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A. Controlling for the information in xt

This appendix presents results on the predictive power of SMRF when controling directly for the information

in xt . In order to guard against the possibility of overfitting in out-of-sample forecasting the information

in predictors xt is summarized by estimating predictors factors, Fx, and a single predictors factor, SFx, by

applying PCA to the T ×9 panel of original predictors formed by the six consensus forecasts zSPF,h
t , MCEI,

5yTS and BaaCS. Bai and Ng (2002) criteria indicate that this panel is well described by seven factors, from

which three (first, third and fifth principal component) were formally chosen using SBIC. These three factors

form the vector Fx. Factor SFx is a linear combination of Fx. SFx provides a variable that can directly be used

to control for the information in the original predictors, but also guards against the possibility of overfitting

in out-of-sample forecasting. The in-sample and out-sample results of this exercise are provided by tables

A.1 and A.2. The in-sample results show that, although SFx shows high predictive power for future excess

returns, adding SMRF to regressions increases R2s substantially to levels almost identical to the ones shown

by Table 2. In addition, statistical significance of SFx also shifts to SMRF. This result indicates that IQR and

IQS add substantial amount of information about the bond risk premia. Out-of-sample evidence are even

stronger. As shown by Table A.2, SFx regressions generate very inaccurate forecasts. When including SMRF

as an additional predictor, however, we observe dramatic improvements in terms of forecasting accuracy, with

R2
ooss in the range of 0.253 to 0.453. These results show that the high predictability found is, to a large extent,

due to the extra information obtained from the estimation of Med, IQR and IQS.

B. Alternative estimation procedures for IQR and IQS

The baseline quantile regression estimation used in the paper relies on the modified Barrodale and Roberts

algorithm for L1 (or Least Absolute Deviation) regressions described in Koenker and d’Orey (1987, 1994)

in conjunction with the monotone rearrangement procedure of Chernozhukov, Fernandez-Val and Galichon

(2010). It is well known in the literature of quantile estimation that regression quantiles can show instabilities

at tails due to paucity and sparsity of data (He, 1997; Wang, Li and He, 2012). For this reason I present results

for two alternative estimation procedures:

(i) qzt,t+4 (τ) is estimated for τ = 0.10 using the baseline approach. Using τ = 0.10 places less weight on

extreme data points and assures more robust estimated quantile regressions;

(ii) qzt,t+4 (τ) is estimated for τ = 0.05 using the approach proposed by Wang, Li and He (2012) (WLH

hereafter) which integrates quantile regression and Extreme Value Theory and is suitable for quantile curves

at tails. This procedure is explained below.

Wang, Li and He (2012) procedure explained

The estimation is performed without assuming common slopes for qzt,t+4 (τ). I focus here on the procedure for

the estimation of conditional high quantiles since a low quantile of zt,t+4 can be viewed as a high quantile

of −zt,t+4. First, I define a sequence τ j = j/(T +1), j = T −b, ...,v, where v = T − [T a] with [T a] denoting

the integer part of T a, T = 169 is the sample size and a > 0 and b > a are constants fixed as a = 0.1, as

suggested by Wang, Li and He (2012), and b = 25. For each j = T −b, ...,v I estimate β (τ j) in (6) following
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the baseline approach. Then, for each t = 1, ...,T I define q̂ j = β̂ (τ j)
′ xt and estimate the parameter γ as

γ̂ =
1

b− [T a]

k

∑
j=[T a]

log
q̂T− j

q̂T−b
(1)

The robust quantile function qzt,t+4 (τs)
? is then obtained as q̂zt,t+4 (τs)

? =
(

1−τT−b
1−τs

)γ̂

q̂T−b, where τs is the

percentile of interest. In our case, τs = 0.05.

