y, = (S, ARt(l)) ' from

example 1. We choose two regimes, not because it is the only specification that

can be justified, but because it is the simplest one that is of interest. Moreover,

none of the diagnostics for the VAR with one lag presented below reject this

specification at conventional levels.

Table 1.

Model 1. State Dependencein 4, B, ,and Q. .

L,(6) =-1219
Statel

S 010
{ —| o |,
( AR(l)) -016
1 (0.36)

State2

( s, )[ 009
&) —

AR (961')6
094 0.04

p=| 0% ©0
0.06 0.96
(0.05)  (0.03)

1

041 016 @ -0.231 2.920

(110) (0.20) -1 (0.062) (0.804)

059 —0.04] S 0.078 -0.231
(015)  (0.03) ( z—l) Ql —| (0015 (0.062)

144 019 @ 0.014 0.208

(0.37)  (011) -1 (0.007) (0.042)

0.39 0.03] S 0.015 0.014
(0.09) (o.os)( r—l) Q, = (0.004) (0.007)

Wald test of Serially uncorrelated MC: W(4)=556 (0%)

Autocorrelation
ARCH
Markov

Misspecification Tests

Equation 1 Equation 2
F(4,122)=1.5 (20%), F(4,122)=0.8 (51%)
F(4,122)=1.4 (23%), F(4,122)=2.4 (6%)

F(4,122)=1.3 (27%), F(4,122)=1.5 (20%)
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The log-likelihood of the unrestricted estimates for model 7 is denoted
by L,(8); when the EH restrictions are imposed, Lr(é) . The results for model 1

are displayed in table 1. Below each estimate, a standard error based on
conditional scores is given in parentheses. Also displayed are misspecification
tests for residual autocorrelation, ARCH effects, and for the Markov assumption.
These are Fversions of tests based on conditional scores from Newey (1985),
Tauchen (1985), White (1987), and suggested by Hamilton (1996) for a
univariate model. The significance level is given in parentheses.

In state one, the shocks are negatively correlated and have a higher

variance than in state two. In state two, the shocks are almost uncorrelated, and

S,_, has much stronger effect on AR . The probability of being in a particular
state, pr[sl = ]W,] , 1s plotted in figure 3, from which it can be seen that state one

(with “high variance”) covers most of the Volcker money growth target, as well as
most of the 1970s. Since the mid 1980s, however, the observations all seem to

belong to state two.

Figure 3. Pr(s, =1y )
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These probabilities are also used to provide another type of information

about when we switch from one regime to the other. A “switch” to a given state
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in time 7 +1 is defined as having occurred when the probability of being in that
state is less than one-half at time 7, but more than one-half at time ¢#+1. Each
such event is depicted as a vertical line in figures 1,2, 4 and 5. The long dashes
denote a switch into state one, the short into state two.

Table 2 displays a Wald test of the EH in (35) given by vec=® =0 using
variances based on conditional scores. Since the restrictions in this example are
linear, it was not difficult to estimate the constrained model as well, allowing us

to perform an LR test for restrictions for ready comparison to the Wald test: the

likelihood value when imposing the EH on the model in table 1 is Ll(é) =-1288.
The evidence so far is ambiguous. On the one hand, based on the Wald test we
do not reject the null at conventional levels, while for the LR we do. By contrast,
the LR test for ten restrictions in Sola & Driffill could not be rejected at the 5%
level (there are four lags in their VAR).

Table 2

Test of EH: B*Y = B®Y =2 and B®? = B{*? =0.

W(4)=7.6 (11%)
LR (4)=2(128.8-121.9)=13.8 (0.8%).

A remarkable feature of the estimates in table 1 is that all parameters in
the drift and autoregressive terms except B are virtually identical, suggesting
that perhaps most of the model’s improvement over the standard VAR comes
from having a state dependent covariance matrix. To investigate this possibility,
we estimated a VAR with state invariant drift and autoregressive parameters,

displayed in table 3.
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Table 3.
Model 2. State dependent Q only.

