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Abstract

This paper considers computer intensive methods to inference on coin-
tegrating vectors in maximum likelihood cointegration analysis. The like-
lihood ratio test statistics used in the literature are known to have an
asymptotic x?—distribution. However, previous simulation studies show
that the size distortion of the test can be considerable for small samples.
Typically the nominal significance level, say 5%, is much smaller than the
attained actual level, and as a consequence, too many true null hypotheses
will be rejected. It is demonstrated how a parametric bootstrap can be im-
plemented, frequenly resulting in a nearly exact o level test. Furthermore,
response surface regression is used to examine small sample properties of the
asymptotic likelihood ratio test. The estimated equations can be used as
approximate finite-sample corrections, allowing rough, but easily applied,
corrections of the LR test.
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1. Introduction

Estimation of long-run economic relationships by maximum likelihood cointegra-
tion analysis has become increasingly popular in applied work.! One reason for
this is the straightforward treatment of multivariate aspects of the estimation
problem, i.e. the simultaneous estimation of two or more long run relations. An-
other reason is the possibility of inference for the elements of the cointegrating
vectors that generate the long-run economic relationships. However, all distribu-
tional results within the maximum likelihood cointegration model rely on asymp-
totic considerations; likelihood ratio testing for cointegrating rank, the number
of cointegrating vectors in the system, leads to a non-standard inference situa-
tion, whereas conditional likelihood ratio testing, for given cointegrating rank,
is standard with test statistics being asymptotically x2. Hence, it is important
to study the behavior for small to moderate samples of sizes empirical research
usually encounters, say 50 to 200 observations. The number of simulation studies
evaluating small sample properties is rapidly growing, but the majority concern
estimation of cointegrating vectors and testing for cointegrating rank. To the
best of our knowledge, only two papers deal with testing of linear restrictions on
the cointegrating vectors for given rank; Jacobson (1995) and Podivinsky (1992).
Both papers convey rather optimistic pictures regarding the size distortion prob-
lem. For a nominal 5%-test using a small sample size of T' = 50, the two papers
report empirical sizes of 0.0826 and 0.0898, respectively. Still, the size of a sample,
whether small or large, is not an absolute entity but must be judged in relation
to the complexity of the model one proposes to estimate, as well as the appropri-
ateness of the specification. Both papers consider very simple Data Generating
Processes (DGP’s) with two or three cointegrated series, a minimum number of
lags and just one cointegrating vector and, hence, a small number of parameters.

In contrast, Jacobson, Vredin and Warne (1998) consider an empirical la~
bor market model involving four endogenous variables, two stationary exogenous
variables, four lags, two cointegrating vectors and a set of seasonal dummies. Re-
sampling from the estimated model based on an original sample of 104 quarterly
observations, three tests of null hypotheses involving restrictions on the cointe-
grating vectors are evaluated in terms of empirical sizes. The results, 0.3170,

1for an excellent introduction to the maximum likelihood cointegration method, see Johansen
and Juselius {(1990). This reference also contains an instructive application on Danish money
demand. Theoretical results are found in Johansen (1988, 1991), and a full account of the
methods is provided by Johansen (1995).




0.2895 and 0.3481 in comparison with a nominal size of 0.05, indicate that infer-
ence based on the asymptotic approximation of a x*-distribution can be severely
misleading.? So what would normally be thought of as a reasonably large sam-
ple, T' = 104, could for inference purposes be quite inadequate due to the many
estimated parameters in the empirical model.

One could describe the problem as one of lacking coherence between the test
statistic and its reference distribution and there are, in principle, two distinct
routes to alleviate the problem; either for given test statistic correct the refer-
ence distribution, or, for given reference distribution correct the statistic in use.
Bartlett adjustment of likelihood ratio test statistics is one possibility to improve
inference that recently has received interest in this context. Consider a test statis-
tic Cr that converges to Cy, with an asymptotic error of order 7! or smaller.
Ce has a known distribution which provides the critical values for the asymptotic
test. Now, we would like to obtain a transformed test statistic C#, such that
C4 converges to C, and only with error terms of order T2 or less at play.®? In
other words, we want a correction of Cy which eliminates the influence of error
terms of orders T!. Such a correction could be based on the expectation of
Cr, recognizing that 'E%% tends to E%f: as T' — o0, and hence Cr =~ EC’TE%E.
Larsson (1998a) and Nielsen (1997) considers Bartlett adjustment for a univariate
counterpart of the trace test for cointegrating rank, i.e. a test for the presence
of a unit root in a univariate autoregressive process. Whereas Johansen (1998)
derives a Bartlett corrected likelihood ratio test for linear restrictions, i.e. the
test situation that this paper addresses. Due to the intricate analysis, Johansen
treats a special case of the general, cointegrated vector autoregressive model that
we consider. The results are promising, but with limited applicability so far.

