Optimal Lender of Last Resort Policy in Different Financial Systems

Falko Fecht and Marcel Tyrell Deutsche Bundesbank and University of Trier

August 17, 2004

1 Motivation

- In the last 20 years financial crises reemerged as a phenomenon in many countries \Rightarrow demanding role for a lender of last resort
- But principles of lender of last resort policy still captured well by the Bagehot doctrine formulated in 1873: In a crisis, the lender of last resort should lend freely, at a penalty rate, on the basis of collateral that is marketable in the ordinary cause of business when there is no panic
- Nowadays common wisdom that financial systems of various countries differ substantially
- Thus the question of the paper: Is a one size fits all-approach with respect to lender of last resort policy appropriate having in mind the differences between financial systems of various countries?

2 Structure of the presentation

- $\bullet\,$ The basic framework
- Description of different liquidity crises depending on the degree of aggregate liquidity shortage 3 cases
- Optimal LOLR-policies in the different crises
- Conclusion and further research

3 The framework

- Three dates t = 0, 1, 2 and two type of goods: consumption goods and machinery
- Large number of risk-neutral entrepreneurs, bankers and small investors; investors and bankers almost only value consumption at date t = 1, entrepreneurs value consumption at either date equally
- Project returns C > 1 but ex ante uncertainty about when this amount will arise: early (t = 1) or late (t = 2)
- Original project with specific human capital of initial entrepreneur but two alternatives which result in loss of surplus
 - (1) Restructuring: at any time until date $1 \Rightarrow$ generates return of $c_1 < 1$ directly \Rightarrow secondary market value of project
 - (2) Replacement of the entrepreneur: γC with $\gamma < 1$ but $\gamma C > 1 \Rightarrow$ bank's project value
- Incomplete contracts approach: Financial contracts specify who owns the physical assets conditional on the payments made

- Parametrization of financial systems in our framework
 - Bank-based financial system: Relatively high γ and low $c_1 \Rightarrow$ differences between γ and c_1 large \Rightarrow banks with much insider information \Rightarrow loans are illiquid
 - Market-based financial system: Relatively low γ and high $c_1 \Rightarrow$ differences between γ and c_1 rather small \Rightarrow higher level of information in the market \Rightarrow loans are more liquid
- Banks financed with deposits as *hard* claim and capital as *soft* claim ⇒ bank's project value not fully pledgeable to depositors and capital owners ⇒ banker gets rents
 - capital as a fraction k of the bank's pledgable assets: Thus, $k = \frac{\frac{1}{2}(\gamma C D)}{\frac{1}{2}(\gamma C + D)} \iff D = \frac{1-k}{1+k}\gamma C \Rightarrow$ bank absorbs $\frac{k}{1+k}\gamma C$ in rent and capital owners gets the same \Rightarrow total value pledgable to investors is $\frac{\gamma C}{1+k}$

- Our structure of lending markets: Two ex ante identical "regions" hit by a differing macroeconomic shock ⇒ influences the fraction of early projects
 - With probability $1 p_1$ only the fraction $\overline{\alpha}$ resp. $\underline{\alpha}$ of the projects in the regions early, with $\overline{\alpha} \geq \underline{\alpha}$ and symmetric uncertainty about which region is hit by a stronger shock
- Time structure of the model
 - -t = 0: Banks competing for endowments; bank lending to entrepreneurs
 - Shortly before t = 1: Entrepreneurs learn state of their projects and inform their banks; banks try to renegotiate deposit repayment in case the fraction of early projects is too low; renegotiation triggers immediately bank run and restructuring of *all* late projects
 - -t = 1: Early entrepreneurs repay γC to surviving banks and have $(1-\gamma)C$ at their disposal for consuming or investing; late entrepreneurs default; banks decide how to deal with late projects \Rightarrow depends on prevailing interest rate and need for funds: market for liquidity is open; banks repay investors; investors and bankers consume
 - -t = 2: Repayments from late projects; entrepreneurs consume

4 Stability of an individual bank (1)

- Bankers always prefer to continue late projects in t = 1
- Capital owners try to maximize t = 1 consumption goods available to the bank ⇒ decision depends on t = 1 interest rate r
 - Restructure if $c_1 > \frac{\gamma C}{(1+k)r}$, thus $\tilde{r} = \frac{\gamma C}{(1+k)c_1}$, continue otherwise, but restructuring socially inefficient as long as $c_1 < \frac{\gamma C}{r}$
- Depositors will run if repayment too low
 - Given capital owners force bankers to restructure late projects, depositors run if $\alpha \gamma C + (1 \alpha) c_1 < D = \frac{1-k}{1+k} \gamma C \Rightarrow$ critical level of late projects too high
 - Given that capital owners will continue late projects, depositors will run if

$$\alpha \gamma C + (1 - \alpha) \frac{\gamma C}{(1 + k)r} < D = \frac{1 - k}{1 + k} \gamma C$$

