Winners and Losers in Housing Markets

Nobuhiro Kiyotaki, Alex Michaelides and Kalin Nikolov

September 2008

1 Questions

To what extent are movements of housing prices consistent with fundamentals?

How does the life-cycle of consumption and home-ownership depend upon the economic environment?

Who gains and who loses in housing markets from a particular change of the fundamentals?

Figure 2: US real housing price index: 1991 = 100

Notes: OFHEO is the purchase-only equally weighted house price index produced by the Office of Federal Housing Enterprise Oversight. Case-Shiller is the value-weighted house price index jointly produced by S&P and Case-Shiller. Both indices are deflated by the US CPI for urban consumers.

Figure 1: US home-ownership rates (total and by age group) for 1991 - 2007

Source: http://www.census.gov/hhes/www/housing/hvs/historic/index.html

Two Constraints

1) Supply of land is limited

Residential and commercial property consists of capital and land

 \rightarrow Property value depends on the expected productivity growth rate and the interest rate

2) Enforcement of contracts is limited

Households enjoy an owner-occupied house more than a rented house

Households face a collateral constraint

 \rightarrow Young and poor rent, rich and old own

2 Model

Output is produced from labor and productive tangible assets

$$Y_t = F(A_t N_t, Z_{Yt}) = (A_t N_t)^{1-\eta} Z_{Yt}^{\eta}$$

Capital and land form tangible assets (tangibles)

$$Z_t = K_t^{\gamma} L^{1-\gamma}$$

Tangibles can be used either as productive tangibles (offices and factories) or houses:

$$Z_t = Z_{Yt} + \int_0^{\overline{N}_t} h_t$$
 (i) di

where $h_t(i)$ is housing used by household i in period t

Representative firm owns and controls total land and capital, and issues equity to finance investment I_t

$$K_t = \lambda K_{t-1} + I_t$$

Let q_t be the equity price before investment, and p_t be the equity price after investment

The rate of return:
$$R_t = rac{q_{t+1}}{p_t - r_t}$$

We assume the number of equities equals the stock of tangibles \rightarrow the equity price equals the price of tangibles

The firm maximizes the expected present value of net cash flow from production

Continuum of workers with population size of N_t :

High productivity workers

$$\uparrow \delta^m \qquad \qquad \searrow 1 - \omega \qquad 1 - \sigma$$

Medium productivity workers \rightarrow Retirees \rightarrow Dead

 $G_N - \omega \qquad \uparrow \delta^l \qquad \nearrow$

 \longrightarrow Low Productivity workers

Household preferences

$$E_{\mathbf{0}}\left[\sum_{t=\mathbf{0}}^{\infty}\beta^{t}u(c_{t},(\mathbf{1}-\psi I(rent))h_{t})\right]$$

where

$$u(c,h) = \left[\left(rac{c}{lpha}
ight)^lpha \left(rac{h}{1-lpha}
ight)^{1-lpha}
ight]^{1-lpha} / (1-
ho)$$

Limited contract enforcement

Tenant cannot precommit to take proper care of rented house \rightarrow landlords limit the freedom of the tenants \rightarrow utility discount for tenants

Potential hold-up between the owners of land and building \rightarrow must own capital and land together \rightarrow only asset traded is share of tangibles (liquid "home equity")

Borrowers may default \rightarrow only owner-occupier can borrow (issue outside equity) up to collateral fraction:

> $s_t \geq \theta h_t$: for an owner-occupier $s_t \geq 0$: for a tenant

Flow-of-funds constraint for a worker

$$c_t + r_t h_t + p_t s_t = (1 - \tau) w_t \varepsilon_t + r_t s_t + q_t s_{t-1}$$

For a retiree

$$c_t + r_t h_t + p_t s_t = b_t + r_t s_t + (q_t / \sigma) s_{t-1}$$

The representative foreigner

$$C_t^* + p_t S_t^* = r_t S_t^* + q_t S_{t-1}^*$$

We consider two cases:

Closed economy:

$$S_t^* = C_t^* = \mathbf{0}$$

Small open economy:

$$R_t = \frac{q_{t+1}}{p_t - r_t} = R_t^*$$

Market clearing

Labor

$$N_t = \int_0^{\overline{N_t}} n_t(i) di = arepsilon^l N_t^l + arepsilon^m N_t^m + arepsilon^h N_t^h = N_t^l + N_t^m + N_t^h$$

Goods

$$Y_t = I_t + \int_0^{\overline{N}_t} c_t(i) di + C_t^*$$

Use of tangibles

$$Z_t = Z_{Yt} + \int_0^{\overline{N}_t} h_t(i) di$$

Shares of tangibles

$$Z_t = S_t^* + \int_0^{\overline{N}_t} s_t(i) di$$

3 Features of Equilibrium

Steady state growth rate of aggregate output

$$\frac{Y_{t+1}}{Y_t} = \frac{C_{t+1}}{C_t} = \frac{I_{t+1}}{I_t} = \frac{K_{t+1}}{K_t} = G_Y$$

