The Macro-Financial Implications of House Price-Indexed Mortgage Contracts

Isaiah Hull

September 2014
WORKING PAPERS ARE OBTAINABLE FROM

Sveriges Riksbank • Information Riksbank • SE-103 37 Stockholm
Fax international: +46 8 787 05 26
Telephone international: +46 8 787 01 00
E-mail: info@riksbank.se

The Working Paper series presents reports on matters in the sphere of activities of the Riksbank that are considered to be of interest to a wider public. The papers are to be regarded as reports on ongoing studies and the authors will be pleased to receive comments.

The views expressed in Working Papers are solely the responsibility of the authors and should not to be interpreted as reflecting the views of the Executive Board of Sveriges Riksbank.
The Macro-Financial Implications of House Price-Indexed Mortgage Contracts

Isaiah Hull†

Sveriges Riksbank Working Paper Series

No. 287

September 2014

Abstract

A standard, no-recourse mortgage contract does not adjust when the value of the underlying collateral falls. Consequently, shocks that lower house prices may trigger one of the necessary conditions for default: negative equity. A common alternative contract attempts to prevent default by imposing full-recourse. This may cause individuals who believe they are likely to default to rent; however, it does not prevent those who buy from experiencing negative equity. I consider a contract that instead precludes negative equity by tying outstanding debt to an index of house prices. This is done in an incomplete markets model that is calibrated to match U.S. micro and macro data. I find that switching to the house-price indexed contract reduces the default rate from .72% to .11% and expands homeownership rates among the young and the poor, but pushes up the equilibrium minimum mortgage rate by 90 basis points. The volatility of net cashflows to financial intermediaries also increases slightly under the new contract.

JEL Classification: G21, E21, E43
Keywords: Default, Mortgages, Interest Rates, Heterogeneous Agents, Incomplete Markets

†Research Division, Sveriges Riksbank, SE-103 37, Stockholm, Sweden. Email: isaiah.hull@riksbank.se.
1 Introduction

A standard, no-recourse mortgage does not adjust its terms when the value of the underlying collateral changes. One consequence of this contract structure is that large reductions in house prices will cause households to have negative equity. Recent empirical work suggests that negative equity, coupled with unemployment and a weak asset position, leads to mortgage default.\footnote{See Gerardi, Herkenhoff, Ohanian, and Willen (2013); Foote, Gerardi, and Willen (2008).}

Consequently, a contract that adjusts with house prices to prevent negative equity will preclude default. This is accomplished by shifting the burden of the house price reduction to the lender. If house prices drop and a household is hit with an income shock simultaneously, she can sell, rather than defaulting. Under a standard contract, a household that experiences the same set of shocks can neither sell nor make payments, resulting in a breach of contract that initiates the foreclosure process.

In the following section, I setup an incomplete markets model in the style of Bewley (1983) and Aiyagari (1994) that features mortgage default. The model will not have aggregate uncertainty, as in Krusell and Smith (1998), but will emulate it in a stationary model by constructing regions that experience idiosyncratic shocks to housing productivity. This second tier of idiosyncratic shocks (above households, but below the aggregate economy) makes it possible to create localized credit crunches, as default probabilities and house price movements comove within a region. I then solve and simulate the model under two classes of contracts: 1) a standard, no-recourse mortgage contract; and 2) an alternative, house-price indexed (HPI) contract, which is constructed to eliminate negative equity.

2 The Model

2.1 Firms

The firm side of the economy consists of 1) a consumption goods producer who rents labor services; and 2) a region-specific technology that permits all households to transform the consumption good into housing units.

