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1 Introduction

In this paper the model in "The New Keynesian Phillips Curve and Staggered Price and Wage De-

termination in a Model with Firm-Speci�c Labor" is presented in detail. We describe the agents and

sectors of the economy and state the conditions for optimizing behavior. We then describe how to

compute the steady state of the model. Next, we proceed to log-linearize the �exible as well as the

sticky price model around the steady state. We �rst log-linearize the optimal price- and wage-setting

decisions. We then proceed to derive a second-order log approximation of the welfare function of the

sticky price model. Finally, we solve the model, both if policy follows a simple rule and if monetary

policy is optimal.

In section 2, we outline the model. In section 3 and 4 we log-linearize the �exible and sticky price

models, respectively, in section 5 the log quadratic approximation of welfare is derived and in 6 the

model is solved. Finally, in section 7 the Erceg, Henderson & Levin (2000) model is described and

solved.

2 The Economic Environment

There is a competitive �nal goods sector with �exible prices and a monopolistically competitive inter-

mediate goods sector where producers set prices in staggered contracts as in Calvo (1983). Intermediate

goods producers set prices in staggered contracts as in Calvo (1983). In order to introduce complete

consumption insurance we rely on a representative family as in Merz (1995), that consists of a large

number of households. To each �rm a household is attached. Thus, in contrast to Erceg et al. (2000),

�rms do not perceive workers as atomistic. In each period, wages are renegotiated with a �xed prob-

ability. Thus, wages are staggered as in Calvo (1983) but, in contrast to Erceg et al. (2000), they are

determined in bargaining between a union and the �rm and not unilaterally by the union.

2.1 Final goods �rms

Since we assume complete insurance, using a representative family as in Merz (1995), households are

identical, except for leisure choices. It then simpli�es the analysis to abstract away from the households

optimal choices for individual goods. We follow Erceg et al. (2000) and assume a competitive sector

selling a composite �nal good. The composite good is combined from individual or intermediate goods

in the same proportions that households would choose. The composite good is

Yt =

�Z 1

0
Yt (f)

��1
�

� �
��1

; (1)
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where � > 1 and Yt (f) is the intermediate good produced by intermediate goods �rm f . The price

Pt of one unit of the composite good is set equal to marginal cost

Pt =

24 1Z
0

Pt(f)
1��df

35
1

1��

: (2)

2.2 Intermediate good �rms

By standard arguments, the demand function for the generic good f from the �nal goods sector is

Yt+k (f) =

�
��kPt (f)

Pt+k

���
Yt+k: (3)

Intermediate goods �rms produce according to the following constant returns production function

Yt (f) = AtLt (f)
1�
 ; (4)

where At is the technology level, common to all �rms, and Lt (f) denote the �rms labor input in period

t. Since �rms choose employment unilaterally, Lt (f) are chosen optimally, taking the wage Wt (f) as

given. Solving for labor choice in the cost minimization problem trivially gives,

Lt (f) =

�
Yt (f)

At

� 1
1�


: (5)

The cost and marginal cost functions for �rm f are then given by

TC (Wt (f) ; Yt (f)) = Wt (f)

�
Yt (f)

At

� 1
1�


; (6)

MC (Wt (f) ; Yt (f)) =
1

1� 

Wt (f)

Yt (f)

�
Yt (f)

At

� 1
1�


;

respectively. The marginal product is in real terms, ignoring the time period when the contract was

signed,

MPLt (f) = (1� 
)AtLt (f)�
 = (1� 
)
Yt (f)

Lt (f)
; (7)
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where wt (f) =
Wt(f)
Pt

is the real wage.1 Furthermore, real costs is given by

tc (wt (f) ; Yt (f)) =

�
Yt (f)

At

� 1
1�


wt (f) : (8)

2.3 Calvo price and wage determination with indexation

Firms are allowed to change prices in a given period with probability 1� � and to renegotiate wages

with probability 1 � �w. Any �rm that renegotiates wages, is also allowed to change prices. The

probability that prices are unchanged is �w�. This assumption simpli�es our problem greatly, since it

eliminates any intertemporal interdependence in price-setting decisions for a given �rm. We assume

that prices are indexed by the steady-state in�ation rate, as in Yun (1996).

2.3.1 Prices

The producers choose prices to maximize

max
Pt(f)

Et

1X
k=0

(�w�)
k	t;t+k

h
(1 + �) ��kPt (f)Yt+k (f)� TC (Wt (f) ; Yt (f))

i
(9)

s. t. Yt+k (f) =

�
��kPt (f)

Pt+k

���
Yt+k:

Note that the term within the square brackets is just the �rm�s pro�t in period t+k, given that prices

were last reset in period t. The term 	t;t+k captures households valuation of nominal pro�ts in period

t+ k: This will in general depend on time preferences �k and the marginal utility in period t+ k. The

�rst-order condition is

z = Et

1X
k=0

(�w�)
k	t;t+k

�
� � 1
�

(1 + �) ��kPt (f)�
��kW (f)

MPLt+k (f)

�
Yt+k (f) = 0: (10)

Note that the only di¤erence between (10) and equation (8) in Erceg et al. (2000) is that the probability

of an unchanged price is �w�.

To derive labor demand elasticity, �rst note that we have

dPt (f)

dW (f)
= �zW

zp
=
Pt (f)

W (f)
: (11)

1Note that, from (6) and (7) it follows that

MCt (f) =
Wt (f)

MPLt (f)
:
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For future reference, note that from (5) it follows that

@Lt (f)

@W (f)
=
@Lt (f)

@Yt (f)

@Yt (f)

@W (f)
=

1

1� 

Lt (f)

Yt (f)

@Yt (f)

@W (f)
; (12)

where @Yt(f)
@Wt(f)

= @Yt(f)
@Pt(f)

@Pt(f)
@Wt(f)

and thus, using (11) and (3) we have that,

@Lt (f)

@W (f)
= � �

1� 

Lt (f)

W (f)
: (13)

The wage elasticity of labor demand is given by

"L =
@Lt (f)

@W (f)

W (f)

Lt (f)
= � �

1� 
 : (14)

2.4 Households

The economy is populated by a representative family, consisting of a continuum of households indexed

by h on the unit interval. Moreover, each household is linked to a local labor market with a single

�rm f . Thus, h = f . Each household, in turn, has a continuum of members where a fraction is

employed by the �rm in the local labor market. Since the family pool income across members, the

households are homogeneous with respect to consumption and real money balances. The payo¤ of

having a household member at �rm f working is, given the commuting cost j is

u (Ct; Qt) + l

�
Mt

Pt

�
� v (He; Zt)� # (j)

and unemployed is

u (Ct; Qt) + l

�
Mt

Pt

�
� v (0; Zt)

work. The expected life-time utility of the family in period t, is given by

Et

(
1P
s=t
�s�t

"
u (Cs; Qs) + l

�
Ms

Ps

�
�
Z 1

0

 Z Ls(f)

0
(v (He; Zs) + # (j)) dj

!
df (15)

�
Z 1

0

Z 1

Ls(f)
v (0; Zt) djdf

#)
; (16)

where � 2 (0; 1) is the households discount factor and Ls (f) is the employment at �rm f . Here, Cs is

�nal goods consumption in period s, Ms
Ps
is real money balances, where Ms denotes money holdings,

and v (He; Zs) and v (0; Zs) the disutility of being employed and unemployed, respectively. Also,

Qs and Zs are shocks to the utility of consumption and leisure, respectively. Moreover, there is a

distribution over the disutility of supplying labor, #, for each household within the family (due to e.g.
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the dislike and distance of commuting) where the household always allocates the household member

with the least cost to the labor market giving rise to the term # (j).2

The budget constraint of the family is given by

Bt
PtIt

+
Mt

Pt
+ Ct =

Mt�1 +Bt�1
Pt

+Dt; (17)

where

Dt = (1 + �w)

Z 1

0

Wt (f)Lt (f)

Pt
df +

�
1�

Z 1

0
Lt (f) df

�
b+

�t
Pt
+
Tt
Pt

(18)

and where It is the one period nominal interest rate, Bt denotes one period bonds. Moreover, Wt (f)

denotes the households nominal wage and �w is the tax rate (subsidy) on labor income. The family

owns an equal share of all �rms and of the aggregate capital stock. Then, �t is the family�s aliquot

share of pro�ts and rental income. Also, Tt denotes nominal lump sum transfers from the government.

Finally, note that 1�
R 1
0 Lt (f) df is equal to the unemployment rate and b is the real monetary payo¤

to unemployed workers.

The value function corresponding to the family maximization problem is

~V (Bt�1;Mt�1) = max Et

(
u (Ct; Qt) + l

�
Mt

Pt

�
�
Z 1

0

 Z Lt(f)

0
(v (He; Zt) + # (j)) dj

!
df (19)

�
Z 1

0

Z 1

Lt(f)
v (0; Zt) djdf + � ~V (Bt;Mt)

)
;

subject to
Bt
PtIt

+
Mt

Pt
+ Ct =

Mt�1 +Bt�1
Pt

+Dt: (20)

De�ning

V (Lt (h) ; Zt) = (Lt (f) v (H
e; Zt) + (1� Lt (f)) v (0; Zt)) +

 Z Lt(f)

0
# (j) dj

!
;

we can write

~V (Bt�1;Mt�1) = maxEt

�
u (Ct; Qt) + l

�
Mt

Pt

�
�
Z 1

0
V (Lt (f)) df + � ~V (Bt;Mt)

�
: (21)

2An alternative interpretation is given in Cho & Cooley (1994). When unemployed, there is a household production
opportunity available for the household. There is a loss # (j) when a household member j participates in the labor force
(or works a fraction Ls (h) of the total available days). Due to decreasing returns in home production this loss increases
in Ls (h).
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The Lagrangian is then

L = Et

�
u (Ct; Qt) + l

�
Mt

Pt

�
�
Z 1

0
V (Lt (f)) df + � ~V (Bt;Mt)

�
(22)

��t
�
Bt
PtIt

+
Mt

Pt
+ Ct �

Mt�1 +Bt�1
Pt

�Dt
�
:

Using the envelope theorem to compute VM and VB and the �rst-order conditions with respect to Ct

and Bt to derive the Euler equation, we arrive at the following expressions

lM
P

�
Ms

Ps

�
= �t

1

Pt
� �Et

�
uC (Ct+1; Qt+1)

1

Pt+1

�
; (23)

uC (Ct; Qt) = �Et (uC (Ct+1; Qt+1)Rt) ; (24)

where

Rt = It
Pt
Pt+1

(25)

is de�ned as the gross risk-free interest real rate.

For further use, let �C and �L denote the (inverse of the) intertemporal elasticity of substitution

in consumption and labor supply, respectively. That is

�C = � �uCC
�C

�uC
; (26)

1

�L
= �

�VLL �L
�VL

; (27)

where �x refers to the steady state value of the variable x.

