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1 Introduction

When a new product is introduced to financial markets, individual and institutional

investors do not have access to a historical series of returns from which they can infer the

properties of that security. Instead, they must rely on the analysis of ratings agencies

and on the information revealed through the decisions of the individual and institutional

investors holding it. This cross-section of information about institutional and individual

holdings is often incomplete; and will only slowly be revealed through a search process,

since centralized information about such a security will usually emerge with a long lag.

Thus, investors and institutions must make a decision about whether or not to hold (or

issue) the security while information remains imperfect.

The 2007-2010 financial crisis provides a clear example of this process. In the years

preceding it, a broad set of financial innovations were introduced and spread throughout

the financial system. Commercial banks offered new mortgage products to less credit-

worthy households; investment banks followed by constructing derivative products from

these mortgages; and insurance companies enabled the expansion of these activities by

underwriting new contracts for the derivative products. Although no historical informa-

tion was available about the performance of such financial innovations, institutions began

to trade them, basing decisions primarily on the judgement of ratings agencies and on

the observation that early adopters were achieving higher returns for a given risk-rating.

While these innovations offered what appeared to be improvements in efficiency (i.e. the

completion of markets along some dimension), they introduced fragilities into the finan-

cial system that were only exposed after a large, negative shock to house prices. If the

adoption of such financial innovations had been slower or if the shock had arrived before

they became influential within the financial system, it is not clear that the crisis would

have been severe and systemic.

Regulators often struggle to prevent such crises because it is difficult to predict which

financial products will become systemically important. Thus, mortgage-backed securities,

credit default swaps, and the next innovation may fully infiltrate the financial system

before a regulator identifies it as important. In light of the 2007-2010 financial crisis,

Spence (2008) and others have argued that an “early warning system” is needed to

identify risks to the financial system. In this paper, I propose such a system: an estimable

statistic that can be used to monitor a wide range of financial securities inexpensively
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and determine whether they are likely to become systemically influential or influential

within their class of assets.

The model I propose is based on more than 100 years of work on early warning

systems for epidemics; and integrates fairly recent work in mathematical epidemiology.

The system revolves around the use of a statistic that is referred to as R0–or the basic

reproductive ratio–and the associated concept of herd immunity. In the context of an

infectious disease, R0 can be interpreted as the average number of secondary infections

that arise from a primary infection. R0 will tend to be high when individuals encounter

each other frequently, when the disease is easily transmitted, and when the recovery rate

is slow. All of these factors will result in more contacts between “infected” individuals

and “susceptible” individuals that result in transmission. Successful transmissions will

increase the number of infecteds; and will therefore increase the speed of transmission to

the remaining susceptibles.

With respect to epidemiology, estimating R0 for different types of infectious diseases,

in different regions, and on the most recent data plays an important part in effective

disease control.1 A high estimate of R0 in a particular region may suggest that an outbreak

will occur if the disease is introduced; and that control measures, such as vaccination or

a public health initiative, need to be implemented immediately. Furthermore, R0 is

associated with the concept of “herd immunity,” which is the set of conditions under

which an infectious disease will quickly die out if introduced. This is typically satisfied

when R0 is low or when a sufficiently large mass of susceptibles have been vaccinated. In

this paper, I will develop both of these concepts in the context of financial innovation;

and will demonstrate how each can naturally be mapped to financial data. In addition to

introducing R0 and herd immunity as early warning mechanisms for influential financial

innovations, I also introduce the class of multi-host epidemiological models–and their

associated tools–to economics.

It is important to note that the method developed in this paper will not predict the

terminal state of a systemically important financial innovation. Rather, the method will

simply predict that an innovation will become important within the financial system or

its own asset class, but will not make a distinction between importance driven by a bubble

and importance driven by a genuine completion of financial markets. The purpose of this

1For a recent example, see Mukandavire, Smith, and Morris (2013), who use this approach to analyze
the recent Cholera outbreak in Haiti.
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approach is to identify potentially influential securities inexpensively, so that regulators

can subject them to a greater degree of scrutiny.

This paper will proceed as follows: in the following subsection, I will provide a brief

review of the related literature. In Section 2, I will setup a one-host model of financial

innovation; and explain its relationship to the SIR and SIS models from epidemiology. I

will further describe how R0 and the associated concept of herd immunity are defined in

the model. In Section 3, I will construct a model of financial innovation that incorporates

the two-host SIR model, where banks and their creditors are the two types of host. In

Section 4, I will perform comparative statistics on the version of R0 generated by the

model to identify the conditions under which herd immunity is violated when certain

parameter values are restricted. In Section 5, I will discuss two methods that can be

used to recover R0 and its standard error; and will test the methods by performing three

empirical applications. And finally, in Section 6, I will conclude.

1.1 Related Literature

This paper is not the first to use a model of infectious disease to describe the flow

of information across institutions or investors. Carroll (2003) is perhaps the best known

paper that imports work from epidemiology to economics. It uses the common source

model to describe the transmission of inflation expectations form professional forecasters

to households. It finds that the model accurately captures the dynamics of inflation and

unemployment expectations. Several related works, including Sommer and Carroll (2004),

and Pfajfar and Santoro (2012) also use epidemiological modeling–rather than rational

expectations–to study the way in which households from expectations about inflation.

Closer to my own work, Dong, Hong, and Ungureanu (2011) construct a theoretical model

in which price-volume dynamics depend explicitly on the diffusion of trader opinions

about securities within an epidemiological framework. They show that this approach is

useful for understanding the response of investors to news.

Another related literature models the spread of information across investors and insti-

tutions, focusing primarily on empirical relationships. Shive (2010) studies social trading

using data on the 20 most active stocks in Finland over a period of nine years. She

includes in her regression a measure of social contagion that is analogous to a common

component of epidemiological models: the interaction of the mass of susceptibles (i.e. the
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fraction of investors not holding the stock) and the mass of infecteds (i.e. the fraction

of investors holding the stock). Note that this measure of contagion will be maximized

when the mass of susceptibles equals the mass of infecteds. That is, if few people are able

to invest in the stock or if few people are currently holding the stock (and, presumably,

transmitting information it), then the transmission rate will be low and mass of investors

holding it will not rise. Controlling for known determinants of trade, Shive (2010) finds

that the coefficient on this term is statistically significant; and plays a substantial role in

motivating trade.

Other papers in this literature do not focus explicitly on epidemiological models, but

describe similar channels for correlated trade among investors and institutions. Feng and

Seasholes (2004), and Hong, Kubik, and Stein (2005) document the role that geography

plays in influencing the portfolios that individual and institutional investors hold. Addi-

tionally, Antweiler and Frank (2004) find that discussion on Internet stock message boards

can predict market volatility, suggesting that social interaction may generate correlated

trade. Other papers, including Shiller, Fischer, and Friedman (1984), Hong, Kubik, and

Stein (2004), and Ivkovic and Weisbrenner (2007), and Shiller and Pound (1989) also

document the influence of social interaction on trade.

Finally, two papers motivate the theoretical treatment of financial innovations in

my model. First, Kaustia and Knupfer (2012) study the peer-influenced adoption of

financial innovations. They find that individuals who experience positive stock returns

will propagate information about those returns to local peers, who then purchase the

stock. This corresponds to the “susceptible” investors (i.e. investors who have not held

a financial innovation yet) in the model in this paper, who become “infected” (i.e. hold

the innovation) after encountering another infected. Persons and Warther (1997) provide

further motivation for this approach. In their model, financial innovation is a process

through which the value of a security is only realized after it is adopted and returns are

generated. Similarly, in the model in this paper, a financial innovation’s value is revealed

through realizations from the returns distribution.
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2 A One-Host Model of Financial Innovation

It will be instructive to briefly describe the SIR model, and its close relative, the SIS

model before I describe the model of financial innovation. The name of the model (SIR)

refers to the three states an individual may enter over the course of an infectious disease:

susceptible, infected, and recovered (SIR). Individuals in the first category (S) do not

have the disease, but may contract it after encountering an infected person. Individuals

in the second category (I) are currently infected by the disease; and may spread it to

susceptibles upon contact. Individuals in the third category (R) have recovered from the

disease, rendering them immune. In contrast to the SIR model, the SIS model is used

when individuals do not gain immunity, but instead return to the susceptibles group after

recovery.

The SIR and SIS model provide several useful tools for analyzing the spread of financial

innovations. First, they are designed to predict convergence to one of two types of

equilibria after a disease has been introduced: a “disease free equilibrium” (DFE) and

an “endemic equilibrium” (EE), which will be discussed in greater detail later. Second,

they offer useful predictive tools that map to the data. For our purposes, we will focus

on two of these tools: R0 and herd immunity, which will be identical for the SIR and

SIS models. And finally, they are flexible enough to permit a wide variety of interactions

between different categories of agents in a model; and, thus, may have useful modeling

applications within economics, but outside of the scope of this paper.

