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Abstract

This technical appendix provides i) some calculations underlying the model used in
Eusepi and Preston (2008); and ii) some additional results that both clarify our �ndings
relative to earlier learning analyses on this topic and elucidate further the role of some
assumptions.
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1 Model Derivation

The following describes only the derivation of the aggregate demand equation. The derivation

of the generalized Phillips curve can be found in Preston (2005b). The household�s optimality

conditions imply:
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where � t = Tt=Pt and bit = B
i
t=Pt. In steady �s = (1� �)�b where st = Tt=Pt � g de�nes the

structural surplus and market clearing implies �Y = �C + g.

Approximating (1) provides
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The consumption Euler equation satis�es the log-linear approximation
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Substituting into the intertemporal budget constraint
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= Êi0

1X
t=1

�t
�
�C � �s~��1

�
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Divide through by �Y (1� �)�1 and rearranging gives the optimal consumption rule
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where sC = �C= �Y , � = �s= �Y ; �sŝt = �� �̂ , � = sc~� and using �s = (1� �)�b:

Finally, note that market clearing implies the log-linear approximations
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Hence the aggregate demand equation is
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1Z
0

Êitdi de�nes average beliefs of households.

De�ne the output gap as Yt � Y nt where the latter is the natural rate of output under

rational expectations permits
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Equation (10) of the paper follows when ~� = 1 and assuming g = 0, without loss of generality,

so that ~� = � = 1.
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2 Alternative Models of Learning Dynamics

Many recent papers have proposed analyses of learning dynamics in the context of models

where agents solve in�nite-horizon decision problems, but without requiring that agents make

forecasts more than one period into the future. In these papers, agents�decisions depend only

on forecasts of future variables that appear in Euler equations used to characterize rational ex-

pectations equilibrium. Important contributions include Bullard and Mitra (2002) and Evans

and Honkapohja (2003). Of most relevance to the present study is Evans and Honkapohja

(2007) which similarly studies the interaction of monetary and �scal policy, but in a model

of learning dynamics in which only one-period-ahead expectations matter to expenditure and

pricing plans of households and �rms. The following section replicates part of their analysis

in the context of the model developed here, and contrasts the resulting �ndings with those of

sections 5 and 6.

Since the optimal decision rules for households and �rms presented in section 2 are valid

under arbitrary assumptions on expectations formation, they are satis�ed under the rational

expectations assumption. Application of this assumption implies the law of iterated expecta-

tions to hold for the aggregate expectations operator and permits simpli�cation of relations

(10) and (11) in the paper to the following aggregate Euler equation and Phillips curve:1

x̂t = Etx̂t+1 � (̂{t � Et�̂t+1 � rt)

�̂t = �x̂t + �Et�̂t+1:

Under learning dynamics, with only one-period-ahead expectations, it is assumed that aggre-

gate demand and supply conditions are determined by

x̂t = Êtx̂t+1 �
�
{̂t � Êt�̂t+1 � rt

�
(2)

�̂t = �x̂t + �Êt�̂t+1: (3)

Identical assumptions are made on monetary and �scal policy provide the remaining model

1See Preston (2005a, 2005b) for a detailed discussion.
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equations
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cb
t�1�̂t (4)
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The model is closed with a description of beliefs. As nominal interest rates and taxes need

not be forecast, an agent�s vector autoregression model is estimated on the restricted state

vector

Xt =

26664
x̂t

�̂t

b̂t+1

37775 :
Two points should be underscored. First, the assumption that only one-period-ahead

forecasts matter, implies that households and �rms do not take account of transversality

conditions in making their spending and pricing plans. Decisions are not optimal given main-

tained beliefs. That households fail to make decisions that satisfy their intertemporal budget

constraint might be thought to have implications in the present context as the �scal theory

of the price level is a theory grounded on shifting evaluations of various variables related

precisely by this constraint. Furthermore, by ignoring the implications of the intertemporal

budget constraint, �scal policy has no direct impact on spending and pricing decisions. Nei-

ther forecasts of future taxes nor the average indebtedness of the macroeconomy matter for

aggregate dynamics. Second, and related, is that because households do not need to forecast

future nominal interest rates or taxes there is no uncertainty about the policy rules adopted

by the monetary and �scal authority � there is no regime uncertainty and no role for com-

munication of the joint policy strategy. It seems worth exploring the consequences of these

alternative modeling assumptions, and learning whether they elucidate earlier results.

In the model given by relations (2), (3), (4), (5) and (6) the following stability results

obtain.

Proposition 1 For 0 < � < 1, stabilization policy ensures expectational stability if and only
if the following conditions are satis�ed: either
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1. Monetary policy is active and �scal policy is locally Ricardian such that

�� > 1 and 1 < �� <
1 + �

1� � ; or

2. Monetary policy is passive and �scal policy is non-Ricardian such that

0 � �� < 1 and either 0 � �� < 1 or �� >
1 + �

1� � :

This generalizes the Evans and Honkapohja (2006) analysis to a model with nominal rigidi-

ties.2 When only one-period-ahead expectations matter, the Leeper conditions are su¢ cient

to rule out expectations-driven instability. In contrast, in a model of optimal decisions, these

conditions obtain only if there is no regime uncertainty � i.e. the policy rules are credibly

communicated to households and �rms � and either agents believe the government accounts

to be intertemporally solvent or the �scal authority chooses policy so that the steady state

debt-to-output ratio is zero. If neither of these conditions is met, the analysis of this paper

suggests a smaller menu of policies is consistent with expectations stabilization. Further-

more, economies with non-zero debt-to-output ratios experience rather di¤erent dynamics in

response to disturbances � recall the impulse response functions of the previous section.