The value of not being on strike for household h is in consumption terms, using (22), the value of

the Lagrange multiplier �t in optimum and the budget constraint

� V (Lt (h))

uC (Ct; Qt)
�
�
�
�
(1 + �w)

Wt (h)

Pt
Lt (h)� b (1� Lt (h))

��
: (28)

2.4.1 Wages

The value for the worker/union at �rm f in period t + k + j is given by, given that prices were last

changed in t + k and wages in t is denoted U tt+k;t+k+j . Letting �
t
t+k;t+k+j denote per-period utility,

we can write

U tt;t = �
t
t;t + �w�Et

uC;t+1
uC;t

�
�U tt;t+1 + (1� �)U tt+1;t+1

�
+ (1� �w)�Et

uC;t+1
uC;t

U t+1t+1;t+1; (29)
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where

�tt+k;t+k+j = Ltt+k;t+k+j (f)

 
(1 + �w)

(��)k+jWt (f)

Pt+k+j

!
+
�
1� Ltt+k;t+k+j (f)

�
b (30)

�
V
�
Ltt+k;t+k+j (f) ; Zt+k+j

�
uC;t+k+j

:

In case the �rm and workers renegotiate the wage, bargaining takes place according to the noncooper-

ative Rubinstein-Ståhl model. In case there is disagreement, there is a con�ict during the remainder of

the period, whereafter negotiations continue in the next period. The payo¤ in case there is a con�ict

is then

Uo;t = �o;t + �Et
uC;t+1
uC;t

U t+1u;t+1;t+1; (31)

where

�o;t = b� v (0; Zt+k+j)

uC;t+k+j
: (32)

Some algebra shows that

U tt;t � Uo;t = �tt;t ��o;t +
1X
k=1

(�w��)
k Et

uC;t+k
uC;t

�
�tt;t+k ��tt+1;t+k

�
+�w�

1X
k=0

(�w��)
k Et

uC;t+k+1
uC;t

�
�tt+1;t+k+1 ��t+1t+1;t+k+1

�
(33)

+(1� �)
1X
k=2

(�w�)
k
1X
j=0

(�w��)
j Et

uC;t+j+k
uC;t

�
�tt+k;t+j+k ��t+1t+k;t+j+k

�
:

Now consider the �rm. We have

F tt;t = �tt;t + �w�Et
uC;t+1
uC;t

�
�F tt;t+1 + (1� �)F tt+1;t+1

�
+ (1� �w)�Et

uC;t+1
uC;t

F t+1t+1;t+1; (34)

Fo;t = 0 + �Et
uC;t+1
uC;t

F t+1t+1;t+1;

where per-period real pro�t in period t+ k when prices last were changed in t is denoted as

�tt+k;t+k+j = (1 + �)
Pt+k (f) ��

j

Pt+k+j
Y tt+k;t+k+j (f)� tc

�
wt+k+j (f) ; Y

t
t+k;t+k+j (f)

�
: (35)
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A similar argument as above shows that

F tt;t � Fo;t = �tt;t +

1X
k=1

(�w��)
k Et

uC;t+k
uC;t

�
�tt;t+k � �tt+1;t+k

�
+�w�

1X
k=0

(�w��)
k Et

uC;t+k+1
uC;t

�
�tt+1;t+k+1 � �t+1t+1;t+k+1

�
(36)

+(1� �)
1X
k=2

(�w�)
k
1X
j=0

(�w��)
j Et

uC;t+j+k
uC;t

�
�tt+k;t+j+k � �t+1t+k;t+j+k

�
:

Wages are determined in bargaining between the �rm and the household attached to the �rm.

Since there is equivalence between the standard non-cooperative approach in Rubinstein (1982) and

the Nash bargaining approach, we use the latter method. We let

Stt;t = U tt;t � Uo;t; (37)

Gtt;t = F tt;t � Fo;t:

To simplify notation, especially in section 4.4 below, we use gradient notation to indicate derivatives.

For example, the partial derivative of the above expressions with respect to the wage W are denoted,

rWStt;t and rWGtt;t. The wage is then chosen such that is solves the following problem

max
W (f)

�
Stt;t
�' �

Gtt;t
�1�'

; (38)

where ' denotes the bargaining power of households.

The �rst-order condition corresponding to (38) is

'Gtt;trWStt;t + (1� ')Stt;trWGtt;t = 0: (39)

Alternatively, we can write

'rWStt;t + (1� ')
Stt;t
Gtt;t

rWGtt;t = 0: (40)

This is our counterpart to equation (16) in Erceg et al. (2000). Here

rWStt;t = rWU tt;t = rW�tt;t +
1X
k=1

(�w��)
k Et

uC;t+k
uC;t

�
rW�tt;t+k �rW�tt+1;t+k

�
+�w�

1X
k=0

(�w��)
k Et

uC;t+k+1
uC;t

rW�tt+1;t+k+1 (41)

+(1� �)
1X
k=2

(�w�)
k
1X
j=0

(�w��)
j Et

uC;t+j+k
uC;t

rW�tt+k;t+j+k;
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where, using (13), we have

rW�tt+k;t+k+j = "L
Ltt+k;t+k+j (f)

Wt (f)

0@(1 + �w) (��)k+jWt (f)

Pt+k+j
� b�

VL

�
Ltt+k;t+k+j (f) ; Zt+k+j

�
uC;t+k+j

1A
+
Ltt+k;t+k+j (f)

Wt (f)
(1 + �w)

��k+jWt (f)

Pt+k+j
: (42)

Finally, rWGtt;t can be written as

rWGtt;t = rWF tt;t = rW�tt;t +
1X
k=1

(�w��)
k Et

uC;t+k
uC;t

�
rW�tt;t+k �rW�tt+1;t+k

�
+�w�

1X
k=0

(�w��)
k Et

uC;t+k+1
uC;t

rW�tt+1;t+k+1 (43)

+(1� �)
1X
k=2

(�w�)
k
1X
j=0

(�w��)
j Et

uC;t+j+k
uC;t

rW�tt+k;t+j+k;

where

�rW�tt;t+k =
tc (wt (f) ; Yt (f))

W (f)
(44)

where we have used that the envelope theorem implies that all e¤ects of a change in W (f) on prices

are eliminated.

2.5 Steady state

We now turn to the (non-stochastic) steady state of the model.3 Note that the steady state of the

real variables is the same in the �exible price model and the sticky price model. In the steady state,

R, C, Y (f) and B are constant. Moreover, B = 0. Also, M and P grows with the rate ��, i.e., we

have Pt+1
Pt

= �� and �I = �R��.

2.5.1 Real wages

At an e¢ cient equilibrium real wages are

�w =MPL (45)

and, by the resource constraint, we have

�Y (f) = �Y = �C: (46)

3 That is, a situation where the disturbances Zt, Qt and At are equal to their mean values at all dates.
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2.5.2 Prices

In steady state, the �rst-order condition of the �rm (10) for price setting becomes

(1 + �)
� � 1
�

� �w

MPL
= 0; (47)

where �w is the steady state real wage. Since we assume that monetary policy is used only to stabilize

deviations from the �exible-price equilibrium, using (45) we require that � is determined such that

(1 + �) ��1� = 1, i.e.

� =
�

� � 1 � 1 =
1

� � 1 : (48)

2.5.3 Wages

Now, let us turn to the Nash bargaining solution in steady state. The �rst-order condition (39) then

is

'
�
�G (W (f))

�
rW �S (W (f)) + (1� ')

�
�S (W (f))

�
rW �G (W (f)) ; (49)

where �S (W (f)) etc., indicates that all variables except W (f) are at steady state levels, noting that

the steady state value of  t;t+k is � k = �k. Using (13), (42), (44) and that the real total cost is, using

mc = 1, 1
1�
 tc =

�Y gives that,

�� = �L (1 + �w) �w +
�
1� �L

�
b�

V
�
�L; �Z

�
�uC

;

�� = (1 + �) �Y � tc = (1 + �) �Y � (1� 
) �Y ; (50)

��o = b�
V
�
0; �Z

�
�uC

:

Then expression (49) can be written as

' (� + 
)

�
"L

�L

W (f)
((1 + �w) �w � b)� "L

�L

W (f)

�VL
�uC
+

�L

W (f)
(1 + �w) �w

�
(51)

� (1� ')
 
�L ((1 + �w) �w � b)�

 
V
�
�L; �Z

�
�uC

�
V
�
0; �Z

�
�uC

!!
(1� 
) :

Note that, when computing V , we assume # (j) = j& and hence

Z �L

0
(# (j)) dj =

�L1+&

1 + &
: (52)
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2.5.4 Taxes and subsidies

In the paper, we adjust the labor tax/subsidy �w, so that e¢ ciency is achieved. From an e¢ cient

consumption-leisure choice we have

�VL = �uC �w: (53)

Solving for 1 + �w from the �rst-order condition (51) gives

1 + �w =

'"L
�
b
�w + 1

�
+ (1� ')

�
b
�w +

V (�L; �Z)
�uC �w�L

� V (0; �Z)
�uC �w�L

�
(1��)
1+ 


1�
 �

' (1 + "L) + (1� ') (1��)
1+ 


1�
 �

: (54)

2.5.5 Interest

From the Euler equation we get that

1 =
1

�

1

I
��; (55)

or, in real terms, �R = 1
� and the nominal interest rate is then

�I = ��
� .

2.5.6 Equilibrium

We have the following equations that determine the real variables in equilibrium of the economy in

steady state. First, e¢ cient consumption-labor choice implies that

�VL
�uC

= (1� 
)
�Y
�L
: (56)

From e¢ ciency on labor market we have

MPL = (1� 
)
�Y
�L
= �w: (57)

The reason why (51) does not enter in the two expressions above is that �w is used to ensure that the

wage bargain leads to an e¢ cient outcome. Second, from the de�nition of marginal cost

mc =
�w

MPL
= 1: (58)

Since �Z, �Q, �A, 
 and � are parameters of the problem, we have six equations and six unknowns.

Then, using �C = �Y in (56) and (57) with the production technology �Y = �A
�
�L
�1�
 gives the following

equation to determine �L

�VL
�
�L; �Z

�
= �uC

�
�A
�
�L
�1�


; �Q
� �A

�
�L
�1�

�L

(1� 
)
!
: (59)
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In terms of the function u = ( �C� �Q)
1��C

1��C
we have uC =

�
�C � �Q

���C . Moreover, we have
�C = �

�uCC �C

�uC
= �

��C
�
�C � �Q

���C�1 �C�
�C � �Q

���C = �C
�C

�C � �Q
() �Q = �C � �C

�C
�C: (60)

Again, taxes are determined from (48) and (54).4

3 Log-linearizing the �exible price equilibrium

Now, let us log-linearize the model around the steady state. We �rst do this at the �exible price

and wage equilibrium. This is then used to derive the log-linearization for the sticky price and wage

equilibrium in terms of deviations from �exible-price variables. Here, we focus on a limiting cashless

economy.

Let X� denote the value of a variable in the �exible-price equilibrium.

3.1 Euler Equation

To �nd the Euler equation we use the de�nition (26) and log-linearize expression (24). We get

Ĉ�t +
�uCQ �Q

�uCC �C
Q̂t = Et

�
Ĉ�t+1 +

�uCQ �Q

�uCC �C
Q̂t+1 �

1

�C
R̂�t

�
: (61)

3.2 Prices, real wages and output

Rewriting problem (9) when � = 0, we can �nd P �t (f) by maximizing

max
Pt(f)

Et ((1 + �)P
�
t (f)Y

�
t (f)� TC�t (f)) (62)

st: Y �t (f) =

�
P �t (f)

P �t

���
Y �t :

Using that �
(1+�)(��1) = 1, that MC�t =

W �
t

MPL�t
, and that �rms choose the same prices and face the

same wages in �exible price equilibrium gives

P �t (f) =MC�t =
W �
t

MPL�t
() W �

t

P �t
=MPL�t : (63)

4When the model is calibrated, we do not directly use values for �C and &, since we do not have empirical estimates
on these. Instead, we use values of �C and �L together with the steady state value of �L, as well as, values for some other
parameters of the model to solve for �C and &.
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Log-linearizing gives, using the production function,

ŵ�t = dmpl�t = Ât � 
L̂�t : (64)

Also, log-linearizing the production function Y �t = AtL
�
t (f)

1�
 gives

L̂�t =
1

1� 


�
Ŷ �t � Ât

�
: (65)

Then, combining (64) and (65) gives

ŵ�t =
1

1� 
 Ât �



1� 
 Ŷ
�
t : (66)

We also have the resource constraint for market output Y �t = C�t or, in log-linearized form

Ŷ �t = Ĉ�t : (67)

3.3 Output and Productivity

Due to the tax scheme and �exible prices and wages we have

uC (C
�
t ; Qt)MPL�t = VL (L

�
t ; Zt) (68)

in equilibrium.