Alternatively, we could consider a corrected distribution for the test statis-
tic at hand, that is replace the critical values of the limit distribution with such
that will generate an actual test size closer to the nominal one. Analytically
this amounts to Edgeworth expansions, or related techniques, of the distribu-
tion function, see Barndorrf-Nielsen and Cox (1989) or Hall (1992) for overviews.
Bootstrap hypothesis testing is a plausible numerical alternative, which in fact
can be expressed and interpreted in terms of Edgeworth expansions as shown by

%?Jacobson et al. (1998) calculate the empirical test sizes for one of the null hypotheses
repoited above for various sample sizes T. Even for T = 2000, the empirical and the nominal
sizes do not quite coincide. Some results are; T' = 200 & 0.187,T = 400 < 0.103, T = 1000 <«
0.068 and T" = 2000 <> 0.056.

3Stictly speaking, this correction only applies to the mean, although higher moments and
fractiles can also be expected to be closer approximated by the asymptotic distribution.
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Hall. Although the consistency of bootstrapping in the unit root context is still
unclear, Harris (1992) has evaluated bootstrapping of Dickey-Fuller unit root tests
and Giersbergen (1996) has recently presented promising results for the multivari-
ate maximum likelihood trace test for cointegrating rank. Larsson (1998b) uses
saddlepoint techniques to approximate small sample corrections of the lower tails
of the distributions for some unit root test statistics.

This paper proposes use of bootstrap hypothesis testing as a tractable way
to improve inference for linear restrictions. The outline is the following. Sec-
tion 2 briefly introduces the maximum likelihood method and, in particular, the
likelihood ratio test of linear restrictions that subsequently will be evaluated. Sec-
tion 3 discusses aspects of simulation based testing, i.e. the bootstrap hypothesis
test. In Section 4 we present the design of the Monte Carlo experiments and the
complex data generating processes based on the empirical monetary vector error
correction model estimated in Juselius {1997).We will also examine small-sample
properties of the asymptotic likelihood ratio test by estimating response surface
regressions. The objective is to establish how the complexity of the model, in
terms of number of dimensions, lags,and cointegrating vectors, is related to the
size of the test conditional on sample size. Results are given in Section 5. Some
concluding remarks will end the paper.

2. Maximum likelihood cointegration

The base-line econometric specification for maximum likelihood cointegration is
a VAR-representation of an n-dimensional time series z; according to

H(L)I"t:&:t, (t=1,2,...,T), (21)

where II(L) is an n X n matrix polynomial of order k given by I1()) = I, —

;?:1 I1;\7, where L is the lag operator and ) a complex number. Since we focus on
integrated processes z:, an assumption regarding the roots of II(L) is necessary,
ie. |II(\)| = 0 if and only if [A| > 1 or possibly A = 1. The error term ¢; is
assumed to be i.2.d.N,, (0, X).

A slight reparameterization of (2.1) yields a vector error correction, VECM,
representation for z; suitable for estimation of the cointegrating relationships.
Letting T'(\) = I, — S8 TuX! where I = — E?:i 1L and of =11 = ~II(1)
we get

r (L) Az, = O.’ﬁ'ﬂ;t__l + &, (t =12,... ,T) , (22)
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where A is the first difference operator. Writing a8’ = I reflects an assumption
of reduced rank r < n for II, implying that « and 3 are n X r matrices. Johansen
(1991), in a version of the Granger representation theorem, state conditions such
that F'z; and Az, are integrated of order zero and z; is integrated of order one.
When r > 0, 2 is cointegrated of order (1,1). The cointegrating vectors are found
in the r columns of J, whereas the rows of & have an interpretation as *adjustment
coefficients” that determine how 'z; enters in the n equations.

Maximum likelihood estimation of (2.2) implies reduced rank regression, and
in particular, finding solutions to an eigenvalue problem, see Johansen (1991,
1992) for details. Inference for the cointegrating rank r in (2.2) is carried out
by use of a likelihood ratio test, the trace test. This test has a non-standard
asymptotic distribution and simulated critical values are used in practice. For
given rank r, however, the likelihood ratio principle leads to standard inference,
i.e. test statistics for linear restrictions on 3 have asymptotic y2-distributions, see
Johansen and Juselius (1992). They discuss three classes of hypotheses. In the
first class the hypotheses under consideration can be expressed as: II = ap'H',
that is 8 = Hyp where H (n x 8), r < ¢ < m, is a known matrix that specifies the
restriction that is imposed on all cointegrating vectors. The test statistic is given
by

Wir, = TZln{( AH‘)], (2.3)
i=]1 (1 - }\)
where A; and \; are the eigenvalues found as solutions to the eigenvalue prob-
lem implied by maximum likelihood estimation of the restricted and unrestricted
models. Wi g is asymptotically x? with 7 (n — s) degrees of freedom.