Results using alternative estimation procedures

I show results for regressions with the following specifications: (i) MRF, (ii) SMRF, (iii) SMRF and CP, (iv)

SMRF and LN and (v) SMRF, CP and LN. I only provide results with asymptotic inference. Tables A.3 and

A.4 show results for the baseline approach and percentile equal to 0.10. The optimal vector of macro risk

factors selected by SBIC includes the fifth factor now, not the sixth. Statistical significance of MRF and

SMRF and R2s remain very high for all bond maturities and results are comparable to the ones shown in

tables 3 and 4. Tables A.5 and A.6 show results for the WLH approach. The SBIC now selects four factors as

predictors: MRF1, MRF4, MRF5 and MRF8. Notice that, with the exception of MRF8, all factors are highly

statistically significant. The same is true for Wald statistics. The predictive power of MRF and SMRF remains

very high with R2s ranging from 0.17 to 0.30. When comparing the predictive power of SMRF against LN

and CP, results are a bit weaker than the ones shown in Table 4, but still highly significant estimates and high

R2s are found, especially from the 5-year maturity. These results corroborate my previous findings.

C. An affine term structure model with macro risk factors

Motivated by the findings that bond risk premia are driven by risks in macroeconomic fundamentals, this

appendix examines time variation in term premia. From a monetary policy perspective, understanding time

variation in term premia is extremely important as term premia obfuscate the relationship between short-term

interest rates that are controlled by central banks and longer-term interest rates, while it also makes it difficult

to measure expectations of future short-term rates using the yield curve. I do so by estimating term premia

using a Gaussian affine term structure model along the lines of Joslin, Priebsch and Singleton (2014) (JPS

hereafter), where state variables are composed by the first three principal components of yields and the three

macro risk factors, MRF1, MRF4 and MRF6. I treat the macro risk factors as unspanned in the state vector

(Duffee, 2011; Joslin, Priebsch and Singleton, 2014), as I have found that they explain variation in risk premia,

but are irrelevant for explaining the cross-sectional variation in the current yields.

Model specification

Following the macro-finance literature since Ang and Piazzesi (2003), I assume that the p×1 vector of state

variables Xt follows a VAR(1) process under the objective probability measure P,

Xt+1 = µ +ΦXt +Σεt+1 (2)
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where εt ∼ iid N (0, Ip), the state vector consists of the first three principal components of yields and MRF1,

MRF4 and MRF6, and Σ is an p× p lower triangular matrix. The pricing kernel is assumed to be conditionally

lognormal

Mt+1 = exp
(
−rt −

1
2

λ
′
t λt −λ

′
t εt+1

)
(3)

where rt = δ0 + δ
′
1Xt is the three-month interest rate and the p× 1 vector of risk prices is affine in state

variables, λt = λ0 +λ1Xt . Under the risk-neutral measure Q the state vector follows the dynamics,

Xt+1 = µ
Q+Φ

QXt +Σεt+1 (4)

where µQ = µ−Σλ0 and ΦQ = Φ−Σλ1.

It then follows that under no-arbitrage bond prices are exponential affine functions of the state variables,

Pn
t = exp

(
An +B

′
nXt

)
, where An is a scalar and Bn is an p×1 vector that satisfy the recursions

An+1 =−δ0 +An +B
′
nµQ+ 1

2 B
′
nΣΣ

′
Bn

Bn+1 = ΦQ ′Bn−δ1
(5)

which start from A1 =−δ0 and B1 =−δ1.

I treat the macro risk factors as unspanned factors. To illustrate, partition Xt as (X
′
1t ,X

′
2t)

’, where X1t and

X2t are p1×1 and p2×1 vectors consisting of the first three principal components of yields and MRF1, MRF4

and MRF6, respectively. Set also the last p2 elements of δ1 and the upper-right p1× p2 block of ΦQ to be

equal to zero. Then the last p2 elements of Bn will be equal to zero and bond prices reduce to

Pn
t = exp

(
An +B

′
1nX1t

)
(6)

where B1n consists of the first p1 elements of Bn. The result of this is that factors in X2t are important for

forecasting future yields, but only factors in X1t are important for pricing bonds at time t. Model implied

yields are then computed as yn
t =−n−1log Pn

t =−n−1(An +B
′
1nX1t).

Estimation

The estimation approach follows JPS and Joslin, Singleton and Zhu (2011) with parameters being estimated

by MLE. Due to the separation result of the likelihood function derived in Joslin, Singleton and Zhu (2011)

parameters in µ and Φ are estimated separately from those governing the risk neutral pricing of bonds, which

can be done by a simple OLS. For estimating the remaining identified parameters, i.e. Σ, µ
Q
1 , Φ

Q
11, δ0 and δ1,1,

where µ
Q
1 and δ1,1 are the p1×1 vectors of µQ and δ1, and Φ

Q
11 is the upper-left p1× p1 block of ΦQ, it is

assumed that observed yields are equal to the model-implied yields plus i.i.d. Gaussian measurement errors.