 \Rightarrow defines critical interest rate level:

$$r > \frac{1}{1 - k \frac{1 + \alpha}{1 - \alpha}} \ge 1$$

5 Stability of an individual bank (2)

- Optimal decision of depositors
 - Given capital owners force bankers to restructure late projects
 - * Depositors run, if $\alpha \gamma C + (1 \alpha) c_1 < D = \frac{1-k}{1+k} \gamma C$ \Rightarrow Critical level of late projects:

$$1 - \alpha > \frac{2k}{1+k} \frac{\gamma C}{\gamma C - c_1}$$

- Given that capital owners will continue late projects

* Depositors will run, if

$$\alpha \gamma C + (1 - \alpha) \frac{\gamma C}{(1 + k)r} < D = \frac{1 - k}{1 + k} \gamma C$$

 \Rightarrow Critical interest rate level:

$$r>\frac{1}{1-k\frac{1+\alpha}{1-\alpha}}\geq 1$$

6 Equilibrium in the liquidity market (1)

• Parameter space for the macroeconomic shock: $\overline{\alpha} > \frac{1-k}{1+k} > \underline{\alpha}$

- Strong region $\overline{\alpha} \Rightarrow$ liquidity inflow sufficient to repay depositors
- Weak region $\underline{\alpha} \Rightarrow$ liquidity inflow from financial market transactions needed
- Accordingly: $\hat{r} = \frac{1}{1-k\frac{1+\alpha}{1-\alpha}}$ and $\hat{\hat{r}} = \frac{1}{1-k\frac{1+\alpha}{1-\alpha}}$
- Aggregate liquidity supply: $L^{S} = (\overline{\alpha} + \underline{\alpha}) (1 \gamma) C$
- Aggregate liquidity demand

$$L^{D} = \begin{cases} 0 & r > \tilde{r} \\ \left[0; (1 - \overline{\alpha}) \frac{\gamma C}{(1+k)r}\right] & r = \tilde{r} \\ (1 - \overline{\alpha}) \frac{\gamma C}{(1+k)r} & \hat{r} < r < \tilde{r} \\ (2 - \overline{\alpha} - \underline{\alpha}) \frac{\gamma C}{(1+k)r} & r \le \hat{r} \end{cases}$$

7 Equilibrium in the liquidity market (2)

- Intuition for liquidity demand
 - Banks in need for funds to repay depositors bid up interest rate in the liquidity market
 - * First case $r \leq \hat{r}$: Only slight increase of $r \Rightarrow$ banks in both regions are stable \Rightarrow no restructuring $\Rightarrow L^D = (2 \overline{\alpha} \underline{\alpha}) \frac{\gamma C}{(1+k)r}$
 - * Second case $\hat{r} < r < \tilde{r}$: Run on banks in weaker region \Rightarrow restructuring of late projects; banks in stronger region not inflicted $\Rightarrow L^D = (1 - \overline{\alpha}) \frac{\gamma C}{(1+k)r}$
 - * Third case $r = \tilde{r}$: $\tilde{r} = \frac{\gamma C}{(1+k)c_1} \Rightarrow$ banks in strong region also in trouble \Rightarrow no run on these banks but (partial) restructuring of late projects
 - * Fourth case $r > \tilde{r}$: return of restructuring is higher for capital owner \Rightarrow no refinancing of late projects $\Rightarrow L^D = 0$
- Accordingly *three* qualitatively very different equilibria in the liquidity market possible: *slight, moderate* and *severe* liquidity crises