2.1.1 Consumption Goods

Consumption goods are produced using labor and are subject to decreasing returns:

\[Y_t = N_t^\alpha, \]

Firms maximize profits, yielding the factor price for labor, where \(N_t \) is the mass of employed workers:

\[w_t = \alpha N_t^{\alpha - 1} \]

2.1.2 Housing Investment

The housing production specification is based on Glover, Heathcote, Krueger, and Rios-Rull (2011), but allows for regional heterogeneity. Agents in each region have access to a
linear technology that transforms the consumption good into housing. If agent i in region m builds with $c_{m|it}^h$ units of the consumption good, it will yield $ih_{m|it}^m$ new units of housing:

$$ih_{m|it}^m = c_{m|it}^h e_{m|it} U_{mt},$$

where $U_{mt} = u_H + \rho_H U_{mt-1} + \epsilon_{mH}$, $\epsilon_H \sim N(0,\sigma_{mH})$. Total housing investment can be written as follows:

$$IH_t = \sum_{i \in I} \sum_{m \in M} c_{m|it}^h e_{m|it} U_{mt} \mu_{mi},$$

where μ_{mi} is agent i in region m's mass and where IH_t denotes the aggregate. The housing stock evolves as follows:

$$H_{t+1} = H_t + IH_t - \delta_H H_t,$$

where δ_H is housing stock depreciation.

2.2 Households

Households work for T^W periods and then retire. An employed household that is age a and productivity type g at time t receives a wage, $w_t \eta_{ag}$, where η_{ag} is productivity weight of age cohort a and permanent productivity type g. Unemployed and retired agents receive a transfer payment from the government, x_t. Households pay an age and productivity-specific tax, Γ_{it}, which yields the following income process:

$$y_{it} = \begin{cases} w_t \eta_{a|it} - \Gamma_{at} & \text{if employed} \\ x_t & \text{if unemployed or retired} \end{cases}$$

Households consume two types of goods: 1) non-durable goods, which serve as the numéraire; and 2) service flows from housing, which are proportional to the size of the housing stock, h_{it}:

$$u(c_{it}, h_{it}) = \frac{c_{it}^{1-\sigma_c}}{1-\sigma_c} + \frac{h_{it}^{1-\sigma_h}}{1-\sigma_h}$$

Households also accumulate bank deposits, borrow in the form of collateralized mortgages, and choose whether or not to default on mortgage debt, yielding the following budget constraint:

$$c_{it} + \phi(h_{it}, h_{it-1}) + d_{it} + p_{t}^h h_{it} + m_{it} = y_{it} + (1 + r)d_{it-1} + p_{mt} h_{it-1} (1 - \delta_H) + b_{it}$$

Note that p_{t}^h is the relative price of housing, m_{it} is the mortgage payment, and b_{it} is the unpaid balance on the mortgage.

Households face a concave adjustment cost, $\phi(h_{it}, h_{it-1})$, which generates lumpy investment (i.e. infrequent moves). As in Iacoviello and Pavan (2011), there is a minimum house size, \bar{h}; and agents who cannot own have access to a small, fixed amount of non-housing shelter.

Additionally, I apply a novel constraint that makes holders of one-period mortgages behave as if they held long term debt:
\[b_{it}^H \leq \begin{cases}
\lambda p^h_{it} h_{it} & \text{if } h_{it} - h_{it-1} > 0 \\
\lambda p^h_{it} h_{it} & \text{if } b_{it-1} < \lambda p^h_{it} h_{it} \& h_{it} = h_{it-1} \\
b_{it-1} & \text{otherwise,}
\end{cases} \]

where \(\lambda \in (0, 1) \) denotes the maximum loan-to-value ratio.

The intent of this constraint is to achieve the following: 1) prevent spurious defaults that arise from one-period contracts with a collateral constraint; 2) permit mortgage equity withdrawal; and 3) allow negative equity.

I also borrow a constraint from Iacoviello and Pavan (2011) that limits borrowing to a fraction, \(\gamma \), of discounted, remaining lifetime earnings:

\[b_{it}^I = \gamma E_t \sum_{j=t}^{T-a+j} \beta^{T-a+t} y_{ij} \]

The final constraint combines the previous two:

\[b_{it} \leq \min\{b_{it}^H, b_{it}^I\} \]

That is, the maximum amount a household can borrow is the minimum implied by the two borrowing constraints.

Deposits yield the equilibrium interest rate, \(r \), and borrowers pay an individual-specific mortgage rate, \(\xi_{it} \), which depends on the contract structure. Defaulters forfeit their housing stock and are temporarily excluded from the mortgage market.