As in JPS, the model is first reparameterized in terms of a p1×1 latent state vector S that follows a VAR

with zero intercept and diagonal slope coefficient matrix equal to I1 +ΛQ , and an equation for the short-rate

that assumes the form rt = rQ∞ +1St , where 1 is a line vector of ones. The likelihood is then maximized with
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respect to these parameters and original parameters’ estimates can be retrieved from rQ∞ and ΛQ as in JPS.1 In

the estimation I use the three-month interest rate and yields from one to ten years. In order to correct for the

possibility of existence of small-sample bias in VAR parameters (Duffee and Stanton, 2004; Kim and Wright,

2005; Kim and Orphanides, 2005) I use the bootstrap approach following Bauer, Rudebusch and Wu (2012).2

The model shows a good fit. Fitting errors measured in terms of MSE are small and equal to 0.0039,

indicating that the first three principal components together are able to account for almot all the cross-sectional

variation in yields and that no other factor is required for this purpose.

It is also worth computing a Wald statistic testing the hypothesis that macro risk factors do not enter

matrix Φ in (15). The hypothesis is highly rejected with Wald statistic equal to 2065.9 and p-value virtually

equal to zero, indicating that MRF1, MRF4 and MRF6 do help to predict future interest rates, and motivating

their inclusion in the state vector under the P measure.

Table A.7 shows the full set of parameter estimates for the affine model, including λ0 and λ1, which

govern expected excess returns. Bootstraped standard errors are in parentheses.3 The prices of level (PC1)

and slope (PC2) risks have a significant negative constant component, implying that investors on average

require positive expected excess returns for holding the level and slope portfolios. In addition to level and

slope risks being nonzero unconditionally, I find that the level risk varies significantly as a function of MRF4

and MRF6. The loading on these factors have positive and negative coefficients, respectively, implying that

shocks to MRF4 (MRF6) have a negative (positive) impact on risk premia. Another finding is that the slope

carries a significant price of risk. The level factor, the slope factor itself, as well as the curvature (PC3) factor

all significantly affect the price of slope risk over time. Coefficients on the level and curvature factors are

positive, indicating that expected excess returns on the slope portfolio is decreasing in the level and curvature

of yields. Contrary, the coefficient on the slope factor shows a negative coefficient.

Decomposing long term yields

Long term yields can be represented as the sum of future nominal short-rate expectations plus a term premium

defined as the average of risk premia of declining maturities.4 After estimating the affine model parameters,

the n-year term premium can be computed as the difference between the n-year implied yield under Q and the

average of expected short-rate up to year n under the P measure.

This decomposition is ilustrated by Figure A.1 for the 10-year yield. Two aspects are noteworthy. First,

the long-term term premium implied by risks in macroeconomic fundamentals have a marked countercyclical

behaviour showing declines during expansions and increases during recessions. Observe that increases have

been more pronounced since the early 1990s, even though the 10-year yield has shown a decreasing pattern

1Appendix B in Joslin, Priebsch and Singleton (2010) specifies how to do this.
2I also test the indirect inference approach proposed by Bauer, Rudebusch and Wu (2012), which is supposed to remove higher-

order bias. I found that the two methods deliver almost the same results in the particular case of this paper. I use the bootstrap
approach due to its simplicity and faster computation.

3The method used to bootstrap standard errors is as follows. First I resample the OLS residuals in the state equation and randomly
choose a starting value among the T observations to construct a bootstrap sample for state variables using the original state equation
parameters. Then, using the maximum likelihood estimates of the parameters, I simulate a path of the term structure for the whole
sample and estimate the model based on these simulated data. These steps are repeated 1000 times delivering empirical probability
distributions for all parameters from which bootstrap standard deviations can be easily computed.

4yn
t can be decomposed as yn

t = 1
n Et(rt + rt+1 + ...+ rt+n−1)+

1
n [Et(rxn

t+1)+Et(rxn−1
t+2 )+ ...+Et(rx2

t+n−1)].
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since then. Second, these movements have been closely followed by decreases in short-rate expectations,

indicating that the two components seem to move in opposite directions, in particular, during bad times. For

instance, notice that while the term premium rose sharply during the the late 2000s recession, short-rate

expectations declined abruptly to levels close to zero. The correlation between the two series is high and

negative: -51%.