In the second hypothesis class, r; of the r cointegrating vectors 8 = (H, 1),
are considered known (typically given by economic theory) and specified by the
matrix H (n X r;), whereas the remaining r, = r — r, relations are estimated
without restrictions. In this case the test statistic is

WLR,Q =T [rzlln (1 - XG’.H,T:) + iln (1 - XH,,') — Zr:h’l (1 - 5\1)] ) (2.4)

i=1 q==1 gl

where Xg, Hiis hY ;i and X,; are the eigenvalues found as solutions to the eigenvalue
problem implied by maximum likelihood estimation of the concentrated likeli-
hood, the restricted model, and the unrestricted model, respectively. Wigro is
asymptotically x? with 7, (n — r) degrees of freedom.
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The third class of hypothesis is formulated for some arbitrary restrictions on
r, of the cointegrating vectors 8 = (Hy, ), and the remaining r — r; relations
are estimated without restrictions. Thus, H (n x r1) is known and the maximum
likelihood solutiton is found by an iterative algorithm, see Johansen (1995), which
gives the test statistic as

™ s r
Wirs =T [Z In (1-Rems)+ 3 In(1-3ms) -l (1~ Xi)] ,  (25)
i=1 i=1 i=1

where A¢, g, are the eigenvalues when B is concentrated with respect to Hy,and
) i are the eigenvalues for the restricted model, and A; the eigenvalues for the un-
restricted model. The test statistic is also in this case asymptotically distributed
as x2 but with (n — s — rp)r1 degrees of freedom. The last hypothesis can esily
be extended to a more general form, given as 8 = (Hap, Hayp) where H, is te-
strictions of the first r;, cointegrating relations, and Hj are the restrictions on the
remaining relations.

3. Small sample correction by bootstrapping

The bootstrap approach provides a feasible method for estimation of the small-
sample distribution of a statistic. 1 The basic principle is to approximate this
distribution by a bootstrap distribution, which can be obtained by simulation.
In short, this is done by generating a large number of resamples, based on the
original sample, and by computing the statistics of interest in each resample. The
collection of bootstrap statistics, suitably ordered, then constitutes the bootstrap
distribution.

3.1. The Bootstrap Test

The objective of a general (one-sided) test is to compute the p-value function
D (WLR) =p (WLR > Wer I‘I’O,T) (3.1)

where Uq is the DGP under the null hypothesis, and Wyr is the realized value
of a test statistic Wi based on a sample of length T'. Since ¥p is unknown this

4Efron and Tibshirani (1993) is an accessible introduction, Hall (1992) is more of & theoretical
foundation.




p-value function has to be approximated, which is regularly done using asymptotic
theory. For asymptotic theory to be valid it is required that p (WL }5 should not
depend on ¥y and 7, which is usually not true in small samples. An alternative
to an asymptotic solution is to estimate the finite-sample DGP by the bootstrap
DGP g, that is to use a bootstrap test.

If B bootstrap samples, each of size T, are generated in accordance with ¥y
and their respective test statistics W}y are calculated using the same test statistic
Wir as above, the estimated bootstrap p-value function is defined by the quantity

p" (Wir) = B~ ij I(Wige 2 Wir), i=1,...B, (3.2)
i=1

where I (-) equals one if the inequality is satisfled and zero otherwise. The null
hypothesis is rejected when the selected significance level exceeds p* (Wyg).

The bootstrap testing procedure is a general tool and can be applied to all
tests that allow for the implementation of the null-hypothesis in the bootstrap.
Davidson and MacKinnon (1996a) conclude that the size distortion of a boot-
strap test is of the order 7~/ smaller than that of the corresponding asymptotic
test. A further refinement of the order 7-/2 can be obtained in the case of an
asymptotically pivotal statistic, i.e. a statistic whose limiting distribution is in-
dependent of unknown nuisance parameters. Since the test functions considered
in this paper are asymptotically x?, the predicted refinements are thus of order
T~1. For further teoretical considerations, see Davidson and MacKinnon (1996a),

and for other examples on implementation of the bootstrap test, see Andersson
and Gredenhoff (1997, 1998).