Moving forward, we will retain the tools and naming conventions of the SIR model,

but will work within a financial context. I will start by constructing a simple model

of financial innovation that follows the basic structure of the one-host SIR model from

epidemiology. I will consider a conceptual setting that is similar to Anjan (2012), where

there is only is only one conventional security is available initially. There is a continuum

of banks, and each initially has an endowment, D, of debt-financed funds (i.e. deposits,

commercial paper, etc.) and capital, τD. The capital must be retained in order to avoid

intervention from the regulator. Initially, the debt-financed funds are invested in the

conventional security initially. The unconventional asset is introduced when a random

financial institution innovates by creating the security. Other institutions only also cre-

ate the security after they have discovered its existence. This new security generates a

stochastic return, b(t, i), that is drawn from a common, time-varying distribution:
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F (b̄; t) = pr{b(t, i) ≤ b̄} (1)

I will assume that F has a finite support, but will permit the bounds to vary over time

in the most general case:

b(t, i) ∈ [bL(t), bH(t)] (2)

No further assumptions will be imposed on F. Additionally, note that everything we have

assumed so far is intuitively plausible and unrestrictive. Even in the most extreme cases,

a bank cannot lose more than it invested (i.e. bL(t) ≥ 0) and cannot receive an infinite

return (i.e. bH(t) <∞).

Once the unconventional asset is introduced, it is assumed that non-innovating banks

will encounter it through a search process. In each period, a bank searches over the

portfolios of q other random banks. If one bank encounters another with the uncon-

ventional asset during a search, it will believe that the security provides a fundamental

improvement over the conventional options (and will adopt it) with probability c. Thus,

the joint probability of encountering and adopting an unconventional asset is given by

β = qc. Note that this specification reproduces the effect in Gale (1992): if finding and

adopting the unconventional security is a long and costly process (i.e. q is very low), then

the unconventional security will not spread and the conventional security will become the

standard asset (as we will see later in this section).

It will further be assumed that some mass of financial intermediaries, g, enters the

market in each period; and some other mass of firms, e, exits the model for reasons

unrelated to he unconventional security. We will assume that g=e or g=e=0 for suffi-

ciently small time horizons to simplify he model. It will further be assumed that a firm

will stop holding the unconventional security permanently if it performs worse than the

conventional security.

With the above assumptions in place, we may now write down the three flow equations

that characterize a typical SIR model. The first equation describes the net flow of banks

into the category of “conventional asset holder.” I will retain the notation of the SIR

model and denote the mass of these institutions as S (i.e. susceptible). Here, the term

“susceptible” indicates that a bank is not currently holding the financial innovation, but

may adopt it if encountered on a search:
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∂S

∂t
= g − βSI − eS (3)

This equation states that the net flow into the conventional security group is given by the

net mass of entries less the mass of banks that switch to the unconventional asset. There

are several things to note about the above specification. First, the net entries component

of the equation relies on the assumption that all entering firms initially hold only the

conventional asset. This is why the conventional asset holding group grows by g, rather

than eS. And second, the population is assumed to be well-mixed: it is just as likely that

firm A will search firm B’s portfolio as it is that firm A will search firm C’s portfolio. By

the Law of Large Numbers (LLN), the mass of banks holding conventional assets that

will encounter banks holding unconventional asset is given by SI for a single round of

searches. Furthermore, the mass of banks that will switch from the conventional asset

to the unconventional asset is the total number of encounters per search, multiplied by

the number of searches, multiplied by the conditional probability of switching, given an

encounter: βIS.

Next, we consider the equation for the flow of unconventional security holding banks,

whose mass we denote with I:

∂I

∂t
= βSI − (γ +m+ e)I (4)

The first term, βSI, is the mass of banks flowing out of the conventional securities group

that have opted to hold the unconventional asset. The second term, (γ+m+e)I describes

the flow out of the unconventional asset group, which can be caused by three different

events. First, a bank may exit the industry for reasons unrelated to the unconventional

asset, e. Second, exit may be forced by government intervention if a bank violates the

capital holding requirement. This will occur with probability m and is triggered when an

institution holds the unconventional asset and realizes a loss that exceeds τD. Finally, if

a bank realizes a return that is lower than what can be obtained from the conventional

asset, then the institution will permanently switch from the unconventional asset back

to the conventional asset. This occurs with probability γ.2

Finally, we write down the flow equation for the group that experienced a loss from the

2In the SIR model, this switch is permanent. In the SIS model, it is temporary.
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unconventional asset and switched back to the conventional asset. Using the convention

from the SIR model, we will use R to denote this “recovered” group’s mass:

∂R

∂t
= γI − eR (5)

The above equation states that the net mass of banks “recovering” from the unconven-

tional asset is given by the difference between, γI, the mass of banks making a permanent

switch from the unconventional security to the conventional security, and eR, the mass

of banks exiting the model from the recovered category.

Finally, we will specify the functional forms for m and γ, which come directly from

the model. We will start with m, which is the probability that an institution experiences

a loss that exceeds their required conventional asset holdings. This can alternatively be

interpreted as the probability that an institution will not be able to repay its debtors,

even after it exhausts the buffer stock of capital it was required to hold. The condition

below states that the loss must exceed the required capital holdings:

m = pr{(1− b(t, i))D > τD} (6)

→ m = pr{(1− τ) > b(t, i)} (7)

→ m = F (1− τ ; t) (8)

Consistent with intuition, this specification for m implies that the bank failure rate is

decreasing in the conventional asset-holding regulatory requirement:

∂m

∂τ
= −F ′(1− τ ; t) (9)

Since F is a cumulative distribution function, −F ′ will always be negative. Next, we

consider the specification for γ, which is also implied by the model. The expression for γ

gives us the probability that an institution will have a sufficient buffer stock of safe assets

to repay debtors, but that the repayment process will cause them to violate the capital

holding requirement. This is given by the probability of a loss, less the probability of a
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loss that is larger than the buffer stock of capital:

γ = F (1; t)−mt (10)

→ γ = F (1; t)− F (1− τ ; t) (11)

Note that the construction of γ implies that the bank recovery rate is increasing in τ :

∂γ

∂τ
= F ′(1− τ ; t) > 0 (12)

That is, an increase in capital holdings will increase the rate at which financial institutions

switch back to the conventional asset permanently. This is because a higher value of τ

will prevent banks from exhausting all capital after realizing a very unfavorable return.

As will be shown later, a high regulatory requirement to hold safe assets will tend to

prevent unconventional assets from gaining share within their asset class.

Note that we can now rewrite the net flow equation for unconventional security holders

(“infecteds”):
∂I

∂t
= βSI − (F (1; t) + e)I (13)

We will now consider the threshold at which the unconventional asset ceases to grow as a

share of its asset class. In particular, the mass of unconventional asset holding banks must

remain constant. To simplify things further, we will assume that the returns distribution

for the unconventional security, F, is fixed over some short time horizon, which enables us

to treat γ and m as constants. We may think of this as an initial stable period of returns

after an innovation has been introduced and no adverse shocks have been realized.

0 =
∂I

∂t
= βSI − (γ +m+ e)I (14)

→ 1

S
=

β

γ +m+ e
(15)

In the epidemiology literature, the right hand side of this threshold condition is referred

to as R0 or the basic reproductive number (BRN). This statistic provides us with the ratio

of the entry rate to the exit rate in the unconventional securities group. In this context,

R0 can be interpreted as the average number of conventional asset holding banks that are
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converted to unconventional asset holders when one bank adopts the unconventional asset.

Note that high values of γ, m, and e will lower R0 by reducing the pool of unconventional

asset holders, subsequently making it more difficult for conventional asset holders to

encounter the financial innovation. Similarly, if the search process is slow or costly (i.e. if q

is low) or if a particular financial innovation does not appear to be a credible improvement

over what is already available (i.e. if c is low), then R0 will tend to be low.

Next, we will characterize the existence and stability of equilibria in the model. In

particular, the one-host class of SIR models has two types of equilibria: an “endemic”

equilibrium (EE) and a “disease free” equilibrium (DFE). In a DFE, the infectious disease

has disappeared and all recovereds have exited the model, leaving the entire population

to accumulate in the “susceptibles” category. In the EE, the disease persists in the

population.