Using that L�t = (1� 
)
Y �t

MPL�t
, log-linearizing and using the resource constraint (67) gives

�uCC �CMPLŶ �t + �uCQ �QMPLQ̂t + �uCMPLdmpl�t = �VLZ �ZẐt + �VLL �L
�
Ŷ �t �dmpl�t� : (69)

Thus, we have now Ŷ �t expressed in terms of shocks and dmpl�t . De�ning
�� = �uC

�
��C + �L

1

1� 
 �



1� 


�
(70)

and solving for Ŷ �t gives

Ŷ �t =
1

��

�
��uCQ �QQ̂t � �uC

1

1� 
 Ât +
�VLZ �Z

�w
Ẑt +

�VLL �L

�w

�
� 1

1� 
 Ât
��

: (71)
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3.4 Wages

Recall that the wage is chosen to solve (38). Note that

Gtt;t = ((1 + �)Y �t � tc (w�t ; Y �t (f))) ; (72)

Stt;t = L�t ((1 + �w)w
�
t � b)�

�
V (L�t ; Zt)

uC (C�t ; Q
�
t )
� V (0; Zt)

uC (C�t ; Q
�
t )

�
;

and, using (13), gives

rWStt;t =
L�t
W �
t

((1 + "L) (1 + �w)w
�
t � "Lb)� "L

L�t
W �
t

VL (L
�
t ; Zt)

uC (C�t ; Q
�
t )
; (73)

rWGtt;t = � tc (w
�
t ; Y

�
t )

W �
t

:

The �rst-order condition (39) can then be written as

' ((1 + �)Y �t � tc (w�t ; pc�t ; Y �t ))
L�t
W �
t

�
�
((1 + "L) (1 + �w)w

�
t � "Lb)� "L

VL (L
�
t ; Zt)

uC (C�t ; Q
�
t )

�
(74)

� (1� ')
�
L�t ((1 + �w)w

�
t � b)�

�
V (L�t ; Zt)

uC (C�t ; Q
�
t )
� V (0; Zt)

uC (C�t ; Q
�
t )

��
tc (w�t ; Y

�
t ) :

3.5 Interest

The relationship between nominal and real interest rates is derived from Rt =
Pt
Pt+1

It. We have, using

that �t+1 =
Pt+1
Pt
,

Ît � Et�̂t+1 = EtR̂t: (75)

3.6 Shocks and real wages

Using (26), (27), (66), (69), (70) and that ŵ�t = dmpl�t to write ŵ�t in terms of shocks only gives
ŵ�t =

1

��
�uC (��C + �L)

1

1� 
 Ât +
1

��



1� 


�
�uCQ �QQ̂t �

�Z �VLZ
�w

Ẑt

�
: (76)

Since �� < 0, the coe¢ cient in front of Ât is positive. The coe¢ cients in front of Q̂t and Ẑt depend

on the cross derivative of u and the sign of vZ
�
He; �Z

�
� vZ

�
0; �Z

�
. If �uCQ is positive as in Erceg et al.

(2000), the coe¢ cient in front of Q̂t and Ẑt are negative. Note that, in terms of the notation in the

15



main text, we have

aQ =
1

��



1� 
 �uCQ
�Q < 0;

aZ = � 1

��



1� 

�Z

�w
�VLZ < 0; (77)

aA =
1

��
�uC (��C + �L)

1

1� 
 > 0:

To simplify analysis we suppress the shocks Q̂t, Ẑt and Ât and assume that ŵ�t follows an AR(1)

process

ŵ�t = �ŵ�t�1 + "t: (78)

Note that there is no simple relationship between real wages and output, as can be seen by

inspecting (66). When we have shocks in Q̂t and Ẑt the relationship is simple with Ŷ �t = �1�


 ŵ�t . In

case we have shocks in Ât we instead have

Ŷ �t =
1



Ât �

1� 




ŵ�t : (79)

Consider shocks in Ât only. We then get

ŵ�t =
1

��
�uC (��C + �L)

1

1� 
 Ât; (80)

Ŷ �t =
1� �L
�C � �L

ŵ�t :

Since �C > 0 we get a positive relationship between output and real wages.

Only productivity shocks leads to a positive relationship between real wages and output. Other

shocks lead to a negative relationship. The total e¤ects of shocks on output is then unclear.

Assuming that all shocks have the same persistence �, we get from (61), (65) and (67)

Ĉ�t +
�uCQ �Q

�uCC �C
Q̂t = Et

�
Ĉ�t+1 +

�uCQ �Q

�uCC �C
Q̂t+1 �

1

�C
R̂�t

�
: (81)

Using (78) and assuming only productivity shocks gives

R̂�t = ��C (1� �)
1� �L
�C � �L

ŵ�t : (82)

In general, we get

R̂�t = �
1� �

�C � �L 1
1�
 +



1�


�
�C
1� �L
1� 
 Ât + �C

�Z �VLZ
�uC �w

Ẑt +
1� �L
1� 


�uCQ �Q

�uC
Q̂t

�
: (83)
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4 Log-linearizing the sticky price equilibrium

Now, let us log-linearize the model with sticky prices. As above, we start by log-linearizing the Euler

equation.

4.1 Euler and the IS equation

Log-linearizing expression (24) gives,

Ĉt � Ĉ�t = Et

�
Ĉt+1 � Ĉ�t+1 �

1

�C

�
Ît � �̂t+1 � R̂�t

��
: (84)

Solving for the interest rate gives

Ît = �C (Etx̂t+1 � x̂t) + Et�̂t+1 � �C (1� �)
1� �L
�C � �L

ŵ�t ; (85)

where

x̂t = Ŷt � Ŷ �t (86)

denotes the output gap.

4.2 Log-linearization of some real and nominal variables

Before we can proceed to log-linearize the price and wage setting decisions, we need to log-linearize

some other variables in the model.

4.2.1 Marginal product

To derive an expression for the marginal product, we �rst log-linearize the production function as

Ŷt (f) = Ât + (1� 
) L̂t (f) : (87)

Log-linearizing expression (7) and aggregating over �rms gives

dmplt = Ât � 
L̂t; (88)

where L̂t =
R
L̂t (f) df and dmplt = R dmplt (f) df is the aggregate real wage and marginal product,

respectively.

Using (87) in (88) gives dmplt = 1

1� 


�
Ât � 
Ŷt

�
: (89)
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To derive a relationship between dmplt and the (�exible price) real wage, we use expression (66)
and hence we get dmplt = ŵ�t �




1� 
 x̂t: (90)

4.2.2 Marginal rate of substitution

The marginal rate of substitution is de�ned as

MRSt =
VL (Lt; Zt)

uC (Ct; Qt)
: (91)

Log-linearizing and integrating over all �rms/unions, using that we from expressions (56) and (57)

have MPL =MRS and that Ĉt = Ŷt, gives

dmrst = ��LL̂t + �CĈt � �uCQ
�uC

�QQ̂t +
�VLZ
�uC �w

�ZẐt: (92)

Subtracting �exible-price marginal rate of substitution gives

dmrst � dmrs�t = ��L �L̂t � L̂�t�+ �C �Ŷt � Ŷ �t � : (93)

Using the production function and integrating over all �rms gives

Ŷt � Ŷ �t = (1� 
)
�
L̂t � L̂�t

�
: (94)

Using dmrs�t = dmpl�t = ŵ�t and (94), expression (93) can be rewritten as,

dmrst = ŵ�t +

�
�C � �L

1

1� 


�
x̂t: (95)

4.2.3 Relative prices and goods demand

We de�ne the �rms relative prices and wages as

qt (f) =
Pt (f)

Pt
;

nt (f) =
W (f)

Wt
; (96)

wt (f) =
W (f)

Pt
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and also

Xt;k =
��kPt
Pt+k

=
��k

�t+1 � : : : � �t+k
; (97)

X!
t;k =

��kWt

Wt+k
=

��k

�!t+1 � : : : � �!t+k
:

The real wage at �rm f at time t+ k is

W (f) ��k

Pt+k
=
W (f) ��k

Wt+k
wt+k = nt (f)X

!
t;kwt+k: (98)

4.2.4 Output, labor demand, costs and pro�ts

Loglinearizing (87) we can write

Ŷt (f) = Ât + (1� 
) L̂t (f) : (99)

Consider the derivative of labor demand (13). Log-linearizing gives

\@Lt;t+k (f)

@W (f)
= L̂t;t+k (f) : (100)

Log-linearizing goods demand, using (3) and (96), gives

Ŷt+k (f) = ��
 
q̂t (f)�

kX
l=1

�̂t+l

!
+ Ŷt+k: (101)

Log-linearizing total costs (8), using a log-linearization of (96) and (98), we get

btc�W (f) ��k

Pt+k
; Yt+k (f)

�
=

 
n̂t (f)�

kX
l=1

�̂!t+l + ŵt+k

!
� 1

1� 
 Ât+k (102)

�� 1

1� 


 
q̂t (f)�

kX
l=1

�̂t+l

!
+

1

1� 
 Ŷt+k:

To log-linearize labor demand, using goods demand (5) we have

L̂t;t+k (f) = ��
1

1� 


 
q̂t (f)�

kX
l=1

�̂t+l

!
+

1

1� 
 Ŷt+k �
1

1� 
 Ât+k: (103)

19



Total costs can be rewritten, using (103) and goods demand, as

btc�W (f) ��k

Pt+k
; Yt+k (f)

�
= L̂t;t+k (f) +

 
n̂t (f)�

kX
l=1

�̂!t+l

!
+ ŵt+k: (104)

The log-linearized version of per period pro�ts (35) is, using (101), (103) and (104),

���̂t;t+k = (1 + �) �Y (1� �)
 
q̂t (f)�

kX
l=1

�̂t+l

!
+ (1 + �) �Y Ŷt+k � tc

 
� �

1� 


 
q̂t (f)�

kX
l=1

�̂t+l

!

+
1

1� 


�
Ŷt+k � Ât+k

�
+

 
n̂t (f)�

kX
l=1

�̂!t+l

!
+ ŵt+k

!
: (105)

Also, we have

rW�t;t+k = �
1

Pt+k

@TC
�
��kW (f) ; Yt+k (f)

�
@W (f)

= �
tc
�
W (f)��k

Pt+k
; Yt+k (f)

�
W (f)

: (106)

We then get the log-linearized version of the derivative of per-period pro�ts as

�[rW�t;t+k = btct;t+k = � �

1� 


 
q̂t (f)�

kX
l=1

�̂t+l

!
+

1

1� 


�
Ŷt+k � Ât+k

�
(107)

+

 
n̂t (f)�

kX
l=1

�̂!t+l

!
+ ŵt+k:

4.2.5 Total demand and unemployment

The log-linear approximation of total demand is

Ŷt = Ĉt: (108)

Using the production function gives, integrating over all �rms,

Ŷt = Ât + (1� 
) L̂t: (109)

Thus, we get

x̂t = Ât + (1� 
) L̂t � Ŷ �t (110)

and hence, using (80) and that unemployment is ut = 1� Lt

ût = �
�L

1� �L
L̂t = �

�L

1� �L

�
1

1� 
 x̂t +
(1� �C)
�C � �L

ŵ�t

�
: (111)
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4.2.6 Real wage evolution

The real wage today can be written as a function of the previous period real wage as follows

Wt

Pt
=
�!tWt�1
�tPt�1

: (112)

Log-linearizing gives

ŵt = ŵt�1 + �̂
!
t � �̂t: (113)

4.3 Optimal Prices and the New Keynesian Phillips curve

The �rst-order condition for optimal price choices, i.e. expression (10), can be rewritten as

Et

1X
k=0

(�w�)
k	t;t+k (qt (f)Xt;k �mct+k (f))Yt+k (f) = 0; (114)

where mct+k (f) is the real marginal cost. Log-linearizing around steady state, and using that �	k =

Pt (���)
k (the value of the steady state path of 	t;t+k, given an initial price level Pt), that Pt 6= 0 and

that the probability that wages not open for renegotiation in period t+ k is �w� gives 5

0 = Et

1X
k=0

(�w��)
k
�
q̂t (f) + X̂t;k � cmct+k (f)� �Y : (115)

Now, let us derive the aggregate supply equation (i.e., new Keynesian Phillips curve). Log-linearizing

Xt;k in (97) gives

�
1X
k=0

(�w��)
k EtX̂t;k =

1X
l=1

(�w��)
l

1� �w��
Et�̂t+l: (116)

Note that the wage distribution of the �rms that change prices is not the same as for the entire

population of �rms. Let W o
t denote the solution to problem (38). The average wage for those �rms

that change prices is then

W p
t =

(1� �)�w
(1� �)�w + (1� �w)