3.2. Construction of the Bootstrap Samples

The original non-parametric bootstrap suggested by Efron (1979), is designed
for iid observations. It usually fails for dependent observations, such that we
have in e.g. time series analysis, since the order of the observations is affected.
Dependencies in data can be maintained in the bootstrap resamples by using a
model-based bootstrap, which is the natural way to proceed in our case since a
well-defined statistical model forms the null-hypothesis.

When testing for linear restrictions on cointegrating vectors, the DGP ¥y is
characterized by an unknown specification. Since the null model, and consequently
Uy, is unknown, the estimated (bootstrap) DGP U, is used to create the bootstrap




samples. In our case this means that the estimated error correction model is used
as the resampling model,

['(L) Az, = 8F'zs1 + & (3.3)

This resampling model clearly obeys the null-hypothesis for e.g. B = (H®), ie.
the linear restrictions on the cointegrating relations stated in the null-hypothesis
are satisfied. Resampling is done with a simple parametric algorithm which makes
use of the normality assumption for the disturbances ¢; in (2.2). This implies that
the bootstrap residuals ¢} are independent draws from a normal distribution with
mean zero and variance 3. The bootstrap samples x:, ¢ = 1,..., B, are then
created recursively, through equation (3.3), using the bootstrap residuals ;.

4. Design of the Monte Carlo simulation expefiments

This section deals with the design of simulation experiments that seek to evaluate
the bootstrap test in terms of size accuracy and power. However, before taking
on the bootstrap test, we will examine small-sample properties of the asymptotic
likelihood ratio test of linear restrictions in (2.3). The purpose is to provide a
(very rough) reference guide to the degree of test size distortion for models of
varying complexity and also to help interpretation of the simulation results for
the bootstrap test.

4.1. Response surface regression

It seems reasonable that in general the size accuracy of the asymptotic likelihood
ratio test will deteriorate as the number of dimensions, n, and lags, &, of the model
increases. In order to quantify this relationship, we propose fitting of response
surface regressions with simulation estimated empirical quantiles as regressands
and functions of n, k, and cointegrating rank, r, as well as T', as regressors. MacK-
innon (1994) estimates approximate small sample distributions for unit root test
statistics using response surface regressions of the following form:

& (T)) = 7 + OPT1 4 08T2 + ¢, (41
oo 144

where 62_ is pth quantile of the asymptotic distribution, which is what MacKinnon
is estimating, and ¢P (73) is the estimated pth quantile in the ith experiment using
a sample size T;.




Since 62, is known to be a x2(-) with r (n — s} degrees of freedom for the
likelihood ratio statistic in (2.3), we will model the deviation between the small-
sample estimate and the asymptotic value of the pth quantile, ¢* (T;) — X?; (-), as
follows:

¢ (T:) — x5 () = 0T + G812 + 65 f (ki) + ORg (na) + BBh (ri) + &1, (4.2)

where f(-), g(-) and h{-} are functions of the number of lags, dimensions, and
cointegrating vectors in the model of the ith experiment using a simplified version
of the empirical model based data generating process presented below.

4.2. Data generating process

In Monte Carlo evaluations of econometric methods it is common practise to
use stylized, simplified data generating processes. In the case of cointegrated
VAR-processes this usually means small numbers of dimensions, lags and cointe-
grating vectors. There are obvious advantages with this approach, a high degree
of experimental control since fewer parameters have to be accounted for, and less
computing time. The drawback is little scope to gain insights on the behaviour of
the methods in realistic situations such that we are likely to encounter in empirical
analyses. We will sacrifice control for realism and use a complex data generating
process; a Danish monetary VECM estimated in Juselius (1997) and based on
a sample that has previously (in parts) been analysed in Johansen and Juselius
(1990) and in Juselius (1993, 1994).

Whereas Juselius (1997) analyses both (1) and I(2)-representations, we will
make use of the I(1)-representation only. The sample covers the period 1974:1-
1993:4 for the following variables taken in logarithms: m;, the money stock mea-
sured as M3, ¥;, income measured as the real gross domestic product, p, prices
measured as the implicit gross domestic product price deflator, Ry;, the average
bank deposit rate, and, finally, R, the effective bond rate. Juselius considers the
following orders of integration:

my Y P Rag R
I(2) I(1) I(2) I(1) I(1)°

and formulates her I{1)-model in terms of the transformed variables

[ (my—p1) Y Ope Rar Rig ]




In what follows we will construct the DGP’s with the above I(1)-vector eval-
uated in the VECM in (2.2) for various model specifications. Except for the
empirical application reported in the end of the paper, all results throughout are
for a test of the linear restriction (rn; — p;) = y;. That is, that the quantity the-
ory constant of proportionality between the real money stock and income is unity,
g=1 -1 0 0 0]