Consistent with previous findings concerning SMRF (the return risk premia), term premium is highly

countercyclical. Figure A.1 - Panel B shows lead/lag relations between the term premium and growth rates

for real GDP, industrial production and unemployment rates. Contemporaneous correlations with real GDP,

industrial production and unemployment growth rates are -32%, -27% and 32%, respectively, and are highly

statistically significant. In addition, cross-correlations turn negative and positive as macro variables are

led/lagged, indicating that bond premia implied by risks in macroeconomic fundamentals are closely related to

movements in the real economy. This result is suggested by theory (Campbell and Cochrane, 1999; Wachter,

2006; Bansal and Yaron, 2004; Rudebusch and Swanson, 2009).

Impulse response analysis

Duffee (2011) points out that factors whose impacts on term premium and short-rate expectations cancel each

other may be considered unspanned, as shocks have no impact on current bond yields. As Figure A.1 suggests,

term premium and short-rate expectations implied by expected macro risks move in opposite directions. It is

then worth verifying how shocks to macro risk factors affect these two terms separately and, consequently,

yields.

Figure A.2 shows impulse response functions (IRFs) for the term premium, short-rate expectations and

the 10-year yield to one-standard deviation shocks in MRF1, MRF4 and MRF6. Notice that shocks in all macro

factors cause off-setting movements in the term premium and expected short-term interest rates, leaving

current yields statistically unaffected. While shocks in MRF1 and MRF4 (MRF6) drive term premium down

(up), they bring the expectations component up (down). Following Duffee (2011), these results provide even

stronger evidence that macro risk factors are indeed unspanned by the yield curve.

It is also worth interpreting the impulse response functions shown by Figure A.2. Notice that a positive

shock in MRF1 drives term premium down by about 10 basis points after which it gradually reverts back.

This is consistent with the notion that higher expected economic activity leads to lower risk premium. A

similar but stronger effect is observed for MRF4 with term premium decreasing by about 33 basis points. A

shock in MRF6, on the other hand, causes an increase in term premium of about 20 basis points, which is

consistent with the idea that higher upside inflation risks raise risk premium for long-term bonds as investors

will demand a higher premium to compensate for inflation risk. The magnitude of the impacts over the

expectations component are lower and mostly statistically insignificant.

D. Recursive R2
oos and utility gains in real-time

In order to check the over time stability of the results shown in Table 9, Figure A.3 shows recursive R2
ooss

and utility gains computed against the constant model of no-predictability. Notice that R2
ooss for SMRF

regressions show high stability and statistical significance against the constant model over the full period
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of evaluation. The SMRF+CP specification performs quite well up to the early 2000’s, from when its R2
ooss

decline substantially. Recursive utility gains obtained from SMRF regressions are a bit downward trended,

but still quite high over the full period. R2
ooss are particularly high in the beggining of the period, with utility

gains achieving levels around 6% up to 1995. Results achieved by the portfolio of model SMRF+CP are more

stable and, although lower, still positive over the full period. The most successful model in real-time is SMRF.
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Table A.1: In-sample predictability - SMRF and SFx

Notes: This table shows the predictive power of SMRF and SFx. t-stats computed using Newey-West standard errors with six lags are
reported in parentheses and R2 refers to the adjusted-R2.

SMRF SFx R2

rx2

0.225 0.126

(3.157) −
0.224 0.027 0.206

(2.911) (0.291) −

rx3

0.436 0.144

(3.243) −
0.423 0.063 0.230

(3.045) (0.361) −

rx5

0.816 0.180

(3.567) −
0.748 0.154 0.277

(3.478) (0.541) −

rx7

1.196 0.208

(3.914) −
1.003 0.310 0.302

(3.517) (0.792) −

rx10

1.722 0.232

(4.078) −
1.328 0.548 0.319

(3.607) (1.080) −

Table A.2: Out-of-sample predictability - SMRF and SFx

Notes: Panel A shows R2
oos statistics for predictor based models against a constant, with R2

oos > 0 indicating outperformance of

predictor based models. Panel B reports R2
oos of models with (“unrestricted”) and without (“restricted”) SMRF with R2

oos > 0

indicating outperformance of models augmented with SMRF (“unrestricted” models). In both panels, (?), (??), (???) indicate

statistical significance according to the MSPE-adjusted test of Clark and West (2007) at 10%, 5% and 1%, respectively. (†), (††),