Z
��Wt�1 (f) df +

(1� �w)
(1� �)�w + (1� �w)

Z
W o
t df: (117)

The entire wage distribution evolves according to

Wt = �w

Z
��Wt�1 (f) df + (1� �w)

Z
W o
t df: (118)

5Note that 	t;t+k =  t;t+kPt+k. Also, we have  t;t+k =
Qk
s=1  t+s�1;t+s. Also, we normalize  t;t = 1 as in Woodford

(2003) page 68.
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Using (118) in (117), we get, in real terms

wpt =
wt

(1� �)�w + (1� �w)

�
1� �w�

��

�!t

�
: (119)

Log-linearizing (119), evaluating the real wage in t + k, and hence taking into account the e¤ects of

in�ation on the real wage through X̂t;k gives

ŵpt+k = ŵt +
�w�

1� �w�
�̂!t + X̂t;k: (120)

Deriving real marginal cost from the total cost expression in (6), (101) and log-linearizing gives

cmct+k (f) = ŵpt+k (f) +

 
�� 


1� 


 
q̂t (f)�

kX
l=1

�̂t+l

!
+




1� 
 Ŷt+k �
1

1� 
 Ât+k

!
; (121)

where ŵpt+k (f) is the log-linearized real wage for �rms that change prices in t. Note that the average

marginal cost for �rms that change prices is, using the above expression (121) and expression (120)

cmct+k = �ŵt + �w�

1� �w�
�̂!t + X̂t;k

�
+

 
�� 


1� 


 
q̂t (f)�

kX
l=1

�̂t+l

!
+




1� 
 Ŷt+k �
1

1� 
 Ât+k

!
:

(122)

Expression (115) can be rewritten, aggregating over all �rms that change prices and using (116)

0 =
1

1� �w��

�
q̂t

�
1 + �




1� 


�
�
�
ŵt +

�w�

1� �w�
�̂!t

��
(123)

�Et
1X
k=0

(�w��)
k 1

1� 


�

Ŷt+k � Ât+k

�
� � 


1� 


1X
k=1

(�w��)
k

1� �w��
Et�̂t+k:

To write the expression above in terms of in�ation, we need to express the relative prices q̂t (f) in

terms of in�ation. To do this, we use the price evolution equation. Using that prices evolve according

to

P 1��t = �w�

Z 1

0
(��Pt�1 (f))

1�� df + (1� �w�)
Z 1

0
(P ot (f))

1�� df; (124)

gives, using Pt�1
Pt

= 1
�t

1 = �w�

�
��

�t

�1��
+ (1� �w�)

Z
(qt (f))

1�� df: (125)

We thus have that

q̂t =

Z
q̂t (f) df =

�w�

1� �w�
�̂t: (126)

The �rst-order condition for price setting (115) can then be rewritten by using (126) in (123) in periods
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t and t+ 1, respectively, together with the real wage identity (113),

0 =

�
�w�

1� �w�
�̂t

�
1 + �




1� 


�
�
�

�w�

1� �w�
�
�̂!t � �Et�̂!t+1

���
� (1� �w��) ŵt (127)

� (1� �w��)Et
1

1� 


�

Ŷt � Ât

�
�
�
1 + �




1� 


�
�w�

1� �w�
�Et�̂t+1:

Using (126) gives the result. To eliminate Ŷt and Ât from the above expression, we use (66) to get


Ŷt � Ât = 
x̂t � (1� 
) ŵ�t : (128)

Then, de�ning

� =
1� �w�
�w�

(1� �w��)
1 + � 


1�

; (129)

the �rst-order condition for price setting, or equivalently, the New Keynesian Phillips curve, is

�̂t = �Et�̂t+1 +
1

1 + � 

1�


�
�̂!t � �Et�̂!t+1

�
+�(ŵt � ŵ�t ) +




1� 
�x̂t: (130)

The only di¤erence with expression (T1.4) in Erceg et al. (2000) is the presence of the term involving

wage in�ation. Using (90), we can rewrite (130) as

�̂t = �Et�̂t+1 +
1

1 + � 

1�


�
�̂!t � �Et�̂!t+1

�
+�

�
ŵt �dmplt� : (131)

4.3.1 Relationship between relative prices and wages

To analyze wage setting, we need to relate the relative prices to relative wages for the price adjusting

�rms (see the section 4.4 below on wage determination). Let us �rst look at the relationship between

relative prices and wages for �rms that changed wages in t and prices in t+k. The �rst order condition

for price setting (10) is, where q̂tt+k is the log-linearized relative price in t+k for �rms that renegotiated

their wages in t, and n̂t the relative wage for �rms that renegotiated their wages last in period t

0 = Et

1X
j=0

(�w��)
j
�
q̂tt+k + X̂t+k;k+j � cmct+k+j (f)� �Y ; (132)

where, deriving marginal cost from the expression (8) for total costs, and using that

wt+k (f) =
��kWt (f)

Pt+k
=
Wt (f)

Wt

Wt

Wt+k

Wt+k

Pt+k
; (133)
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we have

cmct+k+j (f) = ŵt+k+j +
�
n̂t + X̂!

t;k+j

�
� � 


1� 


�
q̂tt+k + X̂t+k;k+j

�
(134)

�
�

1

1� 
 Ât+k+j �



1� 
 Ŷt+k+j
�
: (135)

Using (66) gives

cmct+k+j (f) = ŵt+k+j � ŵ�t+k+j +
�
n̂t + X̂!

t;k+j

�
� � 


1� 


�
q̂tt+k + X̂t+k;k+j

�
(136)

+



1� 
 x̂t+k+j : (137)

Rewriting the sums over X̂t+k;k+j and X̂!
t;k+j in expression (132) gives

�
1X
j=0

(�w��)
j EtX̂t+k;k+j =

1X
l=1

(�w��)
l

1� �w��
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:

Then, using the expression for cmct+k+j (f) in the �rst-order condition (132), we have
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Leading one wage contract period ahead and combining gives

q̂tt+k � Etq̂t+1t+k =
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n̂t � Etn̂t+1 � Et�̂!t+1

�
: (140)

For the analysis of wages below, we also want to derive a relationship between relative prices

in t and in t + 1 for �rms that last changed wages in period t. From using (139) when wages are

renegotiated at t and prices at t and t+ 1, respectively, we have
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: (141)
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4.4 Optimal Wages and the wage setting �Phillips�Curve

In this section we derive the wage setting �Phillips�curve from expression (39). Log-linearizing the

�rst-order condition (39) gives

0 = 'rW �S \rWStt;t + (1� ')
 
1
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(142)

+(1� ')
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�G
rW �G \rWGtt;t:
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We have
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(143)
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:

where, using (105) and that (1 + �) (1� �) �Y + �
1�
 tc = 0,

���̂
t

t;t = �tcn̂t +Rf;tt;t ;

���̂
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: (145)

Then, using (145), we have

�GĜt = �tc�n̂t +Rf;tt;t ; (146)

where, using (66), we have

Rf;tt;t = (1 + �)
�Y Ŷt � tc
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: (147)

In terms of di¤erences with the �exible price equilibrium, we can write
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4.4.2 Firm rWGtt;t

To rewrite rWGtt;t note that
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:
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From expression (107),
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Using a similar argument as above gives, using (140), (141) and (145)
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In terms of deviations between the sticky and �exible price equilibria, we have
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4.4.3 Unions Stt;t
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Using expression (29) and (37), we have
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We have, using (140), (103) and (155)
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Then, using expressions (140), (141) (145), we have
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In terms of deviations between the sticky and �exible price equilibria, we have
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where Ru;t�t;t denotes the �exible-price version of Ru;tt;t .
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4.4.4 Unions rWStt;t
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rW �S
�
\rWStt;t � �w�Et \rWSt+1t+1;t+1

�
= rW�\rW�

t

t;t + Et

1X
k=1

(�w��)
krW�

�
\rW�

t

t;t+k �\rW�
t

t+1;t+k

�
(163)

+�w�

1X
k=0

(�w��)
krW�

�
\rW�

t

t+1;t+1+k �\rW�
t+1

t+1;t+1+k

�
+Et

1X
k=2

(�w�)
k�1 (�w � �w�)�

1X
j=0

(�w��)
j rW�

�
\rW�

t

t+k;t+k+j �\rW�
t+1

t+k;t+k+j

�
:

Log-linearizing expression (42), gives
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ZẐt+k+j

+(1 + "L)
�L

Wt (f)
(1 + �w) �w

 
n̂t �

k+jX
l=1

�!t+l + ŵt+k+j
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Then we can write, using (145),

rW �S
�
\rWStt;t � �w�Et \rWSt+1t+1;t+1

�
=

1

Wt (f)
Ku
4�n̂

t +R�u;tt;t ; (167)

where

R�u;tt;t = J�u;tt;t � � 1

1� 

1

Wt (f)
Ku
3

1�
1 + � 


1�
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In terms of di¤erences between sticky and �exible price equilibria, we can write
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where R�u;t�t;t denotes the �exible-price version of R�u;tt;t .

4.4.5 The Wage-Setting Curve

To �nd the wage setting equation, we �rst use (142) and subtract (142) in period t+ 1 multiplied by

�w�. Then, we subtract the corresponding �exible-price condition. Using (146), (148), (152), (154),

(160), (162), (167) and (169) gives
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and, using the de�nitions of Ku
2 and K
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4 in (155),
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4.4.6 With e¢ cient taxes
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Moreover, setting tc = (1� 
) �Y in the coe¢ cients in the wage setting equation, using (173), (174),

(176) and using � = 1
��1 gives

�n = '
�w�L

Wt (f)
"L

 
1 +

b

�w
� �

1� 

1

1 + � 

1�


�L

!
+ (1� ') 1

1� �w�
�w�L

Wt (f)

�
 
b

�w
� "L

1

1 + � 

1�


+

 
V
�
�L; �Z

�
�uC �w�L

�
V
�
0; �Z

�
�uC �w�L

!
1� �

1 + � 

1�


!
(1� �)
1 + 


1�
�
; (177)

�+1n = � (1� ') �w�

1� �w�
�w�L

Wt (f)

�
 
b

�w
� "L

1

1 + � 

1�


+

 
V
�
�L; �Z

�
�uC �w�L

�
V
�
0; �Z

�
�uC �w�L

!
1� �

1 + � 

1�


!
(1� �)�
1 + 


1�
�
� ;

�x = '
�w�L

Wt (f)
"L

 
�L

1

1� 

1

1 + � 

1�


� �C

!
+ (1� ') 1

1� �w�
(1� �)
1 + 


1�
�

�w�L

Wt (f)

�
  

V
�
�L; �Z

�
�uC �w�L

�
�V
�
0; �Z

�
�uC �w�L

! 
1

1� 

1

1 + � 

1�


� �C

!
� 1

1� 

1

1 + � 

1�


!
; (178)

�+1x = � (1� ') �w�

1� �w�
(1� �)
1 + 


1�
�

�w�L

Wt (f)

�
  

V
�
�L; �Z

�
�uC �w�L

�
�V
�
0; �Z

�
�uC �w�L

! 
1

1� 

1

1 + � 

1�


� �C

!
� 1

1� 

1

1 + � 

1�


!
:

The special case when ' = 1 is interesting. We get �
+1
n
�n

= �+1x
�n

= �+1w
�n

= 0 and hence we can write

�n̂t +
�x
�n

x̂t + (ŵt � ŵ�t ) = 0: (179)
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where

�x
�n

=
�L

1
1�


1
1+� 


1�

� �C

1 + b
�w �

�
1�


1
1+� 


1�

�L
: (180)

To express the wage setting equation in terms of wage in�ation, we need to express relative wages in

terms of wage in�ation. The wage evolution equation is, recalling that W o
t (f) is the optimal wage for

�rm f when renegotiating wages in period t

Wt = �w

Z 1

0
��Wt�1 (f) df + (1� �w)

Z 1

0
W o
t (f) df: (181)

Using that Wt�1
Wt

= 1
�!t
gives

1 = �w��
1

�!t
+ (1� �w)

Z
nt (f) df: (182)

Letting nt =
R
nt (f) df and log-linearizing gives

n̂t =
�w

1� �w
�̂!t : (183)

Using expression (183) in (145) yields

�n̂t =
1

1� �w�
�w

1� �w
�
�̂!t � �Et�̂!t+1

�
=

1

�1

�
�̂!t � �Et�̂!t+1

�
: (184)

Hence, letting

�1 = (1� �w�)
1� �w
�w

; (185)

we get

�̂!t � �Et�̂!t+1 = �
xx̂t � 
w (ŵt � ŵ�t ) (186)

�
+1n
�
Et�̂

!
t+1 � �Et�̂!t+2

�
� 
+1x Etx̂t+1 � 
+1w Et

�
ŵt+1 � ŵ�t+1

�
;

where


x = �1
�x
�n

;


w = �1
�w
�n

;


+1n =
�+1n
�n

; (187)


+1x = �1
�+1x
�n

;


+1w = �1
�+1w
�n

:
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5 Welfare

When computing welfare in this model, a second-order approximation in logs is used, resulting in

that we can relate welfare to the variance in relative prices and wages. Also, the output gap matters

because it distorts the economywide relationship between consumption and leisure. Before analyzing

welfare, we �rst compute second-order approximations of Lt and Yt, the relationship between real

variation and price variation and �nally persistence in price variability.