With the choice problem fully specified, we may collect the state variables, \(z_{int} = \{d_{it-1}, \psi_{it}, h_{it-1}, b_{it-1}, \epsilon_{it}, a_{it}, g_{it}, r, p^h_{mt}\} \) and the parameters \(\Omega = \{\alpha, \sigma_h, \gamma, \lambda, \rho_m U, \sigma_m U, \delta_h\} \) to simplify notation. The dynamic programming problem (DPP) for the household, subject to equations 1-11, may be written as follows:

\[V_{it}(z_{it}; \Omega) = \max_{\{c_{it}, d_{it}, k_{it}, h_{it}, \psi_{it}\}} \{u(c_{it}, h_{it}) + \beta \sum_{\epsilon^E \in \{1, 0\}} Pr(U^\epsilon)Pr(\epsilon^E | \epsilon^E)V_{it+1}(z_{it+1}; \Omega)\} \]

2.3 The Financial Intermediary

The market for financial intermediation is perfectly competitive. All mortgages originated yield zero profits on average in equilibrium. Two equilibria are considered: one with the standard contract and another with the HPI contract.

2.3.1 Standard Mortgage Contract

We assume that the foreclosure process is costly and that financial intermediaries only recover a fraction, \(\Lambda < 1 \), of the outstanding debt from defaulters. Thus, a contract must be priced to satisfy the following condition:

\[(1 + r)b_{it-1} = (1 - q_{it-1})(1 + \xi_{it})b_{it-1} + q_{it-1} b_{it-1} \Lambda \]

Here, \(q_{it-1} \) is the rational expectations probability of default. This implies the following, borrower-specific mortgage rate:
The equilibrium interest rate on deposits, \(r \), clears the mortgage market by equating aggregate savings and mortgage debt.

Using these assumptions, the intermediary sets the mortgage payment for household \(i \), who obtained a loan in period \(t \) as follows:

\[
\xi_t = \frac{r + (1 - \Lambda)q_{it-1}}{1 - q_{it-1}} - 1 \tag{14}
\]

The equilibrium interest rate on deposits, \(r \), clears the mortgage market by equating aggregate savings and mortgage debt.

Using these assumptions, the intermediary sets the mortgage payment for household \(i \), who obtained a loan in period \(t \) as follows:

\[
m_{it} = (1 + \xi_{it}) b_{it-1}, \tag{15}
\]

If a household defaults, it repays neither principal nor interest on the mortgage.

2.3.2 HPI Contract

In the alternative contract, outstanding debt is indexed to the regional house price level. This contract specification eliminates one of the necessary conditions for default: negative equity. The mortgage payment is as follows:

\[
m_{it} = (1 + \xi_{it}) \min\{b_{it-1}, p_{it}^h b_{it-1} (1 - \delta_h)\} \tag{16}
\]

This contract requires the following condition to be satisfied:

\[
(1 + r) b_{it-1} = (1 + \xi_{it}) \min\{b_{it-1}, p_{it}^h b_{it-1} (1 - \delta_h)\}
\]

This can be rewritten to yield the individual-specific mortgage rate:

\[
\xi_{it} = \frac{1 + r}{\min\left\{1, \frac{p_{it}^h b_{it-1} (1 - \delta_h)}{b_{it-1}}\right\}} - 1 \tag{17}
\]

Note that indexing only takes effect when house prices fall; and when it takes effect, it reduces the size of the payment and the amount of debt outstanding.

2.4 The Government

The government makes transfer payments to retired and unemployed individuals at a constant replacement ratio, \(\zeta \). It collects taxes from employed agents that are proportional to income; and maintains a balanced budget in all periods.

2.5 Aggregate Consistency Conditions

The economy is also subject to a set of standard aggregate consistency conditions. Additionally, the equilibrium interest rate must clear the mortgage market.

2.6 Calibration

The model’s calibration is given in Table 1. The utility function was parameterized according to Chambers et. al (2009). The standard deviation for the housing productivity process applies only at the regional level, as there is no aggregate variation. The housing adjustment cost, housing depreciation rate, max lifetime borrowing parameter, and
minimum house size is taken from Iacoviello and Pavan (2011). The within-cohort productivity range is calibrated to target an after-tax wage-GINI coefficient of 0.30. The quantity of non-housing shelter is used to calibrate the default rate for the standard contract. Additionally, micro data from the CPS is used to calibrate wage-age profiles.

