Bank Capital, Agency Costs, and Monetary Policy

Césaire Meh Kevin Moran Department of Monetary and Financial Analysis Bank of Canada

Motivation

• A large literature quantitatively studies the role of financial factors in business cycle dynamics

(eg., Bernanke et al., 1999; Carlstrom & Fuerst, 1997, 1998)

- key feature: asymmetric information between banks and firms
- Net worth of firms
 - \Rightarrow alleviates the effects of asymmetric information
 - \Rightarrow becomes an important element in the propagation of shocks

Question

What about banks themselves? Are they subject to financial market imperfections? If so, do these matter?

Evidence

- Banks face financial frictions in raising funds (eg., Calorimis & Wilson 1998; Kashyap & Stein 2000; Schneider 2001)
- Bank capital (bank net worth) has a significant and positive effect on bank lending and economic activity

(eg., Bernanke & Lown, 1991; Peek & Rosengren, 1997, 2000)

• In US states with low levels of bank capital, output growth is more sensitive to monetary policy

(eg., Van den Heuvel, 2002)

This paper

- A framework with a double moral hazard problem:
 - \diamond entrepreneurs and bankers
 - \diamond bankers and households
- This framework is embedded into a standard monetary business cycle model
- The model is used to study the links between bank capital, monetary policy, and economic activity

Findings

- The presence of bank capital
 - \diamond lowers the amplification of monetary policy shocks
 - \diamond increases the persistence of monetary policy shocks
- The bank capital-asset ratio is market-generated and is countercyclical as in the data

Literature

- Carlstrom & Fuerst (1997, 1998, 2001); Bernanke et al. (1999)
 No bank capital
- Holmstrom & Tirole (1997) and Chen (2001)
 - \diamond No monetary policy
- Van den Heuvel (2002)
 - ◊ Partial-equilibrium
 - ◊ Regulatory capital requirements
 - \diamond Not a monetary model

Rest of the Talk

- Basic Model: economic environment
- Financial contract and intuition for mechanism
- Results: Basic and Extended Model
- Concluding remarks and future work

Economic Environment

- Three types of agents: households, bankers and entrepreneurs
- Final Good: standard CRS technology
- Capital Good: produced by entrepreneurs

$$f(i_t) = \begin{cases} Ri_t, & \text{success,} \\ 0, & \text{failure} \end{cases}$$

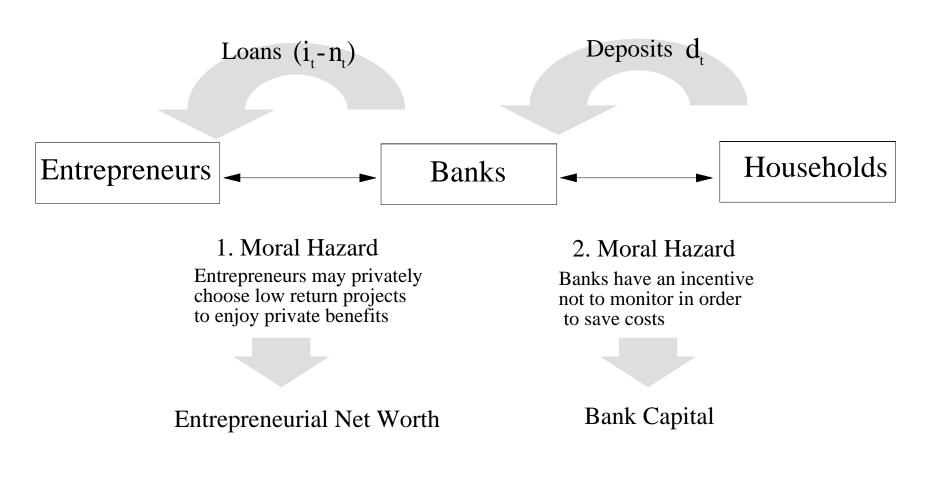
Households

- CIA constraint for consumption
- Deposit savings with banks (no direct lending to entrepreneurs)
- Costs of adjusting deposits (limited participation)

Monetary Policy

$$\log(r_t^d/r^d) = \rho_y \log(y_t/y) + \rho_\pi \log(\pi_t/\pi) + \epsilon_t^{mp}$$