5.1 Quadratic approximation of Lt and Yt

We �rst proceed by looking at a quadratic approximation of Lt and Yt. Aggregate demand of labor

by �rms is, where the integral is taken over �rms

Lt =

Z 1

0
L (f) df: (188)

Then a quadratic approximation is

L̂t = Ef L̂t (f) +
1

2
varf L̂t (f) + o

�
k�k3

�
; (189)

where o
�
k�k3

�
describes terms of order 3 or higher. Using the de�nition of the composite good in

(1), we can similarly derive

Ef Ŷt (f) = Ŷt �
1

2

� � 1
�

varf Ŷt (f) + o
�
k�k3

�
: (190)

Now, let us express (189) in terms of aggregate variables and variances. Taking a second-order ap-

proximation of (4) gives

Ef L̂t (f) =
1

1� 


�
Ef Ŷt (f)� Ât

�
+ o

�
k�k3

�
: (191)

Then, using (190) in (191) and expression (189) we get

L̂t =
1

1� 


�
Ŷt � Ât

�
� 1
2

1

1� 

� � 1
�

varf Ŷt (f) +
1

2
varf L̂t (f) + o

�
k�k3

�
: (192)

5.2 Relationship between real and price variability

In this section, we relate price variability to variability in real variables, which, in turn, creates a link

between price dispersion and welfare. We start by computing varf L̂t (f) as a function of varf P̂t (f)

and varf ŵt (f) :We also use that wt (f) =
Wt(f)
Pt

= nt (f)wt from (96). First, note that it follows that
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varf ŵt (f) = varf n̂t (f). Second, let us �nd varf L̂t (f). Since

L̂t (f) = �
�

1� 
 q̂t (f) +
1

1� 


�
Ŷt � Ât

�
+ o

�
k�k2

�
; (193)

we must have

varf L̂t (f) =

�
�

1� 


�2
varf q̂t (f) + o

�
k�k3

�
: (194)

Note that, due to �rm-speci�c labor, dispersion in L̂t (f) depends directly on price dispersion, in

contrast to the model in Erceg et al. (2000). Note that (194) can be rewritten as, using that

varf q̂t (f) = varf P̂t (f),

varf L̂t (f) =

�
�

1� 


�2
varf P̂t (f) + o

�
k�k3

�
; (195)

and, taking a quadratic approximation of (3)

varf Ŷt (f) = �2varf P̂t (f) + o
�
k�k3

�
: (196)

5.3 Variance Persistence

Since prices and wages are not fully �exible, the variance of the price and wage distribution across

�rms are persistent. We want to �nd the variance of the distributions today as function of previous

variances and in�ation. To do this, let us express varf (logPt (f)) and varf (logWt (f)) in terms

of squared in�ation and wage in�ation. Combining this with (195) and (196) we get a relationship

between real variability and in�ation, which enables us to write welfare in terms of in�ation and wage

in�ation. Let �Pt = Ef logPt (f). We have

varf (logPt (f)) = Ef
�
logPt (f)� log �� � �Pt�1

�2 � �� �Pt�2 ; (197)

where

� �Pt = �Pt � log �� � �Pt�1: (198)
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Let us rewrite � �Pt in terms of in�ation. Since logPt = Ef logPt (f) = �Pt we can rewrite � �Pt as6

� �Pt = �̂t + o
�
k�k2

�
: (199)

We also de�ne

� �Wt = �Wt � log �� � �Wt�1 = (1� �w)
�
logW o

t � log �� � �Wt�1
�
: (200)

Similarly, let us rewrite � �Wt in terms of wage in�ation. Note that we have logWt = �Wt.7 Then � �Wt

can be rewritten as

� �Wt = �̂wt + o
�
k�k2

�
: (201)

We can write the variance in (197) as, using that when wages are changed, they are the same for

all �rms, i.e., W o
t (f) =W o

t for all f ,

varf (logPt (f)) = �w�Ef
�
log ��Pt�1 (f)� log �� � �Pt�1

�2 � �� �Pt�2 (202)

+(1� �)�wEf
�
logP ot (Wt (f))� log �� � �Pt�1

�2
+(1� �w)

�
logP ot (W

o
t )� log �� � �Pt�1

�2
:

We now rewrite expression (202) in terms of lagged variance in prices, variance in wages and

in�ation and wage in�ation. To do this, we need to rewrite the third and fourth term in expression

(202). To rewrite the third term, let us express Ef
�
logP ot (Wt (f))� log �� � �Pt�1

�2 in terms of � �Pt
and � �Wt. We have

� �Pt = (1� �)�w
�
Ef logP

o
t (Wt (f))� log �� � �Pt�1

�
+ (1� �w)

�
Ef logP

o
t (W

o
t )� log �� � �Pt�1

�
:

(203)

6We have

logPt (f)� log �� � logPt�1 (f)

=
1
�P

�
Pt (f)� �P

�
� log �� �

�
1
�P

�
Pt�1 (f)� �P

��
+ o

�
k�k2

�
= P̂t (f)� log �� � P̂t�1 (f) + o

�
k�k2

�
:

Using

P̂t =

Z 1

0

P̂t (f) df + o
�
k�k2

�
and integrating over f gives

� �Pt = P̂t � P̂t�1 � log �� + o
�
k�k2

�
:

Since Pt = �tPt�1 we get
� �Pt = �̂t + o

�
k�k2

�
:

7This follows from a similar argument as in the previous footnote.
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Note that, from (5) and (10) we can write the optimal price as

P ot (W (f)) = %W (f) (204)

where % only depend on aggregate variables. We thus can write

logP ot (W
o
t ) = logP

o
t (��Wt�1 (f)) + (logW

o
t � log ��Wt�1 (f)) : (205)

Using that we have Wt (f) = ��Wt�1 (f) for �rms that do not change prices and since

Ef (log ��Wt�1 (f)) = log �� + �Wt�1 (206)

and using (200) we have

� �Pt �� �Wt = ((1� �)�w + (1� �w))
�
Ef logP

o
t (Wt (f))� log �� � �Pt�1

�
: (207)

Also, we have

Ef
�
logP ot (Wt (f))� log �� � �Pt�1

�2
= Ef

�
logP ot (Wt (f))� Ef logP ot (Wt (f)) + Ef logP

o
t (Wt (f))� log �� � �Pt�1

�2 (208)

= varf logP
o
t (Wt (f)) +

�
Ef logP

o
t (Wt (f))� log �� � �Pt�1

�2
;

and, using (207) and (208) we get

Ef
�
logP ot (Wt (f))� log �� � �Pt�1

�2
= varf logP

o
t (Wt (f)) +

�
� �Pt �� �Wt

�2
((1� �)�w + (1� �w))2

: (209)

To rewrite the fourth term in (202), using that logP ot (W
o
t ) is the same for all �rms that change

wages and the log-linearization of logP ot (W
o
t ) (i.e. (205)) we can write

�
logP ot (W

o
t )� log �� � �Pt�1

�2
= Ef

�
logP ot (��Wt�1 (f))� log �� � �Pt�1

�2
+ Ef (logW

o
t � log ��Wt�1 (f))

2 (210)

+2Ef
�
logP ot (��Wt�1 (f))� log �� � �Pt�1

�
(logW o

t � log ��Wt�1 (f)) + o
�
k�k3

�
:

The three terms in expression (210) can be written as, using (208) and that we haveWt (f) = ��Wt�1 (f)
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for �rms that do not change wages,

Ef
�
logP ot (��Wt�1 (f))� log �� � �Pt�1

�2 (211)

= varf logP
o
t (Wt (f)) +

1

((1� �)�w + (1� �w))2
�
� �Pt �� �Wt

�2
;

using (200),

Ef ((logW
o
t � log ��Wt�1 (f)))

2 =

�
1

(1� �w)2
�
� �Wt

�2
+ varf logWt�1 (f)

�
(212)

and, using (200), (205) and (207),

Ef
�
logP ot (��Wt�1 (f))� log �� � �Pt�1

�
(logW o

t � log ��Wt�1 (f)) (213)

=
1

(1� �)�w + (1� �w)
�
� �Pt �� �Wt

� � �Wt

1� �w
� varf logWt�1 (f) + o

�
k�k3

�
:

Using expressions (211), (212) and (213) in (210) gives the fourth term in (202) as

varf logP
o
t (Wt (f)) +

1

((1� �)�w + (1� �w))2
�
� �Pt �� �Wt

�2
+

�
1

(1� �w)2
�
� �Wt

�2
+ varf logWt�1 (f)

�
(214)

+2

 �
� �Pt �� �Wt

�
� �Wt

(1� �)�w + (1� �w)
1

1� �w
� varf logWt�1 (f)

!
+ o

�
k�k3

�
:

Let us now collect the arguments above to rewrite expression (202) in terms of lagged variance in

prices, variance in wages and in�ation and wage in�ation. The expression varf logP ot (Wt (f)) involves

�rms that do not change wages. From (204) we then have8

varf logP
o
t (Wt (f)) = varf logWt (f) = varf logWt�1 (f) + o

�
k�k3

�
: (215)

Then we have, using (209), (214) and (215) in (202),

varf (logPt (f)) = �w�varf (logPt�1 (f)) + (1� �)�wvarf logWt�1 (f) (216)

+
�w

(1� �)�w + (1� �w)

�
�
�
� �Pt

�2
+
1� �
1� �w

�
� �Wt

�2�
+ o

�
k�k3

�
:

8Noting that the variance varf logWt (f) is computed over �rms that do not change wages, implying varf logWt (f) =
varf logWt�1 (f).
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Using expressions (199) and (201) gives

varf (logPt (f)) = �w�varf (logPt�1 (f)) + (1� �)�wvarf logWt�1 (f) (217)

+
�w

(1� �)�w + (1� �w)

�
� (�̂t)

2 +
1� �
1� �w

(�̂wt )
2

�
+ o

�
k�k3

�
:

For wages, we can write, using a similar method as in (197), and using (200) we have

varf (logWt (f)) = �wvarf (logWt�1 (f)) +
�w

1� �w
�
� �Wt

�2
: (218)

Using expression (201) this gives

varf (logWt (f)) = �wvarf (logWt�1 (f)) +
�w

1� �w
(�̂wt )

2 + o
�
k�k3

�
: (219)

5.4 Welfare

When analyzing the welfare in the model, we focus on the limiting cashless economy. The social

welfare function is then
1X
t=0

�tSWt; (220)

where

SWt = u (Ct; Qt)�
Z 1

0
V (Lt (f) ; Zt) df: (221)

Taking a second-order approximation of u (Ct; Qt) gives

u (Ct; Qt) = �u+ �uC �C

�
Ĉt +

1

2

�
Ĉt

�2�
+ �uQ �Q

�
Q̂t +

1

2

�
Q̂t

�2�
+
1

2
�uCC �C

2
�
Ĉt

�2
(222)