(† † †) indicate statistical significance according to the MSE-F test of McCracken (2007) at 10%, 5% and 1%, respectively. The R2
oos

statistic is defined as

R2, j
oos = 1− ∑

T
t=R(rxn

t,t+4−r̂xn, j
t,t+4)

2

∑
T
t=R

(
rxn

t,t+4−r̂xn,b
t,t+4

)2 ,

where r̂xn, j
t,t+4 is a forecast generated from model j = SMRF, SFx, SMRF +SFx and r̂xn,b

t,t+4 is the forecast generated from the

benchmark, with b = constant, SFx.

Panel A - against constant Panel B - against “restricted” model

1990Q1-2011Q4 1990Q1-2007Q4 1990Q1-2011Q4 1990Q1-2007Q4

SMRF SFx SMRF SFx SMRF +SFx vs SFx SMRF +SFx vs SFx

rx2 −0.099? −0.661 −0.039? −0.523 0.253???††† 0.264???†††

rx3 −0.011?? −0.571 0.014?? −0.491 0.286???††† 0.291???†††

rx5 0.134???††† −0.401 0.133???††† −0.403 0.348???††† 0.354???†††

rx7 0.219???††† −0.317 0.205???††† −0.335 0.393???††† 0.391???†††

rx10 0.292???††† −0.253 0.278???††† −0.269 0.435???††† 0.432???†††
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Table A.3: Predictive Power of Macro Risk Factors - baseline approach with τ = 0.10

Notes: This table shows the predictive power of MRF and SMRF when qzt,t+4 (τ) is estimated using τ = 0.10. t-stats computed
using Newey-West standard errors with six lags are reported in parentheses. Wald statistics were also computed using Newey-West
variance-covariance matrices with six lags.

MRF1 MRF4 MRF5 SMRF R2 Wald

rx2

0.397 −0.494 0.447 0.192 0.000

(2.002) (−2.341) (2.034) − −
0.228 0.182

(4.080) −

rx3

0.803 −0.864 0.903 0.214 0.000

(2.302) (−2.366) (2.357) − −
0.445 0.210

(4.444) −

rx5

1.682 −1.223 1.729 0.255 0.000

(2.921) (−2.250) (2.772) − −
0.832 0.262

(5.306) −

rx7

2.605 −1.416 2.487 0.282 0.000

(3.371) (−1.929) (2.998) − −
1.195 0.291

(5.803) −

rx10

3.954 −1.633 3.502 0.310 0.000

(3.756) (−1.686) (3.188) − −
1.700 0.315

(5.879) −
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Table A.5: Predictive Power of Macro Risk Factors - WLH approach

Notes: This table shows the predictive power of MRF and SMRF when qzt,t+4 (τ) is estimated using τ = 0.05 and the WLH approach.
t-stats computed using Newey-West standard errors with six lags are reported in parentheses. Wald statistics were also computed
using Newey-West variance-covariance matrices with six lags.

MRF1 MRF4 MRF5 MRF8 SMRF R2 Wald

rx2

0.432 −0.555 0.263 0.058 0.175 0.000

(2.304) (−3.550) (1.977) (0.312) − −
0.225 0.166

(3.802) −

rx3

0.860 −0.958 0.534 0.242 0.187 0.000

(2.457) (−3.800) (2.309) (0.704) − −
0.436 0.190

(4.075) −

rx5

1.758 −1.451 0.987 0.768 0.230 0.000

(3.010) (−4.072) (2.556) (1.346) − −
0.823 0.242

(4.718) −

rx7

2.700 −1.809 1.537 1.117 0.262 0.000

(3.545) (−3.928) (2.937) (1.529) − −
1.195 0.275

(5.245) −

rx10

4.076 −2.286 2.196 1.610 0.292 0.000

(3.983) (−3.728) (3.155) (1.739) − −
1.711 0.302

(5.405) −
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Table A.7: Affine model - full parameter estimates

Notes: This table shows the full parameters estimates for the affine model with macro risk factors MRF1, MRF4 and MRF6. Bootstrap
standard errors are shown in parentheses.