Table 1: Model Calibration

<table>
<thead>
<tr>
<th>Param</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing utility curvature</td>
<td>(\sigma_H)</td>
</tr>
<tr>
<td>Cons. utility curvature</td>
<td>(\sigma_C)</td>
</tr>
<tr>
<td>Regional housing prod. persistence</td>
<td>(\rho_H)</td>
</tr>
<tr>
<td>St. dev. housing prod.</td>
<td>(\sigma_H)</td>
</tr>
<tr>
<td>Within-cohort productivity range</td>
<td>-</td>
</tr>
<tr>
<td>Non-housing shelter</td>
<td>-</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>-</td>
</tr>
<tr>
<td>Housing depreciation rate</td>
<td>-</td>
</tr>
<tr>
<td>Housing adjustment cost</td>
<td>-</td>
</tr>
<tr>
<td>Max LTV ratio</td>
<td>(\lambda)</td>
</tr>
<tr>
<td>Max lifetime borrowing</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>Replacement ratio</td>
<td>(\zeta)</td>
</tr>
<tr>
<td>Min house size</td>
<td>(h)</td>
</tr>
<tr>
<td>Labor share</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>Discount factor</td>
<td>(\beta)</td>
</tr>
<tr>
<td>Housing recovered in foreclosure</td>
<td>(\Lambda)</td>
</tr>
</tbody>
</table>

3 Results

We will first consider the aggregate results for the model, given in Table 2. These were computed by averaging over 2,400,000 agent-periods of simulated data.

Table 2: Aggregate Differences Across Contracts

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Alternative</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>0.72%</td>
<td>0.11%</td>
<td>0.61ppt</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.527</td>
<td>0.558</td>
<td>5.88%</td>
</tr>
<tr>
<td>Borrowing</td>
<td>0.541</td>
<td>0.7962</td>
<td>47.19%</td>
</tr>
<tr>
<td>Mortgage Rate</td>
<td>1.0414%</td>
<td>1.0504%</td>
<td>90bp</td>
</tr>
<tr>
<td>LTV Ratio</td>
<td>86.30%</td>
<td>92.51%</td>
<td>6.21ppt</td>
</tr>
</tbody>
</table>

The switch from the standard to HPI contract reduces the default rate from 0.72% to 0.11%. It does not drop to zero, however, because some households are unable to repay both principal and interest, even if they can sell to repay principal. The switch also increases consumption by 5.88%, partly by reducing reliance on the costly foreclosure process. Borrowing increases, driven by lending to young and low income households, which is documented further in Figure 1. This pushes up the equilibrium interest rate by 90bp.

Next, we consider the differences in lifecycle profiles across contract types. Figure 1 uses the same simulated data, but does not aggregate across age. Notice that young households benefit disproportionately from the option to borrow more without increasing
Figure 1: Average Lifecycle Profile Differences

Figure 2 shows the simulated CDFs for net cashflows for each time-region pair. Each region receives a different sequence of exogenous shocks from the housing productivity process. This generates variation in the rate of default under the standard contract and variation in contract revaluation under the HPI contract. The HPI contract has a slightly higher mass in both tails, suggesting that it increases the regional dispersion of cashflows.

4 Conclusion

I use an incomplete markets model with mortgage default to study house price-indexed (HPI) mortgage contracts. When house prices fall, the amount of outstanding debt falls, precluding negative equity, which is a necessary condition for default. I find that switching to the HPI contract reduced the default rate in the model from .72% to .11%, but increased the equilibrium minimum mortgage rate by 90 basis points. The new contract also expanded homeownership in all age groups, but had a particularly pronounced impact on young and low income households.