Bankers and Entrepreneurs


- Bankers and entrepreneurs face a probability of exit; exiting agents are replaced by new ones
- Bank capital and entrepreneurial net worth

$$a_t = \left[r_t^k + q_t(1-\delta) \right] k_t^b$$
$$n_t = \left[r_t^k + q_t(1-\delta) \right] k_t^e$$

• Next period capital holdings of successful surviving agents

$$k_{t+1}^b = R_t^b i_t$$
$$k_{t+1}^e = R_t^e i_t$$

Two Sources of Moral Hazard

• Three types of projects available to the entrepreneur:

Project	Good	Low Priv. Ben.	High Priv. Ben.
Private benefits	0	bi_t	Bi_t
Prob. of success	$lpha^g$	α^b	α^b

- \diamond Good project is socially desirable
- \diamond Bank monitoring eliminates the high-private benefit project at cost μi_t
- The projects financed by an individual bank are perfectly correlated

Bank Capital

Bank capital

- \Rightarrow increases the incentives to monitor
- \Rightarrow reduces the moral hazard problem between depositors and banks
- \Rightarrow increases the ability of the bank to attract deposits
- \Rightarrow increases bank lending
- \Rightarrow increases aggregate investment and output

Financial Contract

- Consider one-period contracts that lead entrepreneurs to choose the good project
- One optimal contract will have the following structure:
 - the entrepreneur invests all his net worth
 - if success, R is distributed among the entrepreneur, the banker and the households: $R=R^e_t+R^b_t+R^h_t$
 - if failure, neither party is paid anything

Financial Contract, cont.

- Choose project size and payment shares
- Maximize expected payoff to entrepreneurs
- Incentive constraints of bankers and entrepreneurs
- Participation constraints of bankers and households
- Resource constraint: $a_t + d_t + n_t = (1 + \mu) i_t$

Upshot of the contract

• Shares:

$$R_t^e = \frac{b}{\Delta \alpha}; \quad R_t^b = \frac{\mu}{q_t \Delta \alpha}; \quad R_t^h = R - \frac{b}{\Delta \alpha} - \frac{\mu}{q_t \Delta \alpha}$$

• Participation constraint of depositors:

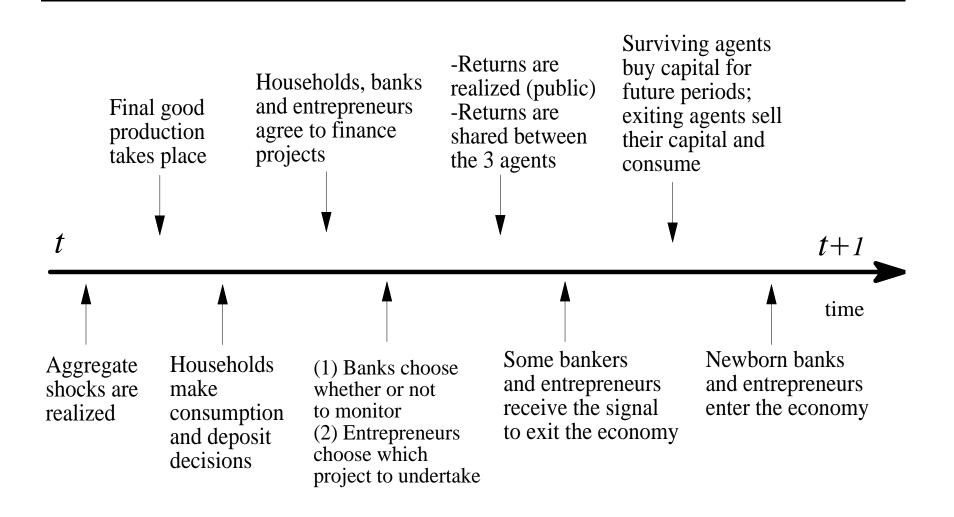
$$q_t \alpha^g R_t^h i_t = r_t^d d_t, \qquad d_t = [(1+\mu)i_t - a_t - n_t]$$

Upshot of the contract, cont.