+�uCQ �C �QĈtQ̂t +
1

2
�uQQ �Q

2
�
Q̂t

�2
+ o

�
k�k3

�
:

Let us take a second order approximation of V (Lt (f) ; Zt),using the standard variance decompo-

sition Ef
�
L̂t

�2
= varf L̂t +

�
Ef L̂t

�2
. Using (192) to eliminate Ef L̂t (f) and

�
Ef L̂t

�2
gives

EfV (Lt (f)) = �VL �L

�
1

1� 


�
Ŷt � Ât

�
� 1
2

1

1� 

� � 1
�

varf Ŷt (f) +
1

2
varf L̂t (f)

�
+
�
�VL �L+ �VLL �L

2
� 1
2

�
1

1� 


�
Ŷt � Ât

��2
+
1

2
�VLL �L

2varf L̂t (f) (223)

+�VLZ �L
1

1� 


�
Ŷt � Ât

�
�ZẐt + tip+ o

�
k�k3

�
where tip denotes terms that are independent of policy. Since Ẑt is and aggregate (and thus common)
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disturbance we have Ef Ẑt = Ẑt.9

Combining the second order approximations of u (Ct; Qt) and EfV (Lt (f) ; Zt) from expressions

(222) and (223), gives welfare as, using Ĉt = Ŷt,10

SWt =
1

2

�
�uC �C + �uCC �C

2
� �
Ŷt

�2
+ �uCQ �C �QŶtQ̂t �

�VL �L

2

�
varf L̂t (f)�

1

1� 

� � 1
�

varf Ŷt (f)

�
�1
2
�VLL �L

2varf L̂t (f)�
�
�VL �L+ �VLL �L

2
� 1
2

�
1

1� 


�
Ŷt � Ât

��2
(224)

� �VLZ �L
1

1� 


�
Ŷt � Ât

�
�ZẐt + tip+ o

�
k�k3

�
:

We are interested in computing the di¤erence between sticky and �exible-price welfare. Consider

welfare when prices are �exible. Note that there is no variance in the price and wage distribution

across �rms, since all prices and wages are adjusted in every period. Let us analyze the di¤erence

SWt � SW �
t , i.e. the welfare di¤erence,

SWt � SW �
t =

1

2
�uC �C

�
��C + �L

1

1� 
 �



1� 


���
Ŷt

�2
�
�
Ŷ �t

�2�
� 1
2
�VLL �L

2varf L̂t (f)

+

 
�uCQ �C �QQ̂t �

�VLZ �L

1� 

�ZẐt +

�
�VL �L+ �VLL �L

2
�

(1� 
)2
Ât

!�
Ŷt � Ŷ �t

�
(225)

� �VL �L
�
�1
2

1

1� 

� � 1
�

varf Ŷt (f) +
1

2
varf L̂t (f)

�
+ tip+ o

�
k�k3

�
:

Let us eliminate the shock terms by using that �exible-price output ~Y �t is a function of the distur-

bances in the model. Using expression (71) in expression (225) gives, where we use the de�nitions of

�C and that �uCMPL = �VL,

SWt � SW �
t = ��� �CŶ �t

�
Ŷt � Ŷ �t

�
+
�� �C

2

��
Ŷt

�2
�
�
Ŷ �t

�2�
� 1
2
�VLL �L

2varf L̂t (f)

� �VL �L
�
�1
2

1

1� 

� � 1
�

varf Ŷt (f) +
1

2
varf L̂t (f)

�
+ tip+ o

�
k�k3

�
: (226)

Note that the �rst row on the right hand side can be rewritten as �
�C
2

�
Ŷt � Ŷ �t

�2
. Using (??), (195),

9Note that the terms
�
varf Ŷt

�2
, varf Ŷtvarf L̂t (f),

�
varf L̂t (f)

�2
,
�
Ŷt � Ât

�
varf Ŷt and

�
Ŷt � Ât

�
varf L̂t (f) ap-

pearing in the
�
Ef L̂t

�2
term vanishes since they are of order three or higher.

10The terms involving only the disturbances are independent of policy.
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(196) and (226), the total welfare di¤erence is

E0

1X
t=0

�t (SWt � SW �
t ) = E0

�� �C

2

1X
t=0

�t
�
Ŷt � Ŷ �t

�2
(227)

�E0�uC (1� 
) �Y
1

2

 
� 1

1� 

� � 1
�

�2 +

�
�

1� 


�2! 1X
t=0

�tvarf P̂t (f)

�E0
1

2
�uC (1� 
) �Y

�VLL �L
�VL

�
�

1� 


�2 1X
t=0

�tvarf P̂t (f) + tip+ o
�
k�k3

�
:

Since there is a direct relationship between relative price and wage variability, as indicated by (204),

there is no unique solution for the objective. To highlight the di¤erences between our model and the

model in Erceg et al. (2000) we rewrite our the model so that only the coe¢ cient in front of wage

in�ation parameter di¤ers from the model in Erceg et al. (2000). We thus get

SWt � SW �
t =

�� �C

2

�
Ŷt � Ŷ �t

�2
��uC (1� 
) �Y

1

2

 
�

1� 
 varf P̂t (f) + 

�

�

1� 


�2
varf ŵt (f)

!
(228)

�1
2
�uC (1� 
) �Y

�VLL �L
�VL

�
�

1� 


�2
varf ŵt (f) + tip+ o

�
k�k3

�
:

This gives the same coe¢ cient on the in�ation variability term as in Erceg et al. (2000). Repeatedly

substituting (219) into itself (forwardly), using (199), starting at period 0 gives

varf (logWt (f)) = (�w)
t+1 varf (logW�1 (f)) +

�w
1� �w

tX
s=0

�t�sw (�̂ws )
2 + o

�
k�k3

�
: (229)

Multiplying by �t on both sides, using that varf (logW�1 (f)) is independent of policy and summing

from period 0 to in�nity gives 11

E0

1X
t=0

�tvarf (logWt (f)) =
�w

1� �w
1

1� �w�
E0

1X
t=0

�t (�̂wt )
2 + tip+ o

�
k�k3

�
: (230)

11We use the following rearrangement of the double sum

1X
t=0

tX
s=0

(�w�)
t (�w)

�s (�̂ws )
2 =

1X
s=0

1X
t=s

(�w�)
t (�w)

�s (�̂ws )
2 :
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Now consider price variability again. Expression (217) can be rewritten as

varf (logPt (f)) = �w�varf (logPt�1 (f)) + (1� �)�wvarf logWt�1 (f) (231)

+
�w�

(1� �)�w + (1� �w)
(�̂t)

2 +
(1� �)�w

(1� �w) ((1� �)�w + (1� �w))
(�̂wt )

2 :

Repeatedly substituting (231) into itself (forwardly), starting at period 0 and taking expectations at

period 0 gives

E0varf (logPt (f)) = E0

t�1X
s=0

(�w�)
t�1�s ((1� �)�w) varf (logWs (f))

+E0

tX
s=0

(�w�)
t�s (1� �)�w

(1� �w) ((1� �)�w + (1� �w))
(�̂ws )

2 (232)

+E0

tX
s=0

(�w�)
t�s �w�

(1� �)�w + (1� �w)
(�̂s)

2 + tip+ o
�
k�k3

�
:

Multiplying by �t on both sides and summing from period 0 to in�nity gives 12

E0

1X
t=0

�tvarf (logPt (f)) = �
(1� �)�w
1� ��w�

E0

1X
t=0

�tvarf (logWt (f))

+
(1� �)�w

(1� ��w�) (1� �w) ((1� �)�w + (1� �w))
E0

1X
t=0

�t (�̂wt )
2 (233)

+
�w�

(1� ��w�) ((1� �)�w + (1� �w))
E0

1X
t=0

�t (�̂t)
2 + tip+ o

�
k�k3

�
:

E0

1X
t=0

�tvarf (logWt (f)) =
�w

1� �w
1

1� �w�
E0

1X
t=0

�t (�̂wt )
2 + tip+ o

�
k�k3

�
: (234)

Now we are able to state welfare in terms of squared in�ation, wage in�ation and output gap.

From (227), (230) and (233) we get

E0

1X
t=0

�t (SWt � SW �
t ) = E0

1X
t=0

�tLt + tip+ o
�
k�k3

�
; (235)

12We rewrite the double sum

1X
t=0

�t
tX

s=0

(�w�)
t�s =

1X
s=0

1X
t=s

�t (�w�)
t�s =

1X
s=0

(�w�)
�s

1X
t=s

�t (�w�)
t =

1X
s=0

�s

1� ��w�
;

1X
t=0

�t
t�1X
s=0

(�w�)
t�1�s =

1X
s=0

1X
t=s+1

�t (�w�)
t�1�s =

1X
s=0

1X
r=s

�r+1 (�w�)
r�s = �

1X
s=0

1X
r=s

�r (�w�)
r�s :
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where

Lt = �x (x̂t)
2 + �� (�̂t)

2 + ��! (�̂
!
t )
2 ; (236)

and, de�ning

�W =
1� �w�
�w�

(1� �w��)

and using de�nition (185) we have

�x =
�� �C

2
=
�uC �C

2

�
��C + �L

1

1� 
 �



1� 


�
; (237)

�� = �
�
�uC �C

1

2
�2
�
1� �
�

+
1� �L
1� 


��
1

�W
; (238)

��! = �
�
�uC �C

1

2
�2
�
1� �
�

+
1� �L
1� 


���
� 1

�W
+
1

�1

�
: (239)

6 Policy

In this section, we solve the model, both if policy follows a simple rule and if monetary policy is

optimal.

6.1 A Simple Rule

We assume that the central bank follows the rule

Ît = �I Ît�1 + (1� �I) (
��̂t + 
xx̂t) : (240)

We could also introduce a monetary policy shock. However, here we are primarily interested in

technology shocks, since we will compare the outcome under a simple rule versus the outcome under

optimal policy.

We need to rewrite the shock process (78) and the system of constraints (113), (130), (186) (85)

on the form in Söderlind (1999). To do this, we de�ne the auxiliary variables

$̂t = ŵt � (�̂!t � �̂t) (241)

and

ĉt = 

+1
n

�
�̂!t � �Et�̂!t+1

�
+
+1x x̂t +


+1
w (ŵt � ŵ�t ) : (242)
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Also, using the policy rule (240) and Phillips curve (130) to rewrite the Euler equation gives

Etx̂t+1 =
�I
�C
Ît�1 +

(1� �I)
�C

(
��̂t + 
xx̂t) + (1� �)
1� �L
�C � �L

ŵ�t �
1

�C�
�̂t

+
1

1 + � 

1�


1

�C�

+1
n
ĉt +

1

�C�

 
�� 1

1 + � 

1�



+1w

+1n

!
($̂t + (�̂

!
t � �̂t)� ŵ�t ) (243)

+
1

�C�

 



1� 
��
1

1 + � 

1�



+1x

+1n

!
x̂t + x̂t:

De�ning xt = (x1t; x2t) where

x1t =
�
ŵ�t ; $̂t; Ît�1

�0
; (244)

x2t = (x̂t; �̂t; �̂
!
t ; ĉt)

0

we can write

Etxt+1 = Axt + �t; (245)

where

�0t =
�
"t 0 0 0 0 0 0

�
: (246)

De�ning

KS
1 = �� 1

1 + � 

1�



+1w

+1n

;

KS
2 = 
w �


+1w

+1n

;

a41 = (1� �) 1� �L
�C � �L

� 1

�C�
KS
1 ; (247)

a44 =
(1� �I)
�C


x +
1

�C�

 



1� 
��
1

1 + � 

1�



+1x

+1n

!
+ 1;

a45 =
(1� �I)
�C


� �
1

�C�
� 1

�C�
KS
1 ;
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the matrix A can be written as