We start by noting that an equilibrium is defined by the absence of movement across

categories:

0 = e− βI∗S∗ − eS∗ (16)

0 = βI∗S∗ − (γ +m+ e)I∗ (17)

0 = γI∗ − eR∗ (18)

In the above equations, the superscript * indicates a steady state value. Note that

equation (17) can be factored as follows:

0 = I∗(βS∗ − (γ +m+ e)) (19)

This has two solutions: I∗ = 0 and S∗ = γ+m+e
β

= 1
R0

. The first solution is the DFE,

since no agents hold the unconventional asset in the steady state. When we plug I∗ = 0

into equation (16), we find that S∗ = 1. Since S + I + R = 1, we know that R∗ = 0.

Thus, the DFE may be characterized as follows:

(S∗, I∗, R∗) = (1, 0, 0) (20)

Next, we consider the second solution to equation (17): S∗ = 1
R0

. If we plug this into

equation (16), we get that I∗ = e
β
(R0 − 1). Finally, solving for R∗, we find that R∗ =

γ
β
(R0 − 1). This gives us the following EE:
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(S∗, I∗, R∗) =

(
1

R0

,
e

β
(R0 − 1),

γ

β
(R0 − 1)

)
(21)

A well-known result in the epidemiology literature is that the EE is stable if R0 > 1 and

the DFE is stable otherwise.3 In our case, this suggests that, if R0 > 1, and a small

amount of the unconventional asset is introduced, then we will move to the endemic

equilibrium, where the unconventional asset grows in importance and remains in use in

the steady state.

In the case where there is no recovered group (the SIS model), R0 will be identical,

since equation (4) is unchanged; however, the size of the susceptible group in in the EE

will decline:

(S∗, I∗) =

(
1

R0

,
(R0 − 1)

β − γR0

)
(22)

In general, “herd immunity” is said to hold if the system returns to the DFE after a shock

introduces some mass of the unconventional asset. If, instead, the system moves towards

an EE, then herd immunity is violated. Within epidemiology, herd immunity is achieved

by immunizing a fraction of the population of susceptibles, P, and thereby reducing the

number of interactions that can result in infection. Here, it is also possible to achieve

herd immunity by changing R0 through a regulatory intervention.

Figures I and II show the SIS model’s dynamics for two cases: 1) R0 > 1 (EE) and

2) R0 < 1 (DFE), respectively. In Figure I, a large shock introduces the innovation to

20% of banks, but it quickly disappears, as the system returns to the DFE. In Figure

II, a random shock introduces the financial innovation to 1% of banks. It then spreads

quickly to susceptible banks, moving the system towards the EE.

One important thing to note is that R0 may vary over time in either the SIR or SIS

model:

R0 =
β

γ +m+ e
=

β

F (1; t) + e
(23)

In particular, consider the case where the estimate of R0 is less than 1 initially. Using the

method outlined above, we would predict that the unconventional asset will not become

systemically important or important within its asset class. However, if we have a reason

3This can be demonstrated by constructing the Jacobian and checking the eigenvalues. See Keeling
and Rohani (2008) for a short proof.
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to believe that losses will become less likely in the near future, then F (1; t) will fall,

increasing R0 and possibly propelling financial markets toward an endemic equilibria,

where the unconventional asset becomes influential and is held in the steady state.

3 A Two-Host SIR Model of Financial Epidemics

I will now construct a general framework for financial innovation using a 2-host version

of the SIR model. From this, I will show how R0 is derived for the 2-host version–and,

relatedly, will demonstrate the conditions under which herd immunity holds. Finally, I

will explain how to construct the basic reproductive number for the general multi-host

case. All of this will be done through the framework in McCormack (2007). To this

author’s knowledge, this has not yet been done in economics.

The model describes the interactions between two categories of financial agents: banks

(B) and their creditors (C).4 Banks play two roles in the model: first, they generate fund-

ing through debt (e.g. by accepting deposits, issuing commercial paper, etc.); and second,

they use the funds generated to purchase securities, which may be either conventional or

unconventional. Creditors enter the model with an endowment of cash, D, which they

initially place in a random bank. All banks invest exclusively in a conventional asset at

the start of the model; and this asset generates a normalized return of 1 with certainty.

As with the one-host version, the unconventional asset is introduced at a random bank as

a financial innovation; and generates a return that is drawn from a common, time-varying

distribution with properties identical to the ones described in the previous section. Banks

are assumed to generate zero profits. As with the one-host case, banks are endowed with

τD in capital; and are required by the regulator to maintain these holdings.

The transmission mechanism for the unconventional asset (after it is introduced)

is similar to the one-host case, but with more sources. Banks, for example, may still

encounter the unconventional asset by searching the portfolios of other banks. As with the

one-host case, the product of the conditional probability of unconventional asset adoption

and the frequency of search yields the interbank transmission rate, βB,B. Notice that the

subscripting convention (B,B) indicates that the transmission is from a bank and to a

4Here, I use “bank” and “creditor” to describe the model’s categories of agent, but the terms are
used loosely. In the applications I will describe later, the creditor category may refer to a wide variety
of individuals and institutions, including depositors and commercial paper buyers. Similarly, the term
bank refers to non-depository institutions in some applications.

15



bank. In addition to this, banks will now also be persuaded to hold the unconventional

asset by interactions with prospective creditors. Creditors who currently hold accounts

at banks with unconventional assets will continue to search for better returns. In the

process, they will encounter banks holding conventional assets. With some probability,

the bank will learn about the value of the unconventional asset when it is rejected by

a creditor who already has access to it. The product of the frequency of interactions

with creditors and the conditional probability of unconventional asset adoption (given an

interaction with a creditor) is embodied by the creditor-to-bank transmission rate: βC,B.

As in the one-host model, I assume perfect mixing within the banking sector. Here, I

extend that assumption to the group of creditors and across bank-creditor relationships.

Additionally, I assume that banks enter the industry in the conventional category at

a fixed rate; and also exit the industry from all categories at a fixed rate for reasons

unrelated to the unconventional asset. Together, these assumptions yield the first of six

equations that characterize the model:

∂SB
∂t

= gB − βB,BIBSB − βC,BICSB − eBSB (24)

Note that eB is the growth rate of banks and eB is the mortality rate for reasons other

than exposure to the infectious disease.

The next equation describes the net flow of creditors into banks that hold the conven-

tional asset. Here, it is assumed that creditors may be persuaded to switch to an uncon-

ventional asset holding bank after encountering either an unconventional asset holding

bank (βB,C) or an unconventional asset holding creditor (βC,C):

∂SC
∂t

= gD − βC,CICSC − βB,CIBSC − eBSC (25)

The next two equations describe the net flow of banks and creditors into the unconven-

tional asset holding category. We know from the first two equations that there will be

an inflow from the conventional asset holding category. Additionally, there will be an

outflow that is similar to the one described in the one-host version of the model. For

banks, this consists of institutions that realize a loss on unconventional assets, including

losses that exceed capital holdings, γB, and those that do not, mB. Creditors are assumed

to switch back to the conventional asset after realizing a loss. This will occur whenever
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their debtor bank realizes a loss that exceeds its capital holdings (i.e. at rate γC). It is

also assumed that creditors may be bankrupted by a loss; however, the boundedness of

losses and the regulatory requirements will result in mC = 0.

∂IB
∂t

= βB,BIBSB − βC,BICSB − (γB +mB + eB)IB (26)

∂IC
∂t

= βC,CICSC − βB,CIBSC − (γC +mC + eC)IC (27)

Finally, the equations that describe the net flow of banks and creditors into the recovered

category are given below:

∂RB

∂t
= γBIB − eBRB (28)

∂RC

∂t
= γCIC − eCRC (29)

Note that the first component of the net flow is the inflow from the unconventional asset

holding category. The outflow consists of banks and creditors exiting the industry for

reasons unrelated to the unconventional asset. Alternatively, in the SIS case, the inflow

is redirected to the susceptibles category.

Figure III shows the basic structure of the model described in this section. Individuals

in each group may move from susceptible (conventional asset-holding) to infected (un-

conventional) and from infected to recovered (permanently conventional), as indicated

by the solid arrows. Dotted arrows indicate that the mass of the unconventional asset

group impacts the flows of individuals between groups. In particular, as the mass of un-

conventional asset holding banks grow, conventional asset holding banks and creditors at

conventional asset holding banks become more likely to encounter unconventional asset

holding banks. As a result, the flows of banks and creditors from the conventional to the

unconventional category increase.