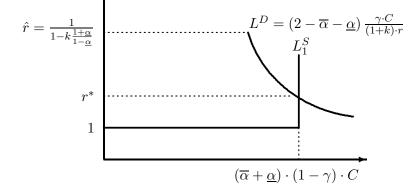


Figure 1: Equilibrium in a slight liquidity crisis

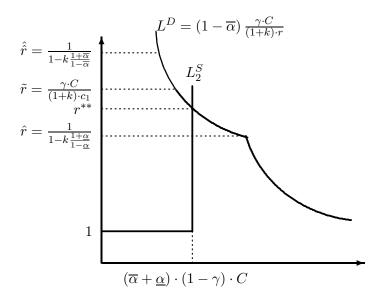


Figure 2: Equilibrium in a moderate liquidity crisis

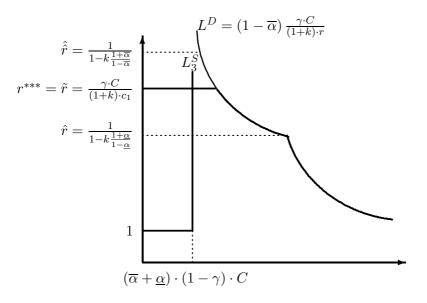


Figure 3: Equilibrium in a severe liquidity crisis

8 Equilibrium in the liquidity market (3)

- Influence of financial system configuration on liquidity crises
 - Higher fraction of pledgable income $\gamma \Rightarrow$ shift of liquidity demand to the right and liquidity supply to the left \Rightarrow higher interest fluctuations in bank-dominated than in market-oriented systems
 - Lower return on restructured projects $c_1 \Rightarrow$ raises equilibrium interest rate in severe crisis \Rightarrow Again higher interest fluctuations in bankdominated systems
 - Threshold level for different crises dependent on financial system
 - $\ast\,$ Market-based systems end up more likely in a severe crisis
 - * Bank-dominated systems end up more often in a moderate crisis

9 Optimal LOLR-policy (1)

- Restructuring late projects always welfare reducing \Rightarrow is a consequence of refinancing through deposits \Rightarrow banks cannot bargain in a crisis situation
- Role of LOLR in providing additional liquidity \Rightarrow financed by taxing t_1 consumption \Rightarrow shortcut for inflation tax: Money supply increases \Rightarrow banks can fulfill their *nominal* obligations \Rightarrow real value of money reduced
- Assumption: Inflation tax causes welfare losses as costs \Rightarrow proportional to volume of liquidity assistance (LA)
- - Market interventions (MI): Supplying liquidity to the market by buying financial assets
 - Individual assistance (IA): Providing liquidity to individual banks

10 Optimal LOLR-policy (2)

- Moderate liquidity crisis
 - Individual assistance: Only to weak banks: $LA_m^{IA} = D \underline{\alpha} \cdot \gamma \cdot C$
 - Welfare gains:

$$WG_m^{IA} = (1 - \underline{\alpha}) \left[D - c_1 + (1 - \gamma)C + \frac{2k}{1 + k} \cdot \frac{\gamma C}{\rho} \right] - \beta \left[D - \underline{\alpha} \gamma C \right]$$

– Market intervention: has to reduce interest rate to $\hat{r} \Rightarrow$ not only weak but also strong banks demand liquidity because of interest rate reduction

$$LA_m^{MI} = LA_m^{IA} + (1 - \overline{\alpha}) \cdot \left[\frac{\gamma C}{(1+k) \cdot \hat{r}} - \frac{\gamma C}{(1+k) \cdot r^{**}}\right]$$

– No welfare gain at strong banks \Rightarrow only consumption reshuffling

- Overall a welfare loss from using market interventions

$$WG_m^{IA} - WG_m^{MI} = \beta \left(1 - \overline{\alpha}\right) \left[\frac{\left(1 - \underline{\alpha}\right) - k\left(1 + \underline{\alpha}\right)}{\left(1 - \underline{\alpha}\right)} \cdot \frac{\gamma C}{\left(1 + k\right)} - \frac{\left(\overline{\alpha} + \underline{\alpha}\right)\left(1 - \gamma\right)C}{\left(1 - \overline{\alpha}\right)} \right]$$

11 Optimal LOLR-policy (3)

- Severe liquidity crisis
 - Similar effects as in moderate crisis at work
 - Liquidity provision through market intervention will be (partially) wasted because of liquidity demand

$$WG_{s}^{IA} - WG_{s}^{MI} = \beta \left(1 - \overline{\alpha}\right) \left[\frac{\left(1 - \underline{\alpha}\right) - k\left(1 + \underline{\alpha}\right)}{\left(1 - \underline{\alpha}\right)} \cdot \frac{\gamma C}{\left(1 + k\right)} - c_{1}\right]$$

- Not only γ but also c_1 influences the welfare loss of market intervention \Rightarrow efficiency loss of market intervention higher in bank-dominated financial systems
- *Preliminary* result: Individual liquidity assistance strictly preferable and welfare gains higher in bank-dominated financial systems

12 Optimal LOLR-policy (4)

- But one big disadvantage of individual liquidity assistance: *Higher* informational requirements
 - Precise information about liquidity needs of every single bank required \Rightarrow no incentives of banks to report honestly their liquidity needs \Rightarrow information costs higher with individual assistance
- Bearing of these additional costs more preferable for a LOLR in bankdominated systems because of the higher welfare gains
- *Overall* result: LOLR-policy based on individual liquidity assistance *may* be preferable in bank-based but not in market-oriented financial systems

13 Conclusion

- Connection between financial system configurations and optimal LOLR-policy drawable
- Market interventions (Bagehot) more favourable in market-oriented systems
- Important caveats
 - Incorporate ex ante decision of investment vs cash holding of the bank
 - Elaborate the incentives for bank moral hazard
 - Monitoring decision of the LOLR