A =

0BBBBBBBBBBBBBBBBB@

� 0 0 0 0 0 0

0 1 0 0 �1 1 0

0 0 �I (1� �I) 
x (1� �I) 
� 0 0

a41
KS
1

�C�
�I
�C

a44 a45
KS
1

�C�
1

1+� 

1�


1
�C�


+1
n

KS
1
� �KS

1
� 0 � 1

�

�


1�
��

1
1+� 


1�



+1x

+1n

�
KS
1
� + 1

� �KS
1
� � 1

1+� 

1�


1
�
+1n

� 
+1w

+1n �


+1w

+1n �

0 
+1x

+1n �

� 
+1w

+1n �


+1n +
+1w

+1n �

� 1

+1n �

KS
2 �KS

2 0 
+1x

+1n

� 
x KS
2 �KS

2 � 1

+1n

1CCCCCCCCCCCCCCCCCA

:

(248)

6.2 Optimal Policy

Again, we need to rewrite the shock process (78) and the system of constraints (113), (130), (186) and

the shock process on the form used in Söderlind (1999). The system of constraints is

ŵ�t = �ŵ�t�1 + "t;

ŵt = ŵt�1 + �̂
!
t � �̂t;

�̂t = �Et�̂t+1 +
1

1 + � 

1�


�
�̂!t � �Et�̂!t+1

�
+�(ŵt � ŵ�t ) +




1� 
�x̂t; (249)

�̂!t = �Et�̂
!
t+1 � 
xx̂t � 
w (ŵt � ŵ�t )

�
+1n
�
Et�̂

!
t+1 � �Et�̂!t+2

�
� 
+1x Etx̂t+1 � 
+1w Et

�
ŵt+1 � ŵ�t+1

�
:

De�ning

xt = (ŵ�t ; $̂t; �̂t; �̂
!
t ; ĉt)

0 ; (250)

ut = x̂t

and

�0t =
�
"t 0 0 0 0 0

�
(251)

and partitioning as in Söderlind (1999) gives

Etxt+1 = Axt +But + �t+1; (252)

and de�ning

K1
� =

 
�� 1

1 + � 

1�



+1w

+1n

!
(253)
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and

Kop
A =

1

�
n
(
w ��
n � 

w) ; (254)

we have

A =

0BBBBBBBBB@

� 0 0 0 0

0 1 �1 1 0

1
�K� � 1

�K�
1
� (K� + 1) � 1

�K�

�1

�
n��

n+��

n
1

�
n

w � 1

�
n

w

1
�
n


w � 1
�
n

(
n +
w)
1

�
n

� 1

n

w (
n � 1) 1


n

w (
n � 1) � 1


n

w (
n � 1) 1


n

w (
n � 1) 1


n

1CCCCCCCCCA
;

B =

0BBBBBBBBB@

0

0

� 1
�
n(
�1)(�
�
+1)

�

x � 2

x + 
2
x + 
2�
n � 
�
n � �
2�
n

�
1

�
n

x

� 1

n

x (
n � 1)

1CCCCCCCCCA
; (255)

�t =

0BBBBBBBBB@

1

0

0

0

0

1CCCCCCCCCA
"t:

Given the de�nition of xt we can write Q, U and R as

Q =

0BBBBBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 ��� 0 0

0 0 0 ���! 0

0 0 0 0 0

1CCCCCCCCCA
; (256)

U =
�
0 0 0 0 0

�
;

R = ��x:
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7 The Erceg et al. (2000) model

Since the sticky price equilibrium is derived as in Erceg et al. (2000), we do not reproduce the deriva-

tions here. Condition (113) is identical in the two models. The conditions corresponding to (130) and

(186) are, with �rm speci�c capital,

�̂t = �Et�̂t+1 +�(ŵt � ŵ�t ) +



1� 
�x̂t; (257)

�̂!t = �Et�̂
!
t+1 � 
Ew (ŵt � ŵ�t ) + 
Ex x̂t;

where � and �1 are de�ned as in (129) and (185), respectively, and


Ew =
�1

1� �L�w
; (258)


Ex = 
Ew

�
�C � �L

1

1� 


�
:

With freely mobile capital, the Phillips curve is

�̂t = �Et�̂t+1 +�W (ŵt � ŵ�t ) +



1� 
�W x̂t

and the wage setting curve is identical to (257).

7.0.1 The EHL model with families.

Labor demand for labor j by �rm f is

N t
t+k (f; j) =

�
��kWt (j)

Wt+k

���w
Nt+k (f) (259)

where Nt+k (f) is total labor demand by �rm f and

��kWt (j)

Wt+k
= nt (f)X

!
t;k (260)

Loglinearizing gives

N̂ t
t+k (f; j) = ��w

 
n̂t �

k+jX
l=1

�!t+l

!
+ N̂t+k (f) (261)

Wages are determined by

rWStt;t = 0 (262)
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where rWStt;t is as in (41) with rW�tt+k+j replaced by rW�tt+k;t+k+j and

rW�tt+k+j (j) = "L
N t
t+k+j (j)

Wt (j)

 
(1 + �w)

(��)k+jWt (j)

Pt+k+j
� b
!

(263)

�"L

�
N t
t+k+j (j)

�
Wt (j)

VN

�
N t
t+k+j (j) ; Zt

�
uC;t+k+j

+
N t
t+k+j (j)

Wt (f)
(1 + �w)

��k+jWt (j)

Pt+k+j
:

where N̂ t
t+k+j (j) is the loglinearization of the employment variable

"L = ��w (264)

Loglinearizing gives

rW�\rW�
t

t+k+j =
1

Wt (f)
Ku
3 N̂

t
t+k+j (j)� "L

�N

Wt (f)

�VNZ
�uC

ZẐt+k+j

+(1 + "L)
�N

Wt (f)
(1 + �w) �w

 
n̂t �

k+jX
l=1

�!t+l + ŵt+k+j

!
(265)

+"L
�w �N

Wt (f)

�VN
�uC �w

�
�uCC �C

�uC
Ĉt+k+j +

�uCQ �Q

�uC
Q̂t+k+j

�
:

Employment in a �rm is

(Nt+k (f))
�w�1
�w =

Z 1

0

�
N t
t+k (f; j)

��w�1
�w dj (266)

Loglinearizing gives

N̂t+k (f) =

Z 1

0
N̂ t
t+k (f; j) dj (267)

The technology is

Yt (f) = AtNt (f)
1�
 Kt(f)


 (268)

and hence

Ŷt (f) = Ât + (1� 
) N̂t (f) (269)

Integrating over all �rms gives

N̂t =
1

1� 


�
Ŷt � Ât

�
(270)

Integrating labor demand over �rms

N̂ t
t+k (j) = ��w

 
n̂t �

k+jX
l=1

�!t+l

!
+ N̂t+k = ��w

 
n̂t �

k+jX
l=1

�!t+l

!
+

1

1� 


�
Ŷt � Ât

�
(271)
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Taxes are, using ' = 1

1 + �w =
"L

(1 + "L)

�
b

�w
+ 1

�
: (272)

and hence, using �VN = �uC �w and letting �L = �
�VNN �N
�VN

rW �S
�
\rWStt;t � �w�Et \rWSt+1t+1;t+1

�
(273)

= rW�\rW�
t

t + �w�
1X
k=0

(�w�)
krW�

�
\rW�

t

t+1+k �\rW�
t+1

t+1+k

�

where

rW�tt+k;t+k+j = "L
Ltt+k;t+k+j (f)

Wt (f)

 
(1 + �w)

(��)k+jWt (f)

Pt+k+j
� b
!

�"L
Ltt+k;t+k+j (f)

Wt (f)

VL

�
Ltt+k;t+k+j (f) ; Zt+k+j

�
uC;t+k+j

(274)

+
Ltt+k;t+k+j (f)

Wt (f)
(1 + �w)

��k+jWt (f)

Pt+k+j
;

rW�
�
\rW�

t

t+k �\rW�
t+1

t+k

�
=

1

Wt (f)
Ku
3

�
N̂ t
t+k (j)� N̂ t+1

t+k (j)
�

(275)

+(1 + "L)
�N

Wt (f)
(1 + �w) �w

�
n̂t �

�
n̂t+1 + �̂!t+1

��
and �

N̂ t
t+k (j)� N̂ t+1

t+k (j)
�
= ��w

�
n̂t � n̂t+1 � �!t+1

�
: (276)

Hence

rW�\rW�
t

t =
1

Wt (f)
Ku
3 N̂

t
t (j) +

�N

Wt (f)
"L

�
b

�w
+ 1

�
�w
�
n̂t + ŵt

�
+"L

�w �N

Wt (f)

�VN
�uC �w

�
�uCC �C

�uC
Ĉt+k+j +

�uCQ �Q

�uC
Q̂t+k+j

�
(277)

rW�
�
\rW�

t

t+k �\rW�
t+1

t+k

�
= � 1

Wt (f)
Ku
3 �w

�
n̂t � n̂t+1 � �!t+1

�
+

�L

Wt (f)
"L

�
1 +

b

�w

�
�w
�
n̂t �

�
n̂t+1 + �̂!t+1

��
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where

Ku
3 =

wL

Wt (f)
"L�L; (278)

Ku
4 =

wL

Wt (f)
"L

�
b

�w
+ 1 + "L�L

�
:

Repeating a similar argument as in section 4.4 gives

rW �S
�
\rWStt;t � �w�Et \rWSt+1t+1;t+1

�
=

1

Wt (f)
Ku
4�n̂

t +R�u;tt;t (279)

where

R�u;tt;t �R�u;t�t;t =
1

Wt (f)

�
Ku
3

1

1� 
 x̂t + �w �N"L

�
b

�w
+ 1

�
(ŵt � ŵ�t ) + "L �w �N

�VN
�uC �w

�uCC �C

�uC
x̂t

�
(280)

We then get �+1n = �+1x = �+1w = 0 and

�n =
wL

Wt (f)
"L

�
b

�w
+ 1 + "L�L

�
�x =

�w �N

Wt (f)
"L

�
�L

1

1� 
 � �C
�

(281)

�w =
1

Wt (f)
�w �N"L

�
b

�w
+ 1

�

and hence, in terms of the model above in (257), we have


Ew = �1
�w
�n

= �1

b
�w + 1

b
�w + 1 + "L�L

; (282)


Ex = ��1
�x
�n

= ��1
�L

1
1�
 � �C

b
�w + 1 + "L�L

:

If b = 0 as in Erceg et al. (2000), the expression can be simpli�ed further to


Ew = �1
1

1� �w�L
; (283)


Ex = �1
�C � �L 1

1�

1� �w�L

:

7.1 Welfare

When computing welfare in this model, a second-order approximation in logs is used, resulting in

that we can relate welfare to the variance in relative prices and wages. Also, the output gap matters

because it distorts the economywide relationship between consumption and leisure. Here, we compute
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the loss function parameters in a model with freely mobile labor. Derivations of coe¢ cients with �rm-

speci�c capital can be found in Galí (2008). Before analyzing welfare, we �rst compute second-order

approximations of Lt and Yt, the relationship between real variation and price variation and �nally

persistence in price variability.