= $(G_A G_N)^{(1-\eta)/(1-\gamma\eta)} < G_A G_N$, if $G_A G_N > 1$

Steady state growth rate of aggregate tangibles

$$\frac{Z_{t+1}}{Z_t} = \frac{Z_{Yt+1}}{Z_{Yt}} = G_Z = G_Y^{\gamma} < G_Y$$

$$G_r = \frac{r_{t+1}}{r_t} = \frac{p_{t+1}}{p_t} = \frac{G_Y}{G_Z} = G_Y^{1-\gamma} > \mathbf{1}$$

Land scarcity makes rental and house price growth rates an increasing function of the growth rate of workers in efficiency units **Baseline parameter values:** Pick fraction of utility loss from renting $\psi = 0.057$ to generate around 36% tenants and $\beta = 0.953$ to have value of tangibles to output equal to 3.3

Other parameters are consistent with US. macro/micro studies:

Share of productive tangibles in output $\eta = 0.258$, share of non-durable goods in consumption $\alpha = 0.8$, fraction of house that needs downpayment $\theta = 0.2$, share of capital in tangibles $\gamma = 0.9$, ratio of retirement benefit to pretax average wage b/w = 0.4, labor productivity growth $G_A = 1.02$, population growth rate $G_N = 1.01$

Figure 3A: Policy functions for a low productivity household

Figure 3B: Evolution of saving for a low productivity household

Figure 6: An example life time

Features of steady state

Tenants - 36%, Constrained - 12.8% of population

Price-rental ratio of housing - 8.6,

Value of housing to wages - 2.4

Real rate of returns on share in terms of output - 6.7%

Share of land in property income: $\gamma = 0.9 \rightarrow \gamma = 0.78$

Price-rental ratio: $8.6 \rightarrow 11.0$

(Higher growth in rental rates and lower effective depreciation)

Perfect Foresight Transitions of small open economy:

Change in wealth for group I_g :

average of
$$\left(\frac{[w_n \epsilon^{j(i)} + q_n \tilde{s}_{-1}(i)]}{[w_o \epsilon^{j(i)} + q_o \tilde{s}_{-1}(i)]} - 1 \right)$$
 for all $i \in I_g$

Change in welfare for group I_g :

average of
$$\left[\left(\frac{V_n^{j(i)}([w_n \epsilon^{j(i)} + q_n \tilde{s}_{-1}(i)])}{V_o^{j(i)}([w_o \epsilon^{j(i)} + q_o \tilde{s}_{-1}(i)])} \right)^{\frac{1}{1-\rho}} - 1 \right] \text{ for all } i \in I_g$$

Figure 7 Transition Dynamics from a 1% increase in labor productivity growth (solid line: γ =0.9, dotted line: γ =0.78)

Welfare Effects of 1% higher productivity growth rate

	$\gamma = 0.9$	$\gamma = 0.78$	
A. Certainty Expenditure Equivalent (%)			
Tenant Workers	8.7	9.6	
Constrained Homeowner Workers	9.0	9.9	
Unconstrained Homeowner Workers	9.8	11.4	
Retirees	8.3	10.5	
B. Wealth Change (%)			
Tenant Workers	0.5	0.7	
Constrained Homeowner Workers	2.3	4.3	
Unconstrained Homeowner Workers	8.2	12.3	
Retirees	6.5	10.5	

Figure 8 Transition Dynamics from a 1% decrease in the world real interest rate (solid line: $\gamma=0.9$, dotted line: $\gamma=0.78$)

Figure 9: US - model versus data since 1991

Welfare Effects of 1% lower world interest rate

	$\gamma = 0.9$	$\gamma = 0.78$	
A. Certainty Expenditure Equivalent			
Tenant Workers	1.3	0.9	
Constrained Homeowner Workers	1.3	1.0	
Unconstrained Homeowner Workers	-0.1	0.4	
Retirees	1.6	3.5	
B. Wealth Change			
Tenant Workers	0.4	0.9	
Constrained Homeowner Workers	2.0	4.7	
Unconstrained Homeowner Workers	8.3	13.6	
Retirees	6.6	16.1	

Lower collateral from 20% to 10%

Large effects on homeownership rate: $64\% \rightarrow 83\%$

Very small effects on house prices and production

(The affected households are poor and the rented houses can be converted to owner-occupied houses)

A Scenario for House Price Changes?

1% higher productivity growth rate +1% lower interest rate $+\ 10\%$ lower downpayment

Figure 9: US - model versus data since 1991

Figure 11: UK – model versus data since 1991

Figure 12: UK: Aggregate home ownership rates since 1991: model versus data

Conclusions

- With larger share of land in production, higher house pricerental ratio, lower homeownership, and higher volatility of house prices
- Limited impact of collateral constraint on prices but strong effect on homeownership
- Households on average gain from a permanent increase in the productivity growth rate and lose from a decrease in the interest rate
- Higher productivity growth and a lower interest rate redistribute wealth from net buyers to net sellers