L,(6) = -1250

S 0.07 057 -002 S 0.94 0.04
/ =| ©02) || ©o (002 -1 p=| ©o (03
( AR’(l) ) -010 090 019 ( AR® )’ 0.06 0.96

(0.08) (0.30)  (0.08) -1 (004  (0.03)
0.085 -0.251 0.015 0.015
Q. =| (001 (0.052) Q. =| 003 (0007
1 -0.251 3.049 | "2 0.015 0.221
(0.052) (0.616) (0.007)  (0.048)

Wald test of Serially uncorrelated MC: W(4)=489 (0%)

Misspecification Tests

Equation 1 Equation 2
Autocorrelation F(1,125)=2.7 (10%), F(1,125)=0.01 (93%)
ARCH F(4,125)=0.7 (55%), F(4,125)=1.52 (20%)
Markov F(4,125)=0.1 (98%), F(4,125)=0.47 (76%)

Table 3 shows that all the parameters (except B®YY are very close to
those in table 1, but that the standard errors of the state invariant terms are an
order of magnitude smaller than those in table 1 (with only one exception). The

estimated state probabilities ¢,, (not displayed) are also very similar. Moreover,

1
the misspecification tests do not suggest that this model is inappropriate,
indicating that the Sola & Driffill VAR may be overparameterised. An LR test
between the models 1 and 2 gives a statistic of LR(6)=2(125.0-121.9)=6.2 (40%),
which cannot be rejected. In other words, we cannot reject the hypothesis that
the drift and autoregressive parameters are state invariant.

What does this imply for the premium? The premium can only be
constant when selected elements of the drift and autoregressive terms are state

invariant, so that this supports the constant premium restriction in Sola & Driffill

under the null of the EH. For the model in table 3, the EH implies that B®Y =2
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and B%*? =0. Estimating the model in table 3 subject to these restrictions gives
us a loglikelihood value of Lz(é) =-1311. A LR test of these EH restrictions on
model 2 gives a statistic of LR(2)=2(131.1-125.0)=12.2 (0.2%), which is rejected

at the 1% level. This suggests the possibility that the Sola & Driffill non-rejection

of the EH stems from increased uncertainty due to an overparameterised VAR'.

Table 4

VAR Iintable 1:

Corr(S,,5;)=04  Vas,]/vals;|=404
VAR intable 3:

Corr(S,,5;)=065 Vals,]/Val[s ]=34
VAR based on OLS (not displayed)

Corr(S,,5;)=043  Vals,]/Val[s/]=52

Finally, we investigate whether this statistical rejection is also an
“economic rejection” in the sense of Campbell & Shiller (1987). For this

purpose, we compute the ex ante optimal unrestricted forecast of the spread,

S’ = 05E[AR®)

t+1

%1, which is given by
S, =05¢,’bP, ¥ (67)
To the extent that the EH is right, there should be a close
correspondence between S, andS; . They are plotted in figures 4 and 5 for the

VAR:s in tables 1 and 3 respectively, which show that in state two the EH captures
movements in the spread well, but poorly in state one. This visual inspection is

confirmed by the correlation and variance ratio in table 4. Moreover, the

correlation between S, and S, only approaches 90% if we confine ourselves to the

* A potential problem with this sequential testing procedure is that the true significance
level may be different than those in standard statistical tables.
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mid 1980s and onwards. Remarkably enough, the VAR with only state dependent
covariance term (in table 3) is better at predicting the spread than the more
flexible VAR (in table 1). Overall the evidence of the “economic” performance
of the EH is not as impressive as in Campbell & Shiller (1987) for the long end of
the term structure, where the correlation was above 90 % for the whole period.
Note that model 3 achieves a much better fit than a VAR based on OLS (also with

one lag).

Figure4. Ex Ante Optimal Prediction, Model 1
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8 Concluding Remarks
VAR:s with Markov switching may sometimes be suggested as a natural statistical
model from economic theory, or they may simply be better and more

parsimonious characterisations of data. This paper shows how tests of RE that
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have been popular in standard linear VAR:s can be generalised to allow for ¢
unobservable states. In general, the restrictions are non-linear, but in the
important special case of infinite horizon models they are linear and do not
depend on the transition probabilities. One other way the RE restrictions could
be satisfied - discussed but not implemented in the paper - would be if a certain
orthogonality condition were satisfied, with the interpretation of a serially
uncorrelated Markov chain. We argued against this approach on both practical
and theoretical grounds.

It was shown how the methods could be extended to allow for a state
dependent discount factor with very little added complexity in the formulas. It
was argued that changing the (exogenous) discount factors might be a useful
diagnostic tool: determining how much a discount factor has to be changed to
alter the results gives more information about robustness. Having more than one
discount factor to change gives more flexibility.