• Solve for i_t :

$$G_t \equiv 1 + \mu - \frac{q_t \alpha^g}{r_t^d} \left[R - \frac{b}{\Delta \alpha} - \frac{\mu}{q_t \Delta \alpha} \right]$$

• When $r_t^d \uparrow$, leverage \downarrow


Aggregation

- Linearity simplifies aggregation
- Aggregate investment:

$$I_t = \frac{A_t + N_t}{G_t}$$

• Aggregate bank capital and entrepreneurial net worth:

$$A_{t} = [r_{t}^{k} + q_{t}(1 - \delta)] K_{t}^{b} (I_{t-1})$$
$$N_{t} = [r_{t}^{k} + q_{t}(1 - \delta)] K_{t}^{e} (I_{t-1})$$

Market Clearing Conditions

• labor markets:

$$H_t = \eta^h h_t$$

• Final goods market:

$$Y_t = C_t^h + C_t^e + C_t^b + (1+\mu)I_t$$

• Capital goods market:

$$K_{t+1} = (1-\delta) K_t + \alpha^g R I_t$$

• Deposits markets:

$$\frac{q_t \alpha^g R_t^h I_t}{r_t^d} = \frac{\overline{M_t} - M_t^c + X_t}{P_t}$$

Equilibrium rate of return on bank capital:

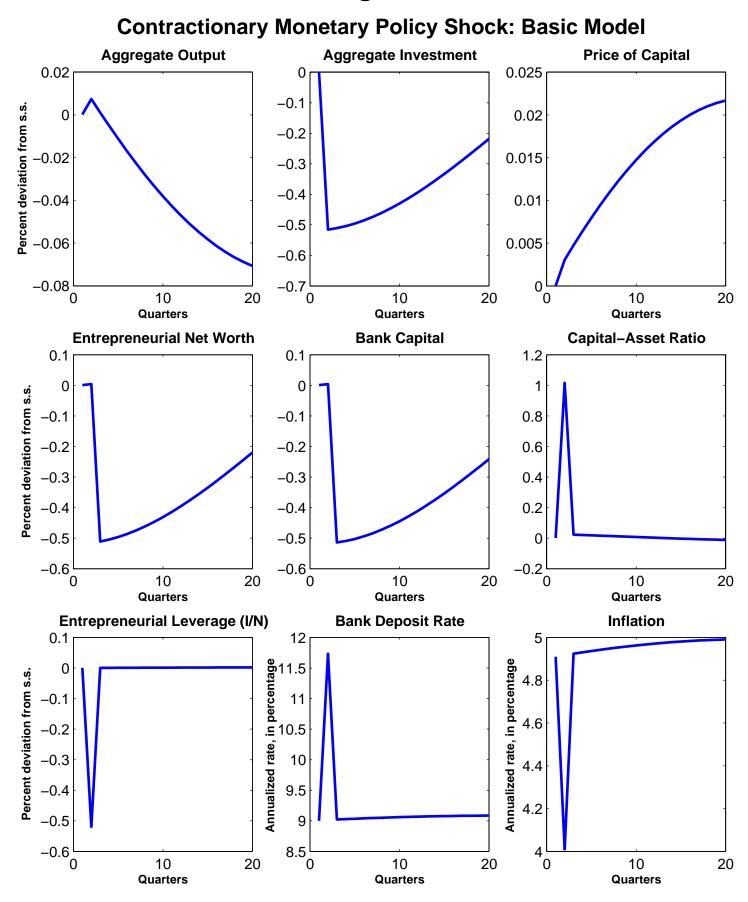
$$r_t^a = \frac{\alpha^g \mu \left(1 + N_t / A_t\right)}{G_t \Delta \alpha}$$

Results

- Basic model
 - monetary policy shock
- The extended model
 - wealth shock
 - monetary policy shock
 - cyclical properties of bank capital-asset ratio