I have now specified the full, six-equation version of the model. Next, I will derive

γC , γB, mC , and mB. I will start with the unconventional asset-induced exit rates,

mB and mC . From the model, we know that all investors start at t=0 with D units

of currency, which are immediately deposited in a random, conventional asset holding

bank. Furthermore, banks are assumed to have an endowment, τD, of capital, which the

regulator requires them to hold. Applying the Law of Large Numbers (LLN) yields the
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following bankruptcy rate:

mB = pr{(1− b(t))ICD > τIBD} = pr{1− b(t) > τIB/IC} (30)

= pr{b(t) < (IC − τIB)/IC} (31)

= F ((IC − τIB)/IC ; t) (32)

The interpretation of equation (30) is simple: if an intermediary invests in an unconven-

tional asset, and that asset generates a return lower than the principal invested, then the

bank will have to use its capital to repay investors. If the capital is not sufficient to repay

principal, then the bank will exit after dividing all remaining funds among creditors.5

As with the one-host model, the unconventional asset-induced exit rate is decreasing

in τ , the required fraction of capital holdings; however, in the two-host version of the

model, it also depends explicitly on the mass of creditors in the unconventional asset

holding banks and the mass of unconventional asset holding banks:

∂mB

∂τ
= −IB

IC
F ′((IC − τIB)/IC ; t) < 0 (33)

Similarly, notice that the bankruptcy rate is increasing in IC and decreasing in IB:

∂mB

∂IC
=

τIB
(IC)2

F ′((IC − τIB)/IC ; t) > 0 (34)

∂mB

∂IB
= − τ

IC
F ′((IC − τIB)/IC ; t) < 0 (35)

One feature of this setup is that bankruptcy rates depend on bank leverage. As the mass

of creditors lending to unconventional asset banks grows relative to the capital holdings

in these institutions (i.e. as a rough measure of leverage increases), the bankruptcy rate

accelerates.

I will now place structure on the rate at which unconventional asset banks switch back

to purchasing conventional assets. I assume that this happens when such a bank expe-

riences a loss that reduces its capital holdings, but that loss isn’t sufficiently large to

trigger bankruptcy. As a result of the intermediary losing some of its initial capital hold-

5Of course, this is a strong condition for bankruptcy. Bank may often choose to initiate a strategic
bankruptcy, even if their capital holdings are not completely depleted; however, I will maintain this
assumption in the model for tractability.
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ings, it will choose not to continue purchasing unconventional assets6–and instead dump

remaining principal in conventional assets.

Next, the recovery rate for the bank is computed. Two conditions must be satisfied

in order for a bank to move from the conventional (S) to unconventional (I) asset holding

group: 1) the bank must experience a loss–that is, b(t, i) < 1; and 2) the loss must be

smaller than the amount of capital the bank holds: (1 − b(t, i))DIC < τDIB. Again,

taking advantage of the LLN and the within period distributional assumptions, we get

the following:

γB = F (1; t)−mB (36)

→ γB = F (1; t)− F ((IC − τIB)/IC ; t) (37)

Notice that the recovery rate for banks is increasing in τ :

∂γB
∂τ

=
IB
IC
F ′((IC − τIB)/IC ; t) > 0 (38)

This is because more banks will recover–rather than exit–after realizing a large, negative

shock. Furthermore, notice that ∂γB
∂τ

+ ∂mB

∂τ
+ ∂e

∂τ
= 0. Thus, an increase in required capital

holdings will have no impact on the rate at which banks flow out of the unconventional

asset holder category. Instead, it will affect the composition of the outflow.

Similarly, notice that the recovery rate is increasing in IC and decreasing in IB:

∂γB
∂IC

= − IB
(IC)2

F ′((IC − τIB)/IC ; t) > 0 (39)

∂γB
∂IB

=
τ

IC
F ′((IC − τIB)/IC ; t) < 0 (40)

Finally, the rate at which creditors switch from unconventional assets to conventional as-

sets (i.e. the creditor recovery rate) is computed. Recall that a bank will repay principal

until it has exhausted all of its capital. This means that an investor will not incur a loss

unless the financial institution exits the model. Thus, the fraction of investors who hold

unconventional assets and then “recover,” switching back to conventional assets perma-

nently, is equal to the fraction that becomes bankrupt. Recall that this was computed

earlier as the unconventional asset-induced exit rate for banks:

6Note that this “recovery” could be temporary–or it could allow them to issue conventional assets
again with the possibility of moving back to unconventional ones.
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γC = F ((ICt − τIB)/ICt; t) (41)

Taken together, equations (24)-(29), (32), (36), (38), and (41) specify a complete, two-

host SIR model of financial bubbles. Next, I will compute the basic reproduction number

(BRN) for the two-host case.

Following McCormack (2007), R0 (the BRN) can be computed from the spectral ra-

dius of the nxn matrix, Mn, where Mn = (Rj,k)
n
j,k=1. Each Rj,k in the matrix is given as

follows:

Rj,k =
Kjβj,k

Kk(γk +mk + ek)
(42)

Here, Kj and Kk are the maximum sizes of groups j and k. In this paper, the populations

of bankers and creditors are normalized to 1, so these terms drop out of the equation.

However, even without this normalization, the terms will cancel out in the two-host case

when R0 is computed.

In the two-host case considered in this paper, the M2 matrix is given as follows:

M2 =

 RB,B RB,C

RC,B RC,C


Thus, the BRN is computed as follows:

R0 =
RB,B + RC,C +

√
(RB,B − RC,C)2 + 4RB,CRC,B

2
(43)

Rewriting this expression in terms of the parameters and variables in the two-host model

yields the following:

R0 =
1

2

√(
βB,B

γB +mB + eB
− βC,C
γC +mC + eC

)2

+
4βB,CβC,B

(γC +mC + eC)(γB +mB + eB)

+
1

2

(
βB,B

γB +mB + eB
+

βC,C
γC +mC + eC

) (44)

Finally, we use McCormack (2007) to define the condition for herd immunity without
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explicitly using the mass of conventional asset holding banks or creditors. Here, we

exploit the fact that R0 is the average number of unconventional asset transmissions

that arise from an initial bank or creditor holding the unconventional asset. This means

that the unconventional asset will–become influential, rather than remaining small or

disappearing–if the following condition holds:

R0 > 1 (45)

That is, if each bank (or creditor) that adopts the unconventional asset spreads the uncon-

ventional asset to more than one bank (or creditor) on average, then the unconventional

asset groups will grow when the financial innovation is introduced, moving the system

towards an “endemic equilibrium.” Otherwise, the financial innovation will disappear or

remain inconsequential. See Diekmann and Heesterbeek (1990), van den Driessche and

Watmough (2002), and McCormack (2007) for formal proofs of the existence and stability

of the DFE and EE in the two-host case.

4 Comparative Statics

Next, we will perform comparative statistics to derive properties that will simplify

estimation. We will start by recalling that herd immunity requires the following condition

on R0 to hold:

R0 =
1

2

√(
βB,B

γB +mB + eB
− βC,C
γC +mC + eC

)2

+
4βB,CβC,B

(γC +mC + eC)(γB +mB + eB)

+
1

2

(
βB,B

γB +mB + eB
+

βC,C
γC +mC + eC

)
< 1

(46)

Furthermore, note that herd immunity in this context refers to a state in which the

unconventional asset will not spread to the population of banks and creditors (i.e. the

system will not move to the EE).

Now, assume that the time horizon under consideration is sufficiently short and exit

does not occur on any significant scale: eB = eC = 0. That is, creditors and banks

exit for reasons other than receiving poor returns to the unconventional asset.7 Addi-

7This is certainly not an accurate assumption; however, in more rigorous applications, this rate can
be calibrated to match real bankruptcy rates.
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tionally, recall that mC = 0–that is, investors are assumed not to exit as a result of the

unconventional asset. The condition on R0 now is now simplified to the following:

2 >

√(
βB,B

γB +mB

− βC,C
γC

)2

+
4βB,CβC,B

(γB +mB)γC
+

(
βB,B

γB +mB

+
βC,C
γC

)
(47)

Using parameter restrictions and simple algebraic manipulations, it is now possible to

determine the conditions under which markets will be susceptible to the spread of an

unconventional asset. For expository purposes, I will relegate most of the algebra to the

appendix and focus primarily on the results.

4.1 Cross-Transmission Only

If it is assumed that cross-transmission (i.e. creditor-to-bank and bank-to-creditor) is the

only channel for persuading intermediaries and investors to switch to the unconventional

asset, then the following assumptions are imposed on the model: 1) βB,B=0, and 2) βC,C

= 0. This reduces the herd immunity condition to the following:

2 >

√
4βB,CβC,B

γC(γB +mB)
(48)

→ γC(γB +mB) > βB,CβC,B (49)

The above equation yields a proof for our first theorem:

Theorem 1. If βB,B = 0 and βC,C = 0, then herd immunity will hold whenever γC(γB +

mB) > βB,CβC,B.