Beyond the properties identified in this paper, the HPI contract has two additional benefits: first, it assigns clearer roles to originators and borrowers by incorporating more contingencies into the contract, rather than allowing those contingencies to result in a breach of contract. And second, it explicitly reassigns the need to forecast regional house prices from laypersons to financial institutions.
Figure 2: CDF of Financial Intermediary Net Cashflows

5 References

Earlier Working Papers:

For a complete list of Working Papers published by Sveriges Riksbank, see www.riksbank.se

Estimation of an Adaptive Stock Market Model with Heterogeneous Agents
by Henrik Amilon
2005:177

Some Further Evidence on Interest-Rate Smoothing: The Role of Measurement Errors in the Output Gap
by Mikael Apel and Per Jansson
2005:178

Bayesian Estimation of an Open Economy DSGE Model with Incomplete Pass-Through
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani
2005:179

Are Constant Interest Rate Forecasts Modest Interventions? Evidence from an Estimated Open Economy DSGE Model of the Euro Area
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani
2005:180

Inference in Vector Autoregressive Models with an Informative Prior on the Steady State
by Mattias Villani
2005:181

Bank Mergers, Competition and Liquidity
by Elena Carletti, Philipp Hartmann and Giancarlo Spagnolo
2005:182

Testing Near-Rationality using Detailed Survey Data
by Michael F. Bryan and Stefan Palmqvist
2005:183

Exploring Interactions between Real Activity and the Financial Stance
by Tor Jacobson, Jesper Lindé and Kasper Roszbach
2005:184

Two-Sided Network Effects, Bank Interchange Fees, and the Allocation of Fixed Costs
by Mats A. Bergman
2005:185

Trade Deficits in the Baltic States: How Long Will the Party Last?
by Rudolfs Bems and Kristian Jönsson
2005:186

Real Exchange Rate and Consumption Fluctuations following Trade Liberalization
by Kristian Jönsson
2005:187

Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks
by Malin Adolfson, Michael K. Andersson, Jesper Lindé, Mattias Villani and Anders Vredin
2005:188

Bayesian Inference of General Linear Restrictions on the Cointegration Space
by Mattias Villani
2005:189

Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model
by Malin Adolfson, Stefan Laséen, Jesper Lindé and Mattias Villani
2005:190

Forecast Combination and Model Averaging using Predictive Measures
by Jana Eklund and Sune Karlsson
2005:191

Swedish Intervention and the Krona Float, 1993-2002
by Owen F. Humpage and Javiera Ragnartz
2006:192

A Simultaneous Model of the Swedish Krona, the US Dollar and the Euro
by Hans Lindblad and Peter Sellin
2006:193

Testing Theories of Job Creation: Does Supply Create Its Own Demand?
by Mikael Carlsson, Stefan Eriksson and Nils Gottfries
2006:194

Down or Out: Assessing The Welfare Costs of Household Investment Mistakes
by Laurent E. Calvet, John Y. Campbell and Paolo Sodini
2006:195

Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models
by Paolo Giordani and Robert Kohn
2006:196

Derivation and Estimation of a New Keynesian Phillips Curve in a Small Open Economy
by Karolina Holmlberg
2006:197

Technology Shocks and the Labour-Input Response: Evidence from Firm-Level Data
by Mikael Carlsson and Jon Smedsaas
2006:198

Monetary Policy and Staggered Wage Bargaining when Prices are Sticky
by Mikael Carlsson and Andreas Westermark
2006:199