3 Additional Propositions

Two further results are presented in Eusepi and Preston (2008) without proof. The �rst

regards a special case of proposition two for a general assumption on the degree of nominal

rigidity. For a speci�c con�guration of policy, analytic results are available. The second

regards the central bank�s imperfect knowledge about the state of the economy. When the

central bank can observe current in�ation, the Leeper conditions are necessary and su¢ cient

for stability under learning dynamics.

3.1 Arbitrary Nominal Rigidity

Proposition 2 Assume agents face uncertainty about the monetary and �scal regimes. If
�� = 0 and � = 0, then the rational expectations equilibrium is stable for all parameter
values.

2The proof is available on request.
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Proof of Proposition 2

Assuming �� = 0 implies that �2 = �. In fact,
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The proof proceeds in the same steps as for Proposition 2. The expressions below are obtained

from the �le3 �scal_delay_benchmark.m. The trace of the ~A matrix describing the dynamics

of the intercept becomes

tr( ~A) + 1 = �
�
�2�2 � �

�
�2 + 2�

�
+ 2
�

1� �� < 0

while the determinant of the matrix ~A is equal to �1 for every parameter value. Consider

the B matrix (dynamics of the b coe¢ cients): the traces is

tr( ~B) + 1 =
�4�3 � �4�2 � �3�3 � �3�2 + 2�2� + 2�� � 2

(1� ��) (1� �2�) =
G(�)

(1� ��) (1� �2�) :

Consider the numerator G(�). It is straightforward to show that

G(0) = �2 and G(1) = �2�3 � 2�2 + 2� + 2� � 2 < 0:

Finally,

G0(�) = �4�3�2(1� �)� 4�2�2 + �2�2 + 4�� + 2� � 3�2�3 =�
�4�3�2(1� �) + 4�� (1� ��)

�
+ �2�2 + 2� � 3�2�3

>
�
�4�3�2(1� �) + 4�� (1� ��)

�
+ �2�2 + 2�2�2 � 3�2�3

=
�
�4�3�2(1� �) + 4�� (1� ��)

�
+ 3�2�2 � 3�2�3 > 0

showing that the trace is always negative. The determinant is always equal to �1.
3In order to generate the result, select the option "peg=1".
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3.2 Resolving Central Bank Uncertainty

Proposition 3 Assume the central bank can perfectly observe current in�ation. Then the
stability conditions under learning coincide with the conditions for local determinacy.

Proof of Proposition 3

The Proposition follows the same steps as Proposition 2. The expressions below are

obtained by using the �le �scal_current_analytical.m. Under perfect information on the part

of the central bank, both matrices A and B can be further reduced by exploiting an extra

restriction on their parameters. For matrix A,

A3;j = ��A2;j for j = 1:::5

and the same for matrix B. The reduced matrices ~A and ~B are in this case only two dimen-

sional. Real negative eigenvalues require positive determinant and negative trace.

Ricardian regime. As �! 0, trace and determinant of matrix ~A converge to

lim
�!0

tr
�
~A
�
= �2� �

1� � +
1

(1� �)��
< 0

and

lim
�!0

det
�
~A
�
=

�� � 1
�� (1� �)

> 0

provided �� > 0. For the matrix ~B, the trace is

tr( ~B) =
��� (1� �) (��� + 1)� ��� + 1

���(1� �)��

which can be veri�ed t be negative if �� > 1 (as required in the Ricardian regime) and �� > 1.

Finally, the determinant is

det( ~B) =
��� (1� �) + 1� ���

���(1� �)��

is negative if �� > 1 (as required in the Ricardian regime) and �� > 1.

Non-Ricardian regime:Solving for the determinant of ~A we get

lim
�!0

det( ~A) =
1� ��

1� (1� �)��
> 0
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Values of �� consistent with a non-Ricardian �scal rule satisfy

�1 < H(�� ) =
�

1� (1� �)��
< 1:

Multiplying the determinant by � (which leaves its sign unchanged) we get that the con-

dition to be satis�ed is
�(1� �� )

(1� �� + ���)
> 0: (7)

for �� < 1 and �� >
1+�
1�� . Consider the trace. We obtain
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tr( ~A) = �(��� + 2� 2�� )
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�
1 +

1� ��
(1� �� + ���)

�
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Concerning the matrix ~B, the trace is

lim
�!0

tr( ~B) = GT (��)�
(�2���� � ����� + 2��� � 2��� + 2�� � 2)

(��� � 1)(1� �� + ���)
:

In the case �� = 0 we get

GT (0) = � 2(1� �� + ���)
(1� �)(1� �� + ���)

= � 2

(1� �) < 0

and for �� = 1,

GT (1) = �(�
2�� � ��� + 2� � 2��� + 2�� � 2)

(� � 1)(1� �� + ���)
= �

�
1 +

1� ��
(1� �� + ���)
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Last,

G0T (��) =
���(� � 1)

(1� �� + ���)2(��� � 1)

=
���(1� �)

(1� �� + ���)2(1� ���)
� 0 for every �� 2 [0; 1]

which implies that the trace is negative for every value of �� and �� consistent with the

determinate and stationary REE. The determinant,

lim
�!0

det( ~B) =
1� ��� � (1� �)��

(1� ���)(1� �� (1� �))
> 0

for �� < 1 and �� >
1+�
1�� .
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