The methods were applied to testing the expectations hypothesis on
three and six month US bills, performing a similar test to Sola & Driffill (1994)
but with a different regime shift model allowing for richer dynamics. The
restrictions in this paper are different, however, in that here we obtain four
restrictions across states on the autoregressive parameters, while their restrictions
on the autoregressive parameters are all state invariant; the only restriction
reflecting regime shifting in their paper is one that comes from the drift term.

The tests in this paper suggest that the Sola & Driffill non-rejection of
the EH may be fragile, possibly due to the use of an overparameterised VAR. We

also investigated the economic fit of the model in the sense of Campbell &
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Shiller (1987). In state two, the model does a good job of capturing movements
in the spread, but significantly worse in state one, which covers the years when
the change in operating procedures increased the volatility (and level) of interest
rates (the Volcker effect). Overall, the model here provides a parsimonious
representation of the data with better predictive power than a VAR based on

OLS, but is not quite able to represent the years 1979-82.
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Appendix A
Proof of Lemma 4.2

By the Markov property,

pl’[SHl = il‘?/l] = Zqozl pr[sl+1 = il‘sz = io’?/z ] pr[sl = iO‘?/I:I

. (A.1)
=" s =ifs =i pr[st =1, %]-
We can write (A.1) as
Z):lpio,/l pr[s, = io‘?/r]
A "
= [p]jli ’pqil]ftlt
=e, ' PS,.
Similarly,
pr[sr+2 =iy S T %] = Dy, (efl’me) (A.3)
=(e, Pe, ), P&y),
and so on.
Proof of Lemma 4.3
First, substitute (19) and (20) into (21), and for j =2 we obtain
b= D Xttt + Tl )t A B iy

( |_| ;;20 € ’ Pei/—/‘—l )(e’l P f’ 4 )

Step 1. First we consider the term in (A.4) that involves Y. When j =3 this

term is

Jz:izl z:lzzl zzleizBiz B’iy;(e’é P €, )(e’z ’ Peil )(e’i P £’|’ )’ (A.5)

which can be written as
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Jz:;lB’é z:lzzl(efs ' Pe’z )B’z [ z;llzl(e’z ,Pe’i )B’i (e'i P g(’Il )Y;] (A6)

Recall that ¥ = (f

4 U K), and note that the term inside the square brackets in

(A.6) is

St (e, Pe)B (e, P& = [(el.z 'Pe,)B(e P&, )+-He, Pe,)B, (e, PE, )]Y

(e e, )1,
= [(eiz’Pel)Bl,---,(eiz’Peq)Bq_ : ¥

€
=[(e, Pe)l,,. (e, Pe, )L, |B|| ¢ |PE, D1, Y
| e
=((e, Per--.e, Pe,)O 1, |B(PO L, )Y (A7)
=|(e, Plev-re,)) O 1, B R,T,

(e,01,)(PO1,)BR,Y,

p

=(e,'01, )0 P, Y.

Substitute this expression back into (A.6), and we obtain

‘e

I B3 e, Pe B (6,01, )]0, T

Again consider the expression inside the square brackets:

zzzl(e,3 ' Pe,2 )B,2 (e,2 ' Inp) = (e,3 ' Pel)Bl(el’D Inp)+. . .+(e,3 ' Peq)Bq (eq "0 Inp)

e’U1,,
:[(e,.;Pel)Bl,...,(e,g’Peq)Bq] : (A.9)
e, U1

np

=(e,01,,)®.

Substitute this back into (A.8) and we obtain
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IS B (e, 01, )0 P, 7 = J[B(e;01, )+-+B,(e, 01, )|®?P, ¥

ig= /4
= J[B,,B,|®*E, ¥ (A.10)
=b®°P, Y.