Table 1

Parameter Calibration

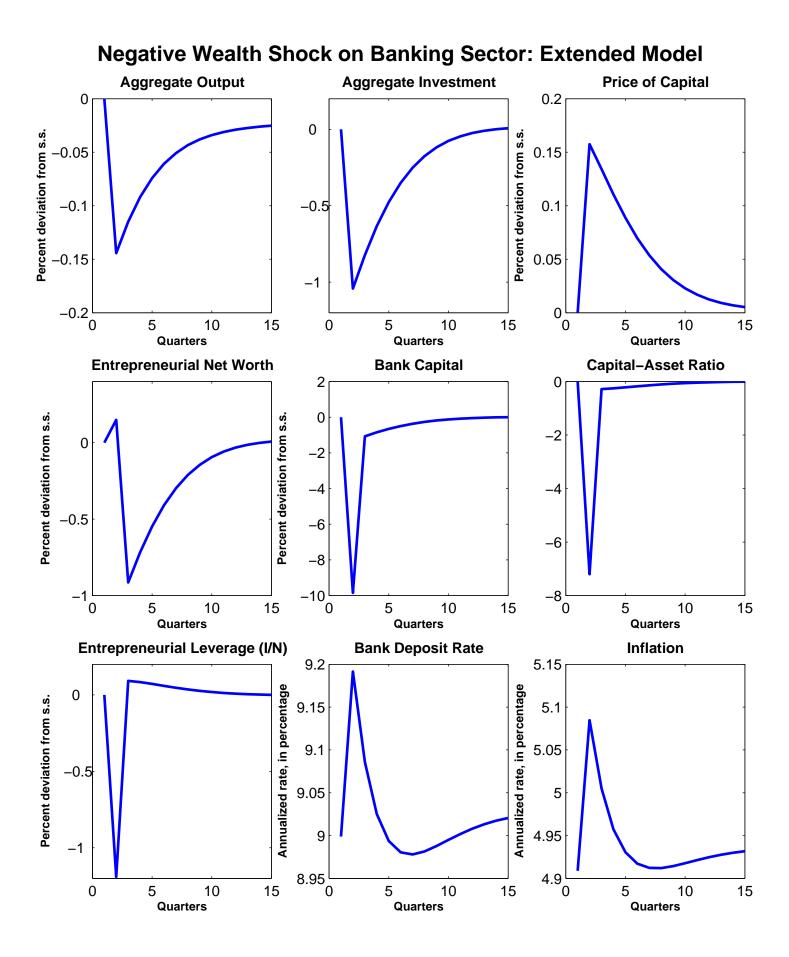

]	Househol	d Prefere	nces		
	χ	γ	ϕ	eta		
	2.75	1.5	5.0	0.99		
	F	Final Goo	od Produ	ction		
δ	$ heta_k$	$ heta_h$	$ heta_e$	$ heta_b$	$ ho_z$	
0.02	0.36	0.6399	$5\cdot 10^{-5}$	$5\cdot 10^{-5}$	0.95	
Capit	al Good P	roductio	n with As	symetric I	nfomat	ion
		μ	$lpha^g$	$lpha^b$	R	b
Base	line	0.025	0.97	0.67	0.5	0.09
-		μ	$lpha^g$	Ū.	R	b

More Severe Friction	0.05	0.97	0.67	0.5	0.06
Less Severe Friction	0.001	0.97	0.67	0.5	0.06

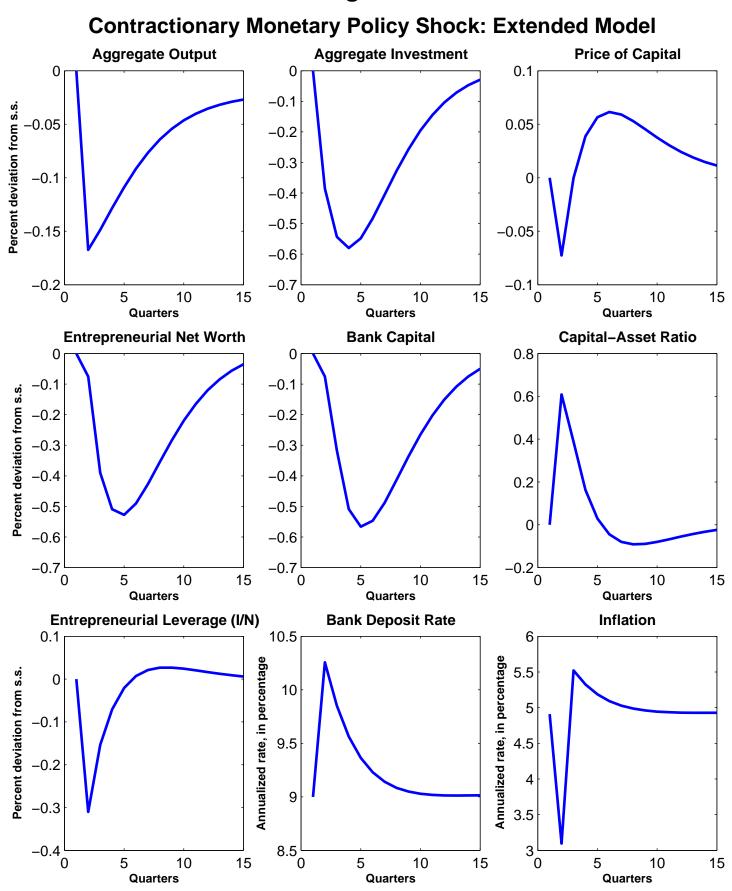
Resulting Steady-State Characteristics

	CA	I/N	BOC	ROE
Baseline	15%	2.0	5%	15%
More Severe Friction	31%	1.91	11%	15%
Less Severe Friction	6%	2.06	2%	15%