This result suggests that higher recovery and bankruptcy rates will drain the pool of

unconventional creditors and banks faster. If this occurs sufficiently fast–relative to the

cross-transmission rates–then the unconventional asset will never take off, since few con-

ventional asset holders will discover it.

Next, I will consider placing additional restrictions on the parameter values. This

may be helpful to do if certain parameters are inestimable; and we need to determine

them by theory in order to check herd immunity.

First, we note that 1 > γC +mC , as is shown in the proof for Theorem 2. We will use

this to construct the next set of theorems.

23



Theorem 2. If βB,C > 0, βC,B > 0, βC,C = 0, βB,B = 0, and bL(t) ≥ IC−τIB
IC

, then herd

immunity is violated.

This theorem states that the unconventional asset will spread to susceptible conventional

banks and creditors if 1) cross transmission is the only channel for switching to the

unconventional asset, and 2) the lower bound for the return on the unconventional asset

is high enough to ensure that no banks investing in it become bankrupt.

Theorem 3. If βB,C > 1, βC,B > 1, βC,C = 0, and βB,B = 0, then herd immunity is

violated if bH(t) ≥ 1.

Since γB + mB ≤ 1 and γc ≤ 1 (since it is a probability), the inequality in equation

(49) will not hold if βB,C > 1 and βC,B > 1. This suggests that if the strength of cross-

transmission is sufficiently large, then the unconventional asset will continue to spread,

regardless of bankruptcy and recovery rates.

4.2 No Bank-to-Bank Transmission

With no bank-to-bank transmission, βB,B is effectively set to zero. That is, we assume

that banks consider only other creditors when deciding whether or not to switch to the

unconventional asset; and do not pay attention to the choices of other banks. This re-

duces the condition for herd immunity to the following:

2 >

√(
βC,C
γC

)2

+
4βB,CβC,B

γC(γB +mB)
+
βC,C
γC

(50)

Some algebraic manipulation yields the following, simpler condition:

(γC − βC,C)(γB +mB) > βB,CβC,B (51)

This provides the first theorem for the case with no bank-to-bank transmission:

Theorem 4. If βB,B = 0 and (γC − βC,C)(γB + mB) > βB,CβC,B, then herd immunity

holds.

Next, note that 1 > (γB + mB) ≥ 0, as is shown in the appendix. Since βB,C > 0,

βC,B > 0, and βB,B = 0, the left hand side will be smaller whenever βC,C > γB. This

yields the next three theorems.
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Theorem 5. If βB,B = 0 and γC > βB,B, then herd immunity is violated if BC,B > 1 and

BB,C > 1.

Theorem 6. If βB,B > 1 and βB,B ≥ 1, then herd immunity is violated.

Theorem 7. If βB,C > 0, βC,B > 0, βC,C = 0, and bL(t) ≥ 1, then herd immunity is

violated.

4.3 No Creditor-to-Creditor Transmission

If there is no creditor-to-creditor transmission, then βC,C = 0. This reduces the condition

for herd immunity to the following:

2 >

√
β2
B,B

(γB +mB)2
+

4βC,BβB,C
(γB +mB)γC

+
βB,B

γB +mB

(52)

→ (γB +mB − βB,B)γC > βC,BβB,C (53)

This expression gives us our first creditor-to-creditor theorem:

Theorem 8. If βC,C = 0 and (γB+mB−βB,B)γC > βB,CβC,B, then herd immunity holds.

Next, consider the conditions under which the left hand side will be nonpositive (and,

thus, violate herd immunity).

Theorem 9. If βC,C = 0 and βB,B > (γB +mB), then herd immunity is violated.

Theorem 10. If βB,C > 0, βC,B > 0, βC,C = 0, and bL(t) ≥ 1, then herd immunity is

violated.

Theorem 11. If βB,CβC,B > 1 and βC,C = 0, then herd immunity is violated.

Theorem 12. If βB,B > 1 and βC,C = 0, then herd immunity is violated.

We now have 12 theorems that can be used to place theoretical restrictions on parameters.

In some cases, making a couple of weak theoretical restrictions will make it possible to

check the herd immunity condition by estimating only one parameter.
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5 Empirical Applications

In this section, I will discuss three applications of the SIR model that involve estimating

R0. In the first, I will 1) estimate a structural equation from the SIR model, 2) use the

point estimates to compute R0; 3) use the delta method to compute the standard error

of R0; and then 4) perform a hypothesis test to determine whether or not the financial

innovation will spread. In the second application, I will 1) estimate two separate 1-host

models for a related phenomena; 2) impose theoretical restrictions; and then 3) determine

whether or not herd immunity is violated in the 2-host version of the model. In the final

application, I will show how estimating R0 35-quarters after ETFs were released in the

U.S. could have been used to predict their widespread popularity. In addition to this, I will

demonstrate an alternative method of estimating R0 directly, rather than constructing it

from β and γ estimates. I will conclude by discussing the robustness of herd immunity

rejections.

5.1 Detecting the Spread of a Financial Innovation

In the first application, I consider the introduction of non-agency, non-GSE securitized

debt. The purpose of this application will be to demonstrate how to make predictions

about the spread of new financial innovations using the one-host SIR framework.

The dataset was constructed using three series: 1) the level of GSE-securitized debt;

2) the level of household debt; and 3) the level of non-GSE securitized debt. The series

for S (i.e. the fraction of debt that is susceptible to private securitization) is constructed

as follows:

S =
Total Debt - GSE-Securitized Debt - Privately-Securitized Debt

Total Debt - GSE-Securitized Debt
(54)

For simplicity, I will assume that there is no recovery in the model. That is, financial firms

that stop securitizing do not do so permanently. Instead, they simply stop securitizing

for now, but remain open to the possibility in the future. This simplifies the model by

allowing us to compute I (the fraction of securitizers) as follows:

It = 1− St (55)
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This is the SIS model. Recall that we earlier started that R0 for the SIS model is

identical to the one derived earlier for the one-host SIR model. We estimate the following

transformation of equation (4):

It+1 − It
It

= β
ItSt
It
− (γ +m+ e)

It
It

(56)

→ It+1 − It
It

= βSt − (γ +m+ e) (57)

Notice that γ+m+e measures the rate at which financial firms exit the securitization

business for all reasons; and β is the contact rate multiplied by the probability of becoming

a securitized. That is, in each period, a financial firm scans some fraction of other financial

firms to determine which products they offer. If the firm encounters a securitizer, then it

also becomes a securitizer with some fixed probability. The product of these two numbers

is β.

Equation (57) was estimated with IV on quarterly data from 1983-1994, using a lag of

S as an instrument. The results are given in Table 1. The transmission rate (β = 0.8522)

was found to exceed the mortality rate (γ = .7942), indicating that the spread of asset

backed securities was highly likely. Table I also provides R0 and its standard error.

Note that R0 was computed as β
γ+m+e

, yielding 1.0730. R0’s standard error was then

computed as follows: let Σ represent the covariance matrix and let D = [ 1
γ+m+e

,− β
(γ+m+e)2

]

be the row vector of partial derivatives of R0. Then, by the delta method, the variance of

R0 is var(R0) = DΣD′. In this case, SE(R0) = 0.0225. Now, recall that herd immunity

be violated if:

R0 >
1

S(1− P )
(58)

Since we have the standard error for R0, we can perform a hypothesis test using data

on S to see if herd immunity is violated. If the test is performed at the end of the period

(1994), then we may reject the null hypothesis with 95% confidence. That is, in 1994,

an estimate of R0 would have provided support for the claim that private securitization

was likely to spread rapidly, which is precisely what happened until the financial crisis

occurred in 2007.
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TABLE I

Asset-Backed Securities Regression

ABS

β 0.8522**

(0.4207)

γ+m+e 0.7942**

(0.4079)

R0 1.0730***

(0.0225)

Robust SE Y

N 47

R2 0.34

***, **, * represent 1%, 5%, and 10% statistical significance, respectively.

In practice, we could use new data to update S, P, and R0 in each period; and then

check whether or not herd immunity holds. If herd immunity does not hold, then it may

make sense to monitor the financial instrument carefully, as it could play an increasingly

important role in the financial system. Alternatively, if herd immunity holds, this could

suggest that the spread of the instrument will cease in the future.

From a policy perspective, we might consider adjusting P. That is, policy-makers

might consider restricting securitization if they worry that a risky and untested financial

instrument is likely to spread rapidly (i.e. has a high R0). They could achieve this by

placing temporary legal limits on the issuance of the security until we have a longer

period of time to evaluate its performance. Alternatively, we may adjust γ through an

intervention to reduce R0.