The Swedish External Position and the Krona
by Philip R. Lane
2006:200
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Year:Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>The geography of asset holdings: Evidence from Sweden</td>
<td>Nicolas Coeurdacier and Philippe Martin</td>
<td>2007:202</td>
</tr>
<tr>
<td>Evaluating An Estimated New Keynesian Small Open Economy Model</td>
<td>Malin Adolphson, Stefan Laséen, Jesper Lindé and Mattias Villani</td>
<td>2007:203</td>
</tr>
<tr>
<td>The Use of Cash and the Size of the Shadow Economy in Sweden</td>
<td>Gabriela Guiibourg and Björn Segendorf</td>
<td>2007:204</td>
</tr>
<tr>
<td>Bank supervision Russian style: Evidence of conflicts between micro- and macro-prudential concerns</td>
<td>Sophie Claeyys and Koen Schoors</td>
<td>2007:205</td>
</tr>
<tr>
<td>Optimal Monetary Policy under Downward Nominal Wage Rigidity</td>
<td>Mikael Carlsson and Andreas Westermark</td>
<td>2007:206</td>
</tr>
<tr>
<td>Financial Structure, Managerial Compensation and Monitoring</td>
<td>Vittoria Cerasi and Sonja Daltung</td>
<td>2007:207</td>
</tr>
<tr>
<td>Financial Frictions, Investment and Tobin’s q</td>
<td>Guido Lorenzoni and Karl Walentin</td>
<td>2007:208</td>
</tr>
<tr>
<td>Sticky Information vs Sticky Prices: A Horse Race in a DSGE Framework</td>
<td>Mathias Trabandt</td>
<td>2007:209</td>
</tr>
<tr>
<td>Acquisition versus greenfield: The impact of the mode of foreign bank entry on information and bank lending rates</td>
<td>Sophie Claeyys and Christa Hainz</td>
<td>2007:210</td>
</tr>
<tr>
<td>Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures</td>
<td>Mattias Villani, Robert Kohn and Paolo Giordani</td>
<td>2007:211</td>
</tr>
<tr>
<td>The Costs of Paying – Private and Social Costs of Cash and Card</td>
<td>Mats Bergman, Gabriella Guiibourg and Björn Segendorf</td>
<td>2007:212</td>
</tr>
<tr>
<td>Using a New Open Economy Macroeconomics model to make real nominal exchange rate forecasts</td>
<td>Peter Sellin</td>
<td>2007:213</td>
</tr>
<tr>
<td>Introducing Financial Frictions and Unemployment into a Small Open Economy Model</td>
<td>Lawrence J. Christiano, Mathias Trabandt and Karl Walentin</td>
<td>2007:214</td>
</tr>
<tr>
<td>Earnings Inequality and the Equity Premium</td>
<td>Karl Walentin</td>
<td>2007:215</td>
</tr>
<tr>
<td>Bayesian forecast combination for VAR models</td>
<td>Michael K. Andersson and Sune Karlsson</td>
<td>2007:216</td>
</tr>
<tr>
<td>Do Central Banks React to House Prices?</td>
<td>Daria Finocchiaro and Virginia Queijo von Heideken</td>
<td>2007:217</td>
</tr>
<tr>
<td>The Riksbanks Forecasting Performance</td>
<td>Michael K. Andersson, Gustav Karlsson and Josef Svensson</td>
<td>2007:218</td>
</tr>
<tr>
<td>Macroeconomic Impact on Expected Default Frequency</td>
<td>Per Asberg and Hovick Shahnazarian</td>
<td>2008:219</td>
</tr>
<tr>
<td>Monetary Policy Regimes and the Volatility of Long-Term Interest Rates</td>
<td>Virginia Queijo von Heideken</td>
<td>2008:220</td>
</tr>
<tr>
<td>Governing the Governors: A Clinical Study of Central Banks</td>
<td>Lars Frisell, Kasper Roszbach and Giancarlo Spagnolo</td>
<td>2008:221</td>
</tr>
<tr>
<td>The Monetary Policy Decision-Making Process and the Term Structure of Interest Rates</td>
<td>Hans Dillén</td>
<td>2008:222</td>
</tr>
<tr>
<td>How Important are Financial Frictions in the U S and the Euro Area</td>
<td>Virginia Queijo von Heideken</td>
<td>2008:223</td>
</tr>
<tr>
<td>Block Kalman filtering for large-scale DSGE models</td>
<td>Ingvar Strid and Karl Walentin</td>
<td>2008:224</td>
</tr>
<tr>
<td>Optimal Monetary Policy in an Operational Medium-Sized DSGE Model</td>
<td>Malin Adolphson, Stefan Laséen, Jesper Lindé and Lars E. O. Svensson</td>
<td>2008:225</td>
</tr>
<tr>
<td>Firm Default and Aggregate Fluctuations</td>
<td>Tor Jacobson, Rikard Kindell, Jesper Lindé and Kasper Roszbach</td>
<td>2008:226</td>
</tr>
</tbody>
</table>
Wage Adjustment and Productivity Shocks
by Mikael Carlsson, Julián Messina and Oskar Nordström Skans
2011:253

Stylized (Arte) Facts on Sectoral Inflation
by Ferre De Graeve and Karl Walentin
2011:254