From this we can infer that for j 22 this term will have the form
b®'P Y. (A.11)

A similar calculation for j =1 yields

=N

bP,Y. (A.12)

Step 2. Consider j=4. The terms in (A.4) that do not involve ¥, explicitly are
Zizl zzzl Zzzl zzﬂ{”u tJB U *IB BT, * JB"‘Bi3B'2J"LI'1} g (A.13)
(e’A P e’s )(e’3 P e’z )(e’é P e’i )(e’i ’ Pé’l’ )

Let us focus on the first term in (A.13), which after some rearrangement is given

by

Sy (e, Pe)S! (e, Pe, )[Zj’lzl(e,z 'Pe,)(e, PE,, )] (A.14)

Expanding the expression inside the square brackets we obtain

zzzl(e’? , Pe’i )(e’i ’ Pgll’) = [e/z "Peje, '+ '+e,2 ' Peqeq ']me

(A.15)
=e, 'P%¢,,.
Substitute (A.15) back into (A.14), and we obtain
q q , q , ' p2
Z/4=l/1i4 /3=1(ei4 Pe’s)Z/zzl(e’é Pe’z )eiz P E’V' <A16)

We proceed directly to the summation for i,, since 7, and i, are the same, and

obtain

ZZ=1/'114314 ’ P4<,t,|, = [’ulel’+. e, ’]P4£’|’
=a P*¢

‘e

(A.17)

From this we readily infer that for j =1 terms of this type is given by
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aP'é,. (A.18)

The other terms in (A.13) are done similarly (proof available upon request),
which gives

+h PWP?E

e te

a P&, +(bWwp? +bD?WPE,, ), (A.19)

We see that (A.19) can be written as

aP'& +bYy . P"WPTE,. (A.20)
Now, from (A.20) we can infer that the pattern for j =2 is
a P,/gz’ll +bz;_j) (Dml'PPj_l_mgz’l’ ] (AQI)

The calculation for j =1 is straightforward, and omitted.

Proof of Proposition 4.1

~

First note that N,y, = N JY, = N,JC, Y , and using the resultin (A.11), (A.21),

np~t?
and (18) we see that the RE restrictions in (9) can be written compactly as
=P, (e, OX)+AWe, = Ne,, (A.22)
where we have used the notation in proposition 4.1. We can write this system of

equations as

BUA /\“’—/\’][(e»"r f)]:o. (A.23)

The only expression that is orthogonal to [(esr N K)’ e, ’] " for all ¢1is the zero

matrix, which shows that under the null hypothesis in (9) the restrictions in the
proposition must hold. By the law of iterated expectations, these restrictions

should also hold for (10).
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Appendix B

We now state two propositions, and introduce a new lemma, which will be of use
below.

Proposition B.1

Let Abe mxnand Bbe pxg. Then vec(40 B)= ([n Uk, U Ip)(vecA 0 vecB).

PROOF: See Magnus and Neudecker (1988, p 47).

Proposition B.2
Let Xbe a nxn matrix and F(X)=X". Then dF = z;zl X" X,

PROOF: See Magnus and Neudecker (1988, p 183).

Lemma B.1 (generalisation of theorem 7.1 in Magnus (1989, p 109))
Define the rsq” Xrsq matrix A, = (]q Ok, O ]’)z ((vecE,)e,'01,), where

q
i=1

E, =ee,’. When r =y, we simply write A_. Let the rg Xsq matrix

Z= , (B.1)

where the matrices Z, arer Xs, and let w(Z) = [Zl---Zq]. Then

vecZ = A, vecw(Z). (B.2)

PROOF: We can write Z = Z:lzl(En' 0Z). Apply the vec operator on both sides

and we obtain



44

VG:(Z) = z,qulvec(En O Z/)

=(1,0k,,01,)5 " (vecE, OvecZ,) (B.3)

i=1

=(1,0k,,01,)5 " (vecE, 01, ecZ,.

i=1

Now, we can write Z =w(Z)(e, O I,). Using this expression in (B.3) we obtain

vec(Z) = (1{1 Ok, O JV)Z‘_’ (vec(E,) O I, vec(w(Z)(e, O 1,))

i=1

(B.4)
=(1,0k,01, )[zle(vec(E,,)e', Dl,‘s)]vec(w(Z)).
Proof of Proposition 6.1
From proposition 4.1, for j =2 we have
- - -1
=, =N, b®". (B.5)
The differential is
dvec=, = vec[N].db CD-"l]
' ' ‘ (B.6)
+ved N pd[®’]].
For the first term on the RHS of (B.6) we immediately obtain
((@yON, )dB. (B.7)
The second term on the RHS of (B.6) is
(L, DN b)vecd[®*]= 5~ ((®*"YON po" ") dvecd, (B.8)
where we have used proposition B.2. Further,
dvec® = vec[(dP O Inp)B] + vec[(P O Inp)dB]
=(B'01,,)1,0k,, 01,)1.0vecl, )(vecdP 0 1) (B.9)