Figure 2



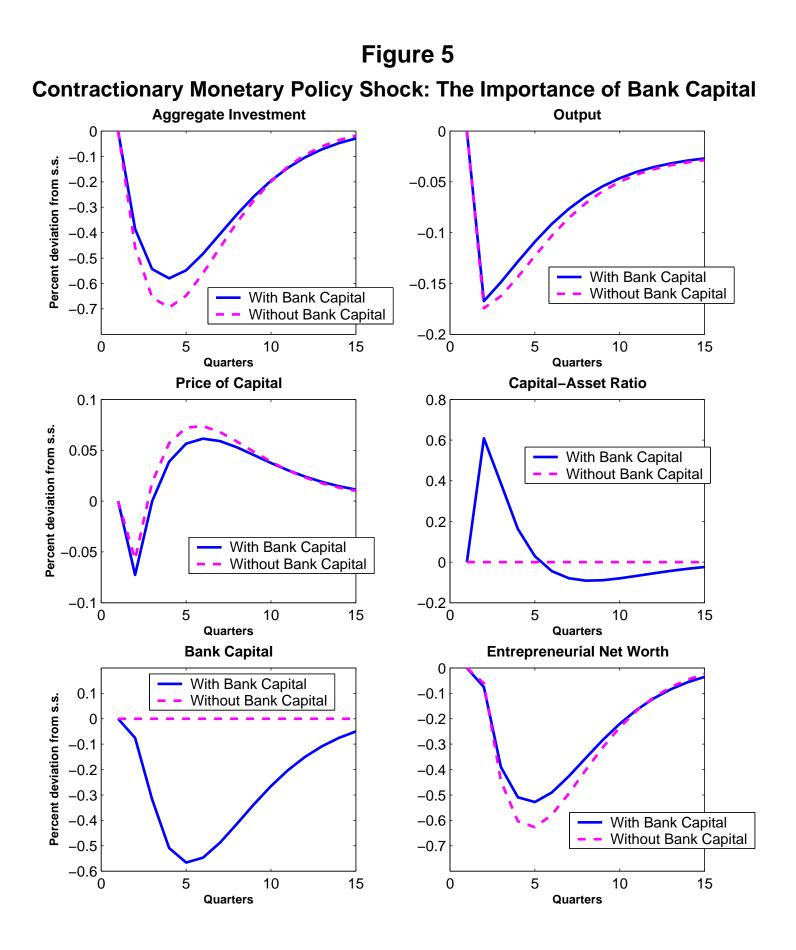
Extended Model


- Risk-aversion: $U = log(c_t) + \chi log(1 h_t V_t)$
- Households insure themselves against idiosyncratic risk