Finally, notice that we ignored the returns to privately-issued asset backed securities

when we performed this analysis, even though this is likely to play an important role in

determining entry and exit. Now, recall that R0 = β
F (1;t)+e

. This suggests that a reduction

in the probability of a loss will increase R0 by reducing the outflow of unconventional
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asset holders. We can use this to determine how counterfactual scenarios will affect R0.

In the next section, we will consider an example that explicitly uses the theory developed

earlier to guide estimation.

5.2 Checking the Susceptibility of FDIC-Insured Banks to a

Zombie Invasion

To illustrate the generality of this approach, we consider an example where financial

innovation refers to managerial practices. Here, we consider how a change in lending and

borrowing practices in a small subset of banks may spread; and incur potentially serious

consequences.

The motivation for this example comes from the S&L Crisis of the 1980s and 1990s,

where many savings and loan institutions became insolvent, but were able to continue

operating because of implicit and explicit government guarantees, such as deposit insur-

ance. Kane (1987) coined the phrase “zombie bank” to describe such institutions, which

were effectively dead, but were able to continue to lend and to collect deposits.

Kane (1987) points out that zombie institutions were particularly worrisome because

they were tempted to “gamble for resurrection.” That is, knowing that equity holders

would get wiped out by an asset revaluation with certainty, they would find ways to

attract creditors (e.g. by offering higher interest rates); and then invest the new funds in

increasingly risky projects. If the bank was lucky and the investments paid off, then the

institution would not be insolvent at revaluation, saving the equity-holders. If, on the

other hand, the investments did poorly, then the new creditors would effectively subsidize

the equity holders by bearing some of the losses.

The behavior of zombies is problematic for two reasons. First, it causes zombified

institutions to lend to increasingly risky borrowers. And second, it encourages nearby

institutions to do the same. If they do not, then they will not be able to compete with

the rates zombie banks offer creditors (and creditors more generally), which results in a

shift of deposits away from healthy institutions.

While the industry has undergone substantial reform since the S&L crisis of the 1980s

and 1990s, zombie banks still exist; and still have the bad incentives that come from

implicit and explicit government guarantees. In a recent paper, Zwick (2012) describes a

strategy for identifying zombie banks in FDIC data; and uses it to examine their impact
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on the Great Recession.8

I follow Zwick’s zombie-detection approach by constructing an unbalanced panel out

of 12 years (2001-2012) worth of institution-level cross-sections from the FDIC’s call

reports. I then use the FDIC certificate from the call reports to match the institutions to

the ones listed in CalculatedRisk’s unofficial record of Prompt Corrective Actions (PCA)

and Desist orders. The combined dataset allows me to identify banks by location (state

and county), balance sheet data, and zombie status (i.e. if they were given an order). It

also permits me to link banks across time.

From there, I construct the model variables, S and I. Initially, I assume that all banks

are susceptible to zombification, and identify the institutions that are given a PCA or

Desist order as infected institutions. The reason I label them as infecteds prior to the

order is because this is when banks are most likely to engage in high risk behavior in an

attempt to divert debt-financed funding from other institutions. Furthermore, I define

the mass of infecteds, I, as the fraction of deposit volume held by these institutions. I then

estimate the following equation with OLS to recover the transmission and mortality rates:

Ii,t+1 − Ii,t = βIi,tSi,t − γIi,t + φl + ut + εi,t (59)

Note that φl is a county fixed effect and ut is a time effect. The fixed effects will

allow us to sweep out any variation that is attributable to county-specific idiosyncrasies

and is unrelated to the interaction between zombies and non-zombies. The time effects

will sweep out the effect of national trends, such as expansions and recessions that might

create a common time trend in the fraction of deposits held by zombies.

The results are given in Table II. Notice that there are separate regressions in this

table: one for the fraction of deposit volume held by zombies and another for the frac-

tion of asset volume held by zombies within a county. The purpose behind this is to

test whether zombie banks create a pure deposit-diversion epidemic or whether zombie

behavior also has a substantial impact on assets.

The results suggest that there is evidence for strong deposit-side transmission at the

county level. Additionally, the relative rates of transmission and mortality of infecteds

suggests that deposit-side zombification (i.e. diversion of deposits away from healthy

8It is important to note that Zwick (2012) is more concerned with the “evergreening” phenomena
that is described by Caballero (2008), rather than risky lending. In fact, his paper suggests that banks
may tend to repeatedly rollover loans, rather than originating new, risky loans.
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banks) may occur if some shock introduces a small number of zombies initially. In par-

ticular, recall that a county will not have herd immunity if the following holds:

R0 >
1

S(1− P )
(60)

TABLE II

County-Level Regression Results for Zombie Banks

Deposits Assets

β 0.3036** 0.1022

(0.0684) (0.0709)

γ+m+e 0.2512** 0.2211**

(0.0313) (0.0307)

R0 1.2087** 0.4623**

(0.0825) (0.1077)

County FE Y Y

Time FE Y Y

Robust SE Y Y

N 7131 7131

R2 0.25 0.20

***, **, * represent 1%, 5%, and 10% statistical significance, respectively.

R0 is given in Table 2, and was constructed from β and γ, which were recovered from

the regression. For deposits, R0 = 1.2087 with a standard error of 0.0825, which was

calculated using the delta method. This implies that a county will lose herd immunity

with 95% confidence if S(1 − P ) > .8183. That is, if a county initially has no zombies

S = 1, but then a financial shock hits and causes an institution to have negative net

worth (i.e. become a zombie), then that institution will tend continue to divert deposits

away from healthy institutions and convert healthy institutions into zombies. A regulator
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may intervene by increasing P (i.e. limiting which banks may innovate) or adjusting γ

(i.e. intervening in zombie institutions faster) to change R0.

It is important to note that the “epidemic” described is with respect to volume of

assets being held by zombies, rather than the proportion of institutions that are zombies.

It is entirely possible, for instance, that measures targeted at regulating non-zombies

more thoroughly (i.e. increasing P) could increase the deposit flow volume to zombies,

which would not necessarily help to impose herd immunity. However, if herd immunity

is achieved, then the interpretation behind the epidemic’s end is simple: zombies will

be identified and dismantled by regulatory agencies faster (i.e. m will increase) than

they are able to divert deposits, resulting in a net decrease in deposit inflow to zombie

institutions.

Next, consider the results for the asset regression. Here, we can see that transmission

is not particularly strong (i.e. statistically insignificantly different from zero). That is, an

increase in contact between zombies and non-zombies does not lead to particularly large

increases in zombie asset volume. Furthermore, the zombie mortality rate is large and

statistically significant, which leads to a low R0 of .4623. In this case, a zombie-driven

epidemic is simply not possible on the asset-side of bank balance sheets, even if P=0.

With these results in mind, we may return to the theoretical model of banks and

creditors to take advantage of the theorems derived earlier. Here, we have a clear map-

ping from the model to the data: the depositors are the creditors and the depository

institutions are the banks. Using these relationships, we will test whether a joint epi-

demic (deposits and assets) is possible if we allow for cross-transmission–that is, allow

the deposit epidemic to affect the asset epidemic.

From the asset regression in Table 2, we know that there is no statistically significant

bank-to-bank transmission (i.e. βB,B = 0). This means that we can use the theorems

derived in section 4.2. In particular, Theorem 7 states the following: if βB,C > 0, βC,B > 0,

and βB,B = 0, and bL ≥ 1, then herd immunity does not hold. In words, this means that a

county will be susceptible to an epidemic when a zombie is introduced if two conditions are

met: 1) all zombie institutions in the county are receiving weakly positive excess returns;

and 2) there is positive cross-transmission from financial intermediaries to investors and

vice versa (even if it is very small).

Thus, while regulators may be encouraged by finding that βB,B = 0, the model indi-
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cates that a joint epidemic (i.e. one that affects deposits and lending) can still occur if

zombies institutions are currently profitable.

5.3 Predicting the Displacement of Existing Funds by ETFs

As a final example, I considered the expansion of exchange-traded funds (ETFs), which

were introduced in the United States in 1993, and steadily grew in popularity thereafter.

I used data up to 2003 to estimate R0, compare it to the fraction of other fund volume

that was susceptible to being converted into an ETF (e.g. close ETF substitutes), and

then check whether or not the ETF takeoff could be predicted.

For the purposes of this exercise, I used Flow of Funds (FoF) data on financial busi-

nesses from the Federal Reserve Board of Governors’ data download program. I computed

the total volume of funds susceptible to ETF conversion by adding up the volumes for

all assets in the same category as ETFs. This included several varieties of money market

mutual funds, mutual funds, and closed-end funds–all predecessors to ETFs and also

likely substitute investment vehicles.