+(1,,, 0 P, )dvecs,

where we have used proposition B.1. Now, applying lemma B.1, this can be

written as



45

dvec® =(B'01,, )k, Ydy+(1,, 0P, )A, vecw(dB), (B.10)

npq npq

where

vecw(dB) = vec(J'db)

, (B.11)
=(1,, 0J)dB.
Substitute (B.11) into (B.10), and we get
dvec® =(B'01,, ), Ydy+(1,, 0P, )A, (1, 0.J)dB. (B.12)
Substitute this expression into (B.8), and we obtain
J-1 i—1-m\1 m-1
_((B®'"YON b®" ")k, Ydy
Zm—l( J ) p (Bl?))

+5 (@ YON "R, )8, (1, 0 J)dB.

np npy

Expression (B.13) gives us the differential of the second term on the

RHS of (B.6).

Collecting the terms in (B.7), and (B.13) we obtain for j =2,
dvec=, =((®'*yON,)dB
+ z;;ll((BdJ"l‘”’)’D N b®" )k, Ydy (B.14)
+z;_:];((q).f—l—m)a|:| ijq)m—lP )Anp(] B J,)dﬁ,

np npy

from which the required derivatives are easily obtained. For j =1 we have

dvec=, = vec[ N,db]

(B.15)
=(1,,, 0N,)dB.
Proof of Proposition 6.2
We know turn to the differential of vecA , and obtain for j =3
dvech, = dved N a P/ +dved N by 12 @nwp/ | (B.16)

Expanding the first term on the RHS of (B.16) we obtain
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dved N,a P'| = ved N, da P’'| +ved N ad[ P']|
=((P/YON, )da + Z';:l((P/"”)’D N,a P"*)Ydy.

Next, we expand the second term on the RHS of (B.16).

aved N pY Eomwp ] = ved v by @ wp ]

+ved N by d @ ]wp |

+ed N b3 ardw P ]

[ J72 om i~1-m
+veq N by o W[ P/ ]].
The first term on the RHS of (B.18) is

z’i [(qnmwpf‘l"”)'m N j]dﬁ,

while the second term is

S H(wpyON plved $ 0 td 0| =
2 3" (@ wpryo N, b )dvec®,

m=1

and we already know dvec® from (B.12). The third term in (B.18) is

ved N by 07w P | = 5 (PR TN b0 avecW.
Now,
dvecW = (01, 0.k, Ydy +(1, 0 PO .J")dvecu
and

dvecu=A, vecw(du) =A,,da

So that (B.21) becomes

5o s, o, v

m=0

2

+ Z;':o((Pf-l-m)’D Np®")1,0POJ)D,, da.

Finally, the fourth term in (B.18) is

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)
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Vec[Nfb z;_:z oW P ]] - Z;j)([q 0 N.jbcquJ) Vec[ z:i_m Pdp P-f'l"’z"‘]

_ j-2 J=1-m

(P77 YON b®" WP Y dy.

m=0 s=1

(B.25)
Collecting the terms in (B.17), (B.19), (B.20), (B.24), and (B.25), we obtain for

j=3

dvecA, =((PYON, Jda+ 3 ((P"YON,a P)Ydy
3. fleer oy e

m=0

+ zj_z ZT:l((B Q" WpITTYON b q)s_l)Knp Ydy

m=1
=2

+y LY (@ WP DN bR, A, (1, 00)dB (B.26)

np npq

+z’20 ((P"yON b (0L, 0. ), Ydy
+Z}::o (P "yON p®” )1, 0 POJ)A, , da
+z’ =S (P yON b WP ) Yy,

m=0 s=1

from which the required derivatives can be obtained. For j =2, there is no ®

term in (B.16) and so the terms from (B.20) do not enter into dvecA,, which is

given by

dvecA, = ((P2)YOIN, )da + z;zl((Pz‘”’)’D N,aP")Ydy
+((WPYON,)dB+(P'ON,p) (01,0 )k, Ydy (B.27)
+(P'ON,b)(1,0 POJ)A, da +(1, 0 N,pW)Ydy.

For j =1, we obtain the simpler expression

dvecA, = ved N,da P]+ved[ N,adP]

B.28
=(P'ON,)da +(1,0 Nya)Ydy. (528
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