 \rightarrow collapses to representative agent model

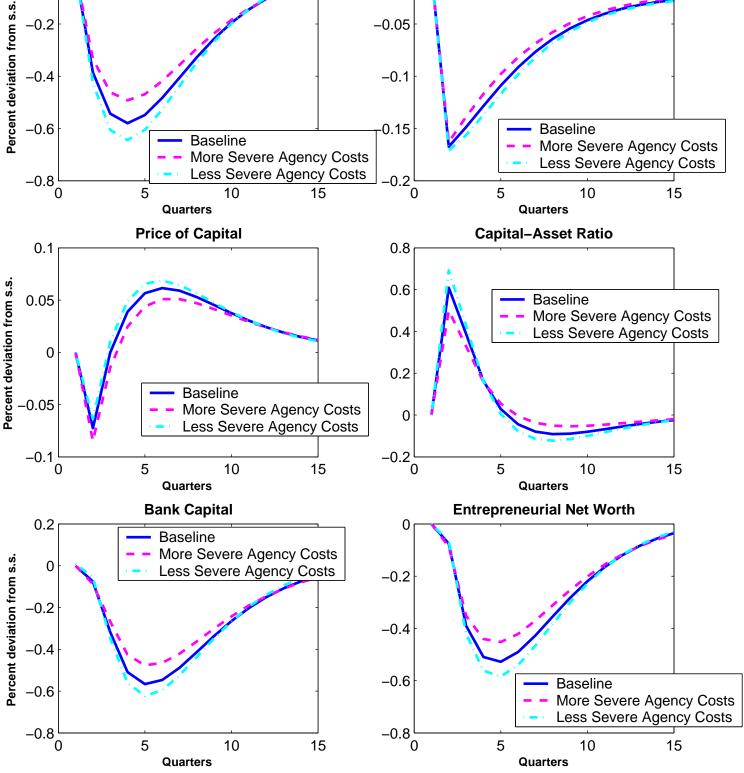
- Final good producers require external financing for wage bill
 → introduce another type of financial intermediary to provide this lending
- Wage income and purchases of physical capital now part of the household's CIA constraint

Figure 4



Variables	With Bank Capital	Without Bank Capital	% Change
Investment	0.215	0.232	7.9%
Output	1.098	1.128	2.8%
Entrepreneurial Leverage (I/N)	2.0	2.10	5%
Aggregate Leverage $(I/(N+A))$	1.74	2.10	21%

Steady State With and Without Bank Capital


'With Bank Capital': Baseline Calibration of the Double Moral Hazard Model.

'Without Bank Capital': Calibration with moral hazard only between entrepreneurs and bankers ($\mu = 0$.0)

Figure 6 **Contractionary Monetary Policy Shock: Sensitivity Analysis Aggregate Investment** Output 0 -0.05-0.1 -0.15 Baseline

0

Table 2

Cyclical Properties of the Capital-Asset Ratio: Model and Data								
	Cross-Correlation of the Capital-Asset Ratio with:							
Variable	$\frac{\sigma(X)}{\sigma(GDP)}$	X_{t-4}	X_{t-2}	X_{t-1}	X_t	X_{t+1}	X_{t+2}	X_{t+4}
Panel A: Model Economy								
Capital-Asset Ratio	0.53	0.85	0.94	0.98	1.00	0.98	0.94	0.85
Fixed Non Res. Investment	2.60	-0.07	-0.21	-0.32	-0.44	-0.52	-0.57	-0.60
GDP	1.00	-0.12	-0.25	-0.35	-0.45	-0.47	-0.48	-0.47
Bank Lending	2.70	-0.10	-0.25	-0.37	-0.51	-0.56	-0.59	-0.59
Panel B: US Economy	\frown							
Capital-Asset Ratio	0.38	0.47	0.79	0.91	1.00	0.91	0.79	0.47
Fixed Non Res. Investment	4.41	-0.44	-0.48	-0.44	-0.38	-0.28	-0.20	-0.02
GDP	1.00	-0.47	-0.40	-0.27	-0.16	-0.00	0.08	0.12
Bank Lending (C & I)	4.67	-0.42	-0.67	-0.75	-0.80	-0.76	-0.69	-0.40

Note: For the US economy, 1990:1-2003:1. Capital-Asset Ratio: *tier1 + tier2* capital over risk weighted assets (source BIS); Fixed Non Res. Investment: Fixed Investment, Non Residential, in billions of chained 1996 Dollars (source BEA); GDP: Gross Domestic Product, in billions of chained 1996 Dollars (source BEA); Bank Lending: Commercial and Industrial Loans Excluding Loans Sold (source BIS). GDP, Investment, and Bank Lending are expressed as real, per capita quantities. All series are detrended using the HP filter.

Conclusion

- We present a quantitative monetary business cycle model in which bank capital helps mitigate an agency problem between banks and depositors
- Bank capital affects the transmission mechanism of monetary policy:
 - ◊ lowers the amplification of monetary policy shocks
 - \diamond increases the persistence of monetary policy shocks
- The bank capital-asset ratio is market-generated and is countercyclical as in the data

Future Research

- Heterogeneity in bank size and capital-asset ratio
- Interaction between market and regulatory discipline on banks
- Externality of a bank's action
- Optimal monetary policy when bank capital is present?
 - \rightarrow Should monetary policy respond to bank capital movements?