I then used the total volume of funds to compute S and I. S was defined as the fraction

of asset volume that was concentrated in non-ETFs. And I was defined as the fraction

of total asset volume concentrated in ETFs. With these definitions in place, I used 35

quarters of data to recover an early estimate of the basic reproductive ratio and then

used the delta method to compute its standard error. I found that R0 = 1.0949 with

a standard error of 0.0262. When R0 was computed, the fraction of susceptible funds

(0.9817) was greater than 1
R0

, which suggests that herd immunity was already violated

and an invasion was likely. The column labelled “indirect estimate” in Table III provides

the results for this section.

It is important to note that the model’s parameters are likely to evolve over time. In

particular, the theoretical model implies that a change the returns distribution for ETFs

will shift γ. It is also reasonable to assume that the transmission rate or exit rate may

change if we consider a sufficiently long horizon. For these reasons (and also to improve

precision), it may make sense to update R0 and its error bounds when new data becomes

available. Figure IV provides an updated estimate of R0 and its 95% confidence interval

from 2004 to 2012.
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TABLE III

Exchange-Traded Fund Regressions (1994-2003)

Indirect Estimate Direct Estimate

R0 1.0949*** 1.0664***

(0.0262) (0.0120)

Robust SE Y Y

N 35 35

R2 .1788 0.99

***, **, * represent 1%, 5%, and 10% statistical significance, respectively.

To see the usefulness of this exercise, consider Figure V, which shows the real path

and three counterfactual paths for ETF share. As a regulator in 2003, we may want to

predict which category of path ETFs will fall into, so that we can allocate monitoring

resources appropriately. We may, for instance, want to pay careful attention to ETFs if

they fall into either of the top two paths or the middle path. However, if they fall into the

lower path, our limited resources might best be spent monitoring other instruments. The

estimate of R0 Table III can be used to eliminate the lower paths with some probability.

Finally, note that ETFs were introduced in Europe in 1999. This means that European

regulators could have used the estimate of R0 from 2003 to determine how to handle

the introduction of ETFs several years after their arrival. In particular, knowing that

they were likely to become a popular asset class might have encouraged regulators to

handle their introduction with greater scrutiny; and to dedicate more resources to their

monitoring.

5.4 Estimating R0 Directly

In this section, I will outline a strategy for estimating R0 directly, rather than constructing

it from separate estimates of β and γ. For convenience, we will define ζ = γ + m + e.

Next, we will rearrange the flow equation for infecteds as follows:
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It+1 − It = ζ(R0ItSt − It) (61)

Now, assume that ItSt and It are I(1) processes and It+1−It is an I(0) process. Instead of

estimating the above equation, we may estimate the implied cointegration vector, (R0, 1).

In this case, the normalization choice is clear, since we wish to recover R0 directly. We

may do so by estimating the following equation via OLS:

It = R0ItSt + εt (62)

There are two important benefits of this approach. First, under the null hypothesis

of cointegration, estimates of R0 will be superconsistent, converging at rate T, rather

than T 1/2. This eliminates the need for IV. The second benefit is that we do not need

to compute the standard errors for R0 separately with the delta method, since R0 is

estimated directly using OLS.

In order to provide a complete demonstration of this approach, I use it to repeat the

estimation exercise for ETFs and to confirm the value of R0. The results are given in the

“direct estimate” column of Table III. In addition to this, I also check the assumptions of

the approach by performing nonstationarity tests for It and ItS, and by testing whether

the two series are cointegrated under the vector (R̂0, 1).

I start by performing the following two regressions:

It = α + ρIt−1 + ût (63)

ItS = α + ρIt−1St−1 + ût (64)

I then use the residuals from each regression to perform two separate Phillips-Perron tests,

where the null hypothesis is that the series is nonstationary. As described in Hamilton

(1994), the Phillips-Perron Zρ test statistic can be computed in the following set of steps:

sC = (T − 2)−1
T∑
t=1

ûtC (65)
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ĉj = (T )−1
T∑

t=j+1

ût ˆut−j (66)

λ̂C = ĉ0 + 2
4∑
j=1

[1− (j/5)]ĉj (67)

Zρ = T (ρ̂− 1)− 1

2

(
T σ̂ρ
s

)
C

(λ̂C − ĉ0) (68)

The test statistic, Zρ, is then compared to the relevant 5% critical value, which is approx-

imately -13 for T=35 and K=2. For equation (63), Zρ = 1.4453 > −13, which means we

fail to reject the null of nonstationarity. For equation (64), Zρ = 1.3041 > −13, which

again means we fail to reject the null hypothesis of nonstationarity.

Next, equation (62) can be estimated using OLS to recover R̂0. Here, I find that

R̂0 = 1.0697, which is close to the previous subsection’s estimate of 1.0949. With R̂0

recovered, the cointegration of ItS and It can be tested next. To do this, I first compute

the series, z, using R̂0:

zt = R̂0ItS − It (69)

Next, I perform a Phillips-Perron test using the residual from the following regression:

zt = α + ρzt−1 + ût (70)

The null hypothesis is that the cointegrating relationship does not hold. For equation

(53), Zρ = −18.1478 < −13, which means we may reject the null hypothesis of no

cointegration. Combined with our earlier findings, this suggests that the estimate of R0

is superconsistent.

It is important to note that there are alternative approaches to estimating R0 that

may have better statistical properties in certain circumstances. However, if It and ItSt

are cointegrated, then recovering R0 becomes simple. All a practitioner must do is define

the three groups (S, I, and possibly R), transform the data to match the group definitions,

and then estimate equation (65). If there is any doubt about the underlying assumptions

needed for superconsistency, then the set of tests performed in this subsection can be

employed.
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5.5 Robustness of Herd Immunity Rejections

In many applications, it will be unclear whether there is a “recovered” group; and,

if so, whether it is identified in the data. Instead, as in this paper, there will be a mass

of infecteds (I), who are holding the unconventional asset; and a mass of susceptibles,

who are holding the conventional asset or whose mass is defined as 1-I for convenience.

However, it may be the case that many apparent “susceptibles” held the unconventional

asset at some point, experienced a negative realization from the returns distribution,

and then switched back to the conventional asset. These individuals should actually be

in the recovered group (R), but this cannot be identified using the data available. An

econometrician will run the following regression to recover β and m + γ, so that R0 can

be constructed:

It+1 − It
It

= −(m+ γ) + βS̃t + εt (71)

In the above equation, the mass of susceptibles will be mismeasured if the model is, in

fact, an SIR model, rather than an SIS model, since S and R cannot be separated:

S̃t = St +Rt (72)

This will lead to attenuation bias in β, which will also attenuate R0 = β
m+γ

. This

suggests that omitting the recovered group will tend to understate the contagiousness of

a security. That is, it will increase the frequency of incorrect acceptances of the herd

immunity condition, but it will not cause more frequent, incorrect rejections of the herd

immunity condition. This means that a regulator can be confident that a large estimate

of R0 does indicate that a security is likely to become influential, but should be cautious

in interpreting a small estimate of R0.

5.6 Monte Carlo Simulation Results

One of the two estimation strategies I described performs a regression with a stationary

dependent variable (%∆I) and a bounded, but not covariance stationary regressor (S). In

this subsection, I will show that estimates of β, γ +m+ e, and R0 are accurate accurate

in this setting, even when only a small number of observations are available and the

regressor is trending upward.
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In particular, I set β = 1.1, γ = 0.95, and e = 0.05, which implies that β = 1.1. I then

simulated the SIS model for 35 periods with an initial state of (S,I)=(0.99,0.01). In each

period, a random, normally distributed innovation with a standard deviation of 0.005

was drawn, and is added to I. Using the simulation results and the approach explained

in the ABS application, I estimated equation (57), which yielded the results in Table IV:

TABLE IV

Monte Carlo Results

ABS

β 0.9930***

(0.0063)

γ+m+e 0.4960***

(0.0041)

R0 1.0997***

(0.0056)

Robust SE Y

N 35

R2 0.99

***, **, * represent 1%, 5%, and 10% statistical significance, respectively.

This suggests that R0 can be accurately estimated shortly after the introduction of a new

financial innovation with the method outlined in the ABS section.

6 Conclusion

The 2007-2010 crisis was characterized by a profusion of financial innovations that

neither regulators nor financial institutions fully understood. Subprime mortgages, col-

lateralized debt obligations, and credit default swaps infiltrated the financial system to

become systemically important. Both in this case and in general, regulators are generally

unable to predict that new securities or managerial processes will become important or

influential in advance. This limits the scope for preventative or proactive policy. An

“early warning system” could remove such limitations by alerting regulators to financial

40



innovations that are likely to become systemically important. Even if such a system

could not discriminate between productive and unproductive innovations, it could point

regulators in the direction of the systemically interesting ones, so that greater scrutiny

could be applied.