Hedging Labor Income Risk
by Sebastien Betermier, Thomas Jansson, Christine A. Parlour and Johan Walden
2011:255

Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios
by Paolo Giordani, Tor Jacobson, Erik von Schedvin and Mattias Villani
2011:256

Collateralization, Bank Loan Rates and Monitoring: Evidence from a Natural Experiment
by Geraldo Cerqueiro, Steven Ongena and Kasper Roszbach
2012:257

On the Non-Exclusivity of Loan Contracts: An Empirical Investigation
by Hans Degryse, Vasso Ioannidou and Erik von Schedvin
2012:258

Labor-Market Frictions and Optimal Inflation
by Mikael Carlsson and Andreas Westermark
2012:259

Output Gaps and Robust Monetary Policy Rules
by Roberto M. Billi
2012:260

The Information Content of Central Bank Minutes
by Mikael Apel and Marianna Blix Grimaldi
2012:261

The Cost of Consumer Payments in Sweden
by Björn Segendorf and Thomas Jansson
2012:262

Trade Credit and the Propagation of Corporate Failure: An Empirical Analysis
by Tor Jacobson and Erik von Schedvin
2012:263

Structural and Cyclical Forces in the Labor Market During the Great Recession: Cross-Country Evidence
by Luca Sala, Ulf Söderström and Antonella Trigari
2012:264

Pension Wealth and Household Savings in Europe: Evidence from SHARELIFE
by Rob Alessie, Viola Angelini and Peter van Santen
2013:265

Long-Term Relationship Bargaining
by Andreas Westermark
2013:266

Using Financial Markets To Estimate the Macro Effects of Monetary Policy: An Impact-Identified FAVAR*
by Stefan Pitschner
2013:267

DYNAMIC MIXTURE-OF-EXPERTS MODELS FOR LONGITUDINAL AND DISCRETE-TIME SURVIVAL DATA
by Matias Quiroz and Mattias Villani
2013:268

Conditional euro area sovereign default risk
by André Lucas, Bernd Schwaab and Xin Zhang
2013:269

Nominal GDP Targeting and the Zero Lower Bound: Should We Abandon Inflation Targeting?*
by Roberto M. Billi
2013:270

Un-truncating VARs*
by Ferre De Graeve and Andreas Westermark
2013:271

Housing Choices and Labor Income Risk
by Thomas Jansson
2013:272

Identifying Fiscal Inflation*
by Ferre De Graeve and Virginia Quejo von Heideken
2013:273

On the Redistributive Effects of Inflation: an International Perspective*
by Paola Boel
2013:274

Business Cycle Implications of Mortgage Spreads*
by Karl Walentin
2013:275

Approximate dynamic programming with post-decision states as a solution method for dynamic economic models
by Isaiah Hull
2013:276

A detrimental feedback loop: deleveraging and adverse selection
by Christoph Bertsch
2013:277

Distortionary Fiscal Policy and Monetary Policy Goals
by Klaus Adam and Roberto M. Billi
2013:278

Predicting the Spread of Financial Innovations: An Epidemiological Approach
by Isaiah Hull
2013:279
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm-Level Evidence of Shifts in the Supply of Credit</td>
<td>Karolina Holmberg</td>
<td>2013</td>
<td>280</td>
</tr>
<tr>
<td>Lines of Credit and Investment: Firm-Level Evidence of Real Effects of the Financial Crisis</td>
<td>Karolina Holmberg</td>
<td>2013</td>
<td>281</td>
</tr>
<tr>
<td>A wake-up call: information contagion and strategic uncertainty</td>
<td>Toni Ahnert and Christoph Bertsch</td>
<td></td>
<td>282</td>
</tr>
<tr>
<td>Debt Dynamics and Monetary Policy: A Note</td>
<td>Stefan Laséen and Ingvar Strid</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>Optimal taxation with home production</td>
<td>Conny Olovsson</td>
<td>2014</td>
<td>284</td>
</tr>
<tr>
<td>How Subprime Borrowers and Mortgage Brokers Shared the Piecial Behavior</td>
<td>Antje Berndt, Burton Hollifield and Patrik Sandås</td>
<td>2014</td>
<td>286</td>
</tr>
</tbody>
</table>