7.2 Quadratic approximation of Lt and Yt

We �rst proceed by looking at a quadratic approximation of Lt and Yt. Aggregate demand of labor

by �rms is, where the integral is taken over �rms

Lt =

Z 1

0
L (f) df: (284)

Then a quadratic approximation is

L̂t = Ef L̂t (f) +
1

2
varf L̂t (f) + o

�
k�k3

�
: (285)

Using the de�nition of the composite good in (1), we can similarly derive

Ef Ŷt (f) = Ŷt �
1

2

� � 1
�

varf Ŷt (f) + o
�
k�k3

�
: (286)

Now, let us express (285) in terms of aggregate variables and variances. Composite labor in Erceg

et al. (2000) is given by

Lt =

�Z 1

0
Nt (j)

�w�1
�w dj

� �w
�w�1

: (287)

By a similar argument to (286), we get

EjN̂t (j) = L̂t �
1

2

�w � 1
�w

varjN̂t (j) + o
�
k�k3

�
: (288)

As in expression B.11 in Erceg et al. (2000), we have

Ef Ŷt (f) = Ât � 
L̂t + Ef L̂t (f) + o
�
k�k3

�
(289)

and, noting that capital labor ratios are the same for all �rms, we have

varf Ŷt (f) = varf L̂t (f) + o
�
k�k3

�
; (290)
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since there is no local variation in Ât. Using (285), (286) and (290) gives

L̂t =
1

1� 


�
Ŷt � Ât

�
+
1

2

1

� (1� 
)varf Ŷt (f) + o
�
k�k3

�
: (291)

Then, using (291), (288) can be rewritten as

EjN̂t (j) =
1

1� 


�
Ŷt � Ât

�
+
1

2

1

� (1� 
)varf Ŷt (f)�
1

2

�w � 1
�w

varjN̂t (j) + o
�
k�k3

�
: (292)

7.3 Relationship between real and price variability

Using a quadratic approximation of (3)

varf Ŷt (f) = �2varf P̂t (f) + o
�
k�k3

�
(293)

and similarly for labor demand, derived from (287)

varjN̂t (j) = �2wvarjŵt (j) + o
�
k�k3

�
: (294)

7.4 Variance Persistence

Since prices and wages are not fully �exible, the variance of the price and wage distribution across

�rms are persistent. We want to �nd the variance of the distributions today as function of previous

variances and in�ation. To do this, let us express varf (logPt (f)) and varj (logWt (j)) in terms of

squared in�ation and wage in�ation. Combining this with (294) and (293) we get a relationship

between real variability and in�ation, which enables us to write welfare in terms of in�ation and wage

in�ation. Let �Pt = Ef logPt (f). We have, using expression (199)

varf (logPt (f)) = Ef
�
logPt (f)� log �� � �Pt�1

�2 � �� �Pt�2 : (295)

We can write the variance in (295) as

varf (logPt (f)) = �w�Ef
�
log ��Pt�1 (f)� log �� � �Pt�1

�2 � �� �Pt�2 (296)

+(1� �w�)
�
logP ot � log �� � �Pt�1

�2
:

We now rewrite expression (296) in terms of lagged variance in prices and in�ation. To do this, we

need to rewrite the second and third term in expression (296) in terms of in�ation. First, note that

we have

� �Pt = (1� �w�)
�
logP ot � log �� � �Pt�1

�
: (297)
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Then we have, using (199) and the expression above in (296)

varf (logPt (f)) = �w�varf (logPt�1 (f)) +
�w�

1� �w�
(�̂t)

2 + o
�
k�k3

�
: (298)

For wages, we can write, using a similar method as when deriving (298)

varj (logWt (j)) = �wvarj (logWt�1 (j)) +
�w

1� �w
(�̂wt )

2 + o
�
k�k3

�
: (299)

7.5 Welfare

When analyzing the welfare in the model, we focus on the limiting cashless economy. The social

welfare function is then
1X
t=0

�tSWt; (300)

with SWt de�ned as

SWt = u (Ct; Qt)�
Z 1

0
V (Nt (j) ; Zt) dj: (301)

Taking a second-order approximation of u (Ct; Qt) is identical to our model; see expression (222).

Log-linearizing the second term in (301) gives, using the standard variance decomposition Ej
�
N̂t

�2
=

varjN̂t (j)+
�
EjN̂t

�2
and expression (292) for N̂t. Since Ẑt is aggregate we have EjẐt = Ẑt and hence13

EjV (Nt (j) ; Zt) = �VN �N

�
1

1� 


�
Ŷt � Ât

�
+
1

2

1

� (1� 
)varf Ŷt (f)�
1

2

�w � 1
�w

varjN̂t (j)

�
+�VN �N

 
1

2

 
varjN̂t (j) +

�
1

1� 


�2 �
Ŷt � Ât

�2!!
+ �VZ �Z

�
Ẑt +

1

2

�
Ẑt

�2�

+
1

2
�VNN �N

2

 
varjN̂t (j) +

�
1

1� 


�2 �
Ŷt � Ât

�2!
(302)

+�VNZ �N �Z
1

1� 


�
Ŷt � Ât

�
Ẑt +

1

2
�VZZ �Z

2
�
Ẑt

�2
+ tip+ o

�
k�k3

�
:

Combining the log linearizations of u
�
Cjt ; Qt

�
and

R 1
0 V (Nt (j) ; Zt) dj from expressions (222) and

13Note that the terms
�
varf Ŷt (f)

�2
, varf Ŷt (f) varjN̂t (j),

�
varjN̂t (j)

�2
,
�
Ŷt � Ât

��
varf Ŷt (f)

�
and�

Ŷt � Ât
��

varjN̂t (j)
�
appearing in the

�
EjN̂t (j)

�2
term vanish since they are of order 3 and higher.
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(302) gives welfare as

SWt = �uC �C

�
Ĉt +

1

2

�
Ĉt

�2�
+
1

2
�uCC �C

2
�
Ĉt

�2
+ �uCQ �C �QĈtQ̂t (303)

� �VN �N
 
Ŷt � Ât
1� 
 +

1

2

1

� (1� 
)varf Ŷt (f) +
1

2

1

�w
varjN̂t (j) +

1

2

�
1

1� 


�2 �
Ŷt � Ât

�2!

�1
2
�VNN �N

2

 
varjN̂t (j) +

�
1

1� 


�2 �
Ŷt � Ât

�2!
� �VNZ �N �Z

1

1� 


�
Ŷt � Ât

�
Ẑt

+tip+ o
�
k�k3

�
: (304)

We are interested in computing the di¤erence between sticky and �exible price welfare. The

di¤erence SWt � SW �
t is, using that �uC �C (1� 
) = �VN �N ,

SWt � SW �
t =

�
�uCQ �C �QQ̂t +

�VN �N + �VNN �N
2

(1� 
)2
Ât �

�VNZ �N �Z

1� 
 Ẑt

��
Ŷt � Ŷ �t

�
+
1

2

 
�uC �C �

�
1

1� 


�2
�VN �N + �uCC �C

2 � �VNN �N
2

!��
Ŷt

�2
�
�
Ŷ �t

�2�
(305)

�
�VN �N

2

�
1

� (1� 
)varf Ŷt (f) +
1

�w
varjN̂t (j)

�
�
�VNN �N

2

2
varjN̂t (j)

+tip+ o
�
k�k3

�
: (306)

We can eliminate the shock terms by using that �exible price output ~Y �t can be written as a

function of shocks. As in our model, see expression (71), we can write

�� �CŶ �t = ��uCQ �C �QQ̂t +
�Z �N

(1� 
)
�VNZẐt �

�N

1� 

�
�VN + �VNN �N

� 1

1� 
 Ât; (307)

where

�� = �uCC �C
� � �VNN

�N

MPL

1

1� 
 �
1

MPL
�VN




1� 
 : (308)

Using the expression above for �� �CŶ �t in expression (305) for SWt � SW �
t gives

SWt � SW �
t =

�� �C

2

�
Ŷt � Ŷ �t

�2
�
�VNN �N

2

2
varjN̂t (j) (309)

��vN �N
1

2

�
1

� (1� 
)varf Ŷt (f) +
1

�w
varjN̂t (j)

�
+ tip+ o

�
k�k3

�
:

Using (309), and (294) and (293), the total welfare di¤erence is

varjN̂t (j) = �2wvarjŵt (j)
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1X
t=0

�t (SWt � SW �
t ) =

� �C

2

1X
t=0

�t
�
Ŷt � Ŷ �t

�2
�

1X
t=0

�t
�VNN �N

2

2
�2wvarjŵt (j) (310)

� �VN �N
1

2

1X
t=0

�t
�

�

1� 
 varf P̂t (f) + �wvarjŴt (j)

�
+ tip+ o

�
k�k3

�
:

Repeatedly substituting expression (298) into itself (forwardly), starting at 0 gives

varf (logPt (f)) = (�w�)
t+1 varf (logP�1 (f)) +

�w�

1� �w�

tX
s=0

(�w�)
t�s (�̂s)

2 + o
�
k�k3

�
: (311)

Multiplying by �t on both sides and summing from 0 to in�nity gives

1X
t=0

�tvarf (logPt (f)) =
�w�

1� �w�
1

1� �w��

1X
t=0

(�)t (�̂t)
2 + tip+ o

�
k�k3

�
: (312)

The same can be done for varj (logWt (j)). We get

1X
t=0

�tvarf (logWt (f)) =
�w

1� �w
1

1� �w�

1X
t=0

(�)t (�̂!t )
2 + tip+ o

�
k�k3

�
: (313)

Using expressions (312) and (313) in (310) gives

1X
t=0

�t (SWt � SW �
t ) =

1X
t=0

�tLt + tip+ o
�
k�k3

�
; (314)

where

Lt = �x (x̂t)
2 + �� (�̂t)

2 + ��! (�̂
!
t )
2 (315)

and

�x =
�� �C

2
=
�uC �C

2

�
��C + �L

1

1� 
 �



1� 


�
;

�� = �1
2
�uC �C�

1

�W
; (316)

�! = �1
2
�uC �C (1� 
)�w (1� �L�w)

1

�1
:

With �rm-speci�c capital, the loss function coe¢ cients for the output gap and wage in�ation are as

above, while the in�ation coe¢ cient is

�� = �
1

2
�uC �C�

1

�
:

55



7.6 A Simple Rule

Similar arguments as in section 6.1 establishes that the Erceg et al. (2000) can be written as Etxt+1 =

Axt + �t where

xt =
�
ŵ�t ; $̂t; Ît�1; x̂t; �̂t; �̂

!
t

�0
(317)

and

A =

0BBBBBBBBBBBB@

� 0 0 0 0 0

0 1 0 0 �1 1

0 0 �I (1� �I) 
x (1� �I) 
� 0

a41
1
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1
��

�I
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a44 a45
1
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1
��
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� 0 � 1
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�
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1
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�

� 1
�


E
w

1
�


E
w 0 � 1

�

E
x � 1

�

E
w

1
�


E
w +

1
�

1CCCCCCCCCCCCA
(318)

where

a41 = (1� �) 1� �L
�C � �L

� 1

�C

1

�
�;

a44 =
1� �I
�C


x + 1 +
1

�C

1

�




1� 
�; (319)

a45 =
1� �I
�C


� �
1

�C

1

�
� 1

�C

1

�
�:

7.7 Optimal Policy

To solve for optimal policy (with �rm-speci�c capital), the central bank maximizes (314), subject to

�̂t = �Et�̂t+1 +�(ŵt � ŵ�t ) +



1� 
�x̂t; (320)

ŵt = ŵt�1 + �̂
!
t � �̂t; (321)

�̂!t = �Et�̂
!
t+1 � 
Ew (ŵt � ŵ�t ) + 
Ex x̂t; (322)

ŵ�t+1 = �ŵ�t + "t+1: (323)

We follow the method in Söderlind (1999) to solve for optimal policy under commitment and discretion.

As above, we rewrite the system in terms of $̂t as de�ned in (241). We get

ŵ�t+1 = �ŵ�t + "t+1; (324)

$̂t+1 = $̂t + (�̂
!
t � �̂t) ; (325)

�̂t = �Et�̂t+1 +



1� 
�x̂t +�($̂t + (�̂
!
t � �̂t)� ŵ�t ) ; (326)

�̂!t = �Et�̂
!
t+1 � 
Ew ($̂t + (�̂

!
t � �̂t)� ŵ�t ) + 
Ex x̂t: (327)
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De�ning

xt = (ŵ
�
t ; $̂t; �̂t; �̂

!
t )
0 ; (328)

we have, in terms of the notation in Söderlind (1999),

A =

0BBBBBB@
� 0 0 0

0 1 �1 1

1
�� � 1

��
1
� (� + 1) � 1

��

� 1
�


E
w

1
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E
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E
w

1
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�

1CCCCCCA (329)

and

B =

0BBBBBB@
0

0

1
�


�

�1

� 1
�


E
x

1CCCCCCA (330)

where

� =
1� �
�

(1� ��) ;

�1 = (1� �w�)
1� �w
�w

; (331)


Ew =
�1

1� �L�w
;


Ex = 
Ew

�
�C � �L

1

1� 


�
:

Also,

Q =

0BBBBBB@
0 0 0 0

0 0 0 0

0 0 ��� 0

0 0 0 ��!

1CCCCCCA ; (332)

U =
�
0 0 0 0

�
(333)

and R = ��x.
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