This paper attempts to construct such an “early warning system” for financial innovations–

broadly defined–using a well-developed toolset from mathematical epidemiology. My ap-

proach exploits the inherently social behavior that emerges when little information is

available about new securities or managerial processes. Instead of analyzing historical re-

turns, potential early adopters examine the behavior and outcomes of the current cohort

of competitors and their clients to infer the properties of an innovation. This results in

dynamics akin to those in a model of infectious disease.

I focus primarily on the construction of an analog to R0 and the associated condition

for herd immunity in a financial context. I show that these tools can be used to predict

whether a financial innovation will become influential within the financial system or at

least within its asset class. In addition to this, I demonstrate two simple strategies

through which R0 can be estimated on either time series or panel data. I also evaluate

the econometric robustness of the techniques, as well as the robustness of herd immunity

checks to model selection.

In addition to this, I extend the model by introducing a modified version of the two-

host SIR and SIS models to the economics literature. I show how this approach can be

used to capture the richness of interactions between banks and their creditors; and also

demonstrate how R0 and the associated herd immunity condition can be estimated and

evaluated in this context.

Finally, I evaluate the approach in three separate empirical applications. I show that

violations of the herd immunity condition predicted the take off of exchange traded funds

(ETFs) and asset-backed securities (ABS). I also demonstrate how an estimate of R0 at

the county-level can be used to evaluate whether banks in a given county are susceptible to

a joint solvency crisis. I also demonstrate how policy can be used to lower the probability

of a zombie financial institution invasion within a particular geographic region.
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8 Appendix

8.1 Proof: Theorem 1

We start with condition for herd immunity:

2 >

√(
βB,B

γB +mB

− βC,C
γC

)2

+
4βB,CβC,B

(γB +mB)γC
+

(
βB,B

γB +mB

+
βC,C
γC

)
(73)

Next, we impose that βB,B = 0 and βC,C = 0–that is, we have cross-transmission only.

This gives us the following, simplified condition for herd immunity:

2 >

√
4βB,CβC,B

(γB +mB)γC
(74)

→ 4 >
4βB,CβC,B

(γB +mB)γC
(75)

→ (γB +mB)γC > βB,CβC,B (76)

8.2 Proof: Theorem 2

As in Theorem 1, we assume cross-transmission only. However we add to this three more

assumptions: 1) βB,C > 0, 2) βC,B > 0, and 3) bL(t) > IC−τIB
IC

. From here, we may skip

to the final equation in the proof of Theorem 1:

→ (γB +mB)γC > βB,CβC,B (77)

Now, recall that βB,C > 0 and βC,B > 0, which implies the following:

βB,CβC,B > 0 (78)

Thus, showing 0 ≥ (γB +mB)γC will be sufficient to demonstrate that herd immunity is

violated. This will occur whenever γC = 0, where γC is defined as follows:

γC = pr

{
b(t, i) <

IC − τIB
IC

}
(79)
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Since bL(t, i) ≥ IC−τIB
IC

∀i, no banks will realize a return that causes them to exit:

b̄(t, i) ≥ IC − τIB
IC

(80)

This is equivalent to γC = 0. Thus, herd immunity is violated:

βB,CβC,B > 0 > (γB +mB)γC (81)

8.3 Proof: Theorem 3

Again, we assume that cross-transmission is the only channel that causes creditors and

banks to switch to the unconventional asset. This allows us to start with the simplified

condition for herd immunity:

(γB +mB)γC > βB,CβC,B (82)

Now, we assume that βB,CβC,B > 1. Since γC is a probability, it will be weakly less than

1. Thus, if γB +mB ≤ 1, then herd immunity will not hold. We know that:

mB = F ((IC − τIB)/IC ; t) (83)

γB = F (1; t)− F ((IC − τIB)/IC ; t) (84)

→ γB +mb = F (1; t) (85)

Since βB,CβC,B > 1 and F (1; t) ≤ 1, we know that:

βB,CβC,B > (γB +mB)γC (86)

Thus, herd immunity is violated.

8.4 Proof: Theorem 4

We start by setting βB,B = 0. This gives us the following condition for herd immunity:

2 >

√(
βC,C
γC

)2

+
4βB,CβC,B

(γB +mB)γC
+
βC,C
γC

(87)
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→ (2γC − βC,C)2

(γC)2
>

(
βC,C
γC

)2

+
4βB,CβC,B

(γB +mB)γC
(88)

After rearranging, we may state the herd immunity condition more compactly:

(γC − βC,C)(γB +mB) > βB,CβC,B (89)

8.5 Proof: Theorem 5

We start from equation (89):

(γC − βC,C)(γB +mB) > βB,CβC,B (90)

We know that 1 ≥ γC , since it is a probability. Additionally, we know that (γC −βC,C) ≥

(γC − βC,C)(γB +mB). Thus,

1 ≥ (γC − βC,C) ≥ (γC − βC,C)(γB +mB) (91)

Since, βB,CβC,B > 1, we know that:

βB,CβC,B > 1 ≥ (γC − βC,C)(γB +mB) (92)

Thus, herd immunity is violated.

8.6 Proof: Theorem 6

We start from equation (89):

(γC − βC,C)(γB +mB) > βB,CβC,B (93)

If βC,C > 1, the left hand side will be negative, since γC is a probability. Since, βB,C > 0

and βC,B > 0, we know that:

βB,CβC,B > 0 > (γC − βC,C)(γB +mB) (94)
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8.7 Proof: Theorem 7

Recall the definitions for γC , γB, and mB from the proof for Theorem 2. If bL(t) ≥ 1,

then γB + mB = 0, since F (1; t) = 0 when all return realizations are higher than the

conventional security. Thus, the condition for herd immunity will be violated. Note that

this will also hold for the weaker condition: bL(t) > IC−τIB
IC

. However, this condition

cannot be mapped to the data as clearly.

8.8 Proof: Theorem 8

Theorem 8 states that if βC,C = 0 and (γB + mB − βB,B)γC > βB,CβC,B, then herd

immunity holds. To prove this, we start with the condition for herd immunity, which we

get from imposing βC,C = 0:

2 >

√
β2
B,B

(γB +mB)2
+

4βC,BβB,C
(γB +mB)γC

+
βB,B

γB +mB

(95)

→
(

2− βB,B
γB +mB

)2

>
β2
B,B

(γB +mB)2
+

4βC,BβB,C
(γB +mB)γC

(96)

After rearranging, we may restate the condition for herd immunity more compactly:

→ (γB +mB − βB,B)γC > βB,CβC,B (97)

8.9 Proof: Theorem 9

Theorem 9 claims that herd immunity will be violated if βB,C > 0, βC,B > 0, βC,C = 0

and βB,B > (γB + mB). From equation (97), we can see that the left hand side will be

negative, violating the condition for herd immunity.

8.10 Proof: Theorem 10

Theorem 10 states that if βB,C > 0, βC,B > 0, βC,C = 0, and bL(t) ≥ 1, then herd

immunity is violated. To begin the proof, we start with the simplified condition for herd

immunity:

→ (γB +mB − βB,B)γC > βB,CβC,B (98)
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Next, we use the definitions for γB and mB to re-write the condition:

(F (1; t)− βB,B)γC > βC,BβB,C (99)

If bL(t) ≥ 1, then F (1; t) = 0. This implies that:

βB,CβC,B > 0 ≥ (F (1; t)− βB,B)γC (100)

Thus, herd immunity is violated. Note that this will also hold under the weaker condition:

bL(t) > IC−τIB
IC

, since 1 ≥ IC−τIB
IC

.

8.11 Proof: Theorem 11

Theorem 11 states that if βB,CβC,B > 1 and βB,B = 0, then herd immunity is violated.

Again, recall the herd immunity condition from equation (98):

→ (γB +mB − βB,B)γC > βB,CβC,B (101)

Now, if βB,CβC,B > 1, then herd immunity will be violated if 1 ≥ (γB + mB − βB,B)γC .

Additionally, note that γC is a probability and γB+mB = F (1; t) are probabilities. Thus,

we have:

→ 1 ≥ (γB +mB) ≥ (γB +mB − βB,B) (102)

However, we know that βB,CβC,B > 1, which implies that:

βB,CβC,B > (γB +mB − βB,B) (103)

Thus, herd immunity is violated.

8.12 Proof: Theorem 12

Theorem 12 states that, if βB,B > 1 and βC,C = 0, then herd immunity is violated. Again,

we note that F (1; t) = γB +mB. Since 1 ≥ F (1; t), we know that:

βB,CβC,B > 0 ≥ (γB +mB − βB,B)γC (104)

Thus, the condition for herd immunity is violated.
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