µ
′

0.497 −0.245 0.231 −0.535 0.169 0.297 µQ′ 2.398 0.757 0.079

(0.988) (0.310) (0.127) (0.197) (0.274) (0.265) (0.880) (0.222) (0.223)

Φ 0.957 0.055 0.261 −0.205 0.339 −0.538 ΦQ 0.991 0.242 −0.348

(0.035) (0.242) (0.623) (0.352) (0.214) (0.217) (0.010) (0.016) (0.024)

0.015 0.752 0.843 0.194 −0.059 0.081 −0.008 0.888 0.514

(0.010) (0.074) (0.192) (0.104) (0.065) (0.066) (0.005) (0.025) (0.016)

−0.001 0.042 0.592 −0.069 0.006 −0.001 0.004 0.009 0.805

(0.004) (0.031) (0.080) (0.044) (0.027) (0.028) (0.002) (0.004) (0.023)

0.002 0.113 0.157 0.808 −0.034 0.051

(0.007) (0.048) (0.125) (0.070) (0.041) (0.045)

0.005 0.021 −0.396 0.075 0.833 0.077

(0.009) (0.062) (0.166) (0.090) (0.056) (0.057)

−0.018 −0.114 0.516 0.179 −0.090 0.727

(0.009) (0.065) (0.166) (0.094) (0.055) (0.061)

Σ 4.204 −1.012 0.026 −0.288 0.184 0.175 δ0 0.016

(2.146) (0.833) (0.090) (0.246) (0.295) (0.264) (0.000)

−1.012 0.974 −0.237 0.414 −0.389 −0.075 δ
′

1 0.083 −0.155 0.144

(0.833) (0.315) (0.035) (0.099) (0.105) (0.096) (0.007) (0.008) (0.008)

0.026 −0.237 0.115 −0.136 0.140 0.007 λ
′

0 −0.927 −1.708 −1.461

(0.090) (0.035) (0.020) (0.036) (0.039) (0.038) (0.440) (0.714) (1.059)

−0.288 0.414 −0.136 0.313 −0.193 −0.079 λ1 −0.017 −0.091 0.297 −0.100 0.165 −0.262

(0.246) (0.099) (0.036) (0.660) (0.347) (0.210) (0.011) (0.066) (0.216) (0.080) (0.075) (0.078)

0.184 −0.389 0.140 −0.193 0.436 0.022 0.017 −0.212 0.557 0.017 0.026 −0.057

(0.295) (0.105) (0.039) (0.347) (0.987) (0.352) (0.007) (0.074) (0.225) (0.076) (0.071) (0.070)

0.175 −0.075 0.007 −0.079 0.022 0.342 0.000 −0.116 −0.324 −0.106 0.056 −0.065

(0.263) (0.096) (0.038) (0.210) (0.352) (0.532) (0.013) (0.092) (0.325) (0.116) (0.114) (0.111)
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Figure A.1: 10-year yield decomposition

Notes: Panel A shows NBER-dated recessions and time series for the 10-year yield (solid black), 10-year short-rate expectations
(dotted blue) and 10-year term premium (solid blue) estimated from the affine term structure model with macro risk factors. The
term premium is smoothed using exponential-weighted moving average. In Panel B graphs show lead/lag correlations between the
non-smoothed 10-year term premium and growth rates of key economic activity indicators. The term premium is at date t while
growth rates are at time t + l, where l refers to lead (if negative) and lags (if positive). Leads and lags are shown in annual frequency.
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Figure A.2: Impulse response functions

Notes: This figure shows impulse response functions for the 10-year term premium, 10-year average short-rate expectations and
10-year yield to one standard-deviation shocks in MRF1, MRF4 and MRF6. 95% percent confidence intervals are shown as dotted
lines.
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Figure A.3: Recursive estimates of R2
oos and utility gains in real-time

Notes: Panel A shows recursive R2
oos computed for the period 1995Q1-2011Q4 in a fully real-time exercise. Asterisks indicate

statistical significance at 5% according to the MSPE-adjusted statistic of Clark and West (2007). Panel B shows recursive utility
gains accrued by an investor investing in a portfolio of US government bonds. R2

ooss and utility gains are computed against a constant
model of no-predictability.
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