4.3. Experimental design

The Monte Carlo experiments are designed to evaluate the parametric bootstrap
test in terms of size accuracy and power. In particular we want to see how
the original and the bootstrap test performs under different specification of the
VECM, conditional on sample size. To do this, we base each data generating
process on the empirical model from Juselius (1997) presented above. Each DGP is
constructed for a combination of system dimension, lag-length, and cointegrating
rank. The following combinations are considered in the following experiments:

e Size evaluation: n € {5,4,3,2}, k € {4,3,2}, r € {3,2,1}, and
T € {40, 60,80, 100, 200}

e Power evaluation: n € {5,4,3,2}, k € {4,2}, r € {3,2,1}, and
T € {60,100, 200}.

e Response surface regressions: n € {5,4,3,2}, k € {4,3,2},
r e {3,2,1}, and T € {40,45,...,95,100,110, . ..,140, 150,
175, 200, 225, 250, 300, 350, 400, 500, 600, 700, 800, 1000}

For the smaller models, n € {4,3,2}, we have eliminated the variables R;;,
Ray, and Ap;, and in that order.

The size and power evaluations concern the second class of hypothesis; a test
for the presence of r; known vectors in the cointegrating space, along with rg
unrestricted vectors, 8 = (H,9), see (2.4). In our case 7, = 1, and as noted above
Hnxr)=[1 -1 0 0 0.

For the experiments evaluating test power, data has been generated under the
following three alternatives

Hpyp:f=[1 —11 0 0 0
Haz:B8=[1 —13 0 0 0]
Huz:f=[1 —15 0 0 0




Each Monte Carlo experiment is based on 1,000 replicates and all bootstrap
distributions are generated from resampling and calculation of the test statistic
1,000 times, i.e. B = 1,000. Naturally, the level of accuracy could be improved
using a larger number of Monte Carlo replicates, a 95% confidence interval around
a 5% nominal size is [3.6 — 6.4] for 1,000 replicates. Even so, the number of
replicates, both in the Monte Carlo and in the bootstrap, seem adequate for our
purposes. Some pilot experiments were made to examine the sensitivity of the size
estimates for B € {500, 1000, 2000, 5000} (not reported), but no distinct patterns
were found, perhaps due to an inadequate number of Monte Carlo replicates
(2,000).

5. Results

The outline of this section is: response surface regressions results, followed by
Monte Carlo simulation results on the size and power properties of the bootstrap
test, and finally, in an empirical application, we will present bootstrap test results
for a set of hypotheses evaluated in Juselius (1997).

5.1. Response surface regressions

We have followed MacKinnon (1994) very closely in the design of these experi-
ments. The input for the response surface regressions presented below have thus
been calculated as follows: for a given combination of dimension, n , lag-order, k,
and cointegrating rank, r, 29 sample sizes, ranging from 7" = 40 up to T == 1000,
have been evaluated in 50 Monte Carlo experiments, with 5000 replicates in each.
We have, for a given sample size and specification, estimated 50 sets of 199 per-
centiles, i.e. cj%i,i =1,...,50. This construction of the Monte Carlo experiments
is due to the fact that the variances of estimated percentiles are non-constant, for
small sample sizes T they tend to be relatively larger. Hence some procedure to
account for heteroscedasticity is desirable. MacKinnon (1994) uses a form of gen-
eralized method of moments estimation, which has a straightforward implemen-
tation for the estimation of (4.1). Using the GMM-procedure, suitably adopted,
leads to weighted least squares estimation of the response surfaces. That is, the
sample means Gy, calculated from 50 Monte Carlo experiments, are regressed ac-
cording to (4.2), using the inverse of the corresponding standard error &, of each
& as weights.

Studying the results, we will first consider two sets of simulated cumulative
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Figure 5.1: Cumulative distributions for varying sample sizes T, using specifica-
tionn=3,k=3,andr=1.
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distributions for model specifications with a common asymptotic distribution, a
y2-distribution with 2 degrees of freedom. Figure 5.1 and 5.2 present the em-
pirical cumulative distribution functions for a selection of finite-sample sizes and
given by 199 percentiles, 5‘,}, calculated in the Monte Carlo experiments. These
figures are constructed directly from the estimated mean percentiles, so no smoth-
ing function is used.The reference curve — a x* (2) — is the solid line to the very
left. It is clear that the asymptotic distribution is not a satisfactory approxima-
tion for small samples. In Figure 5.1 we can see that even for a VECM with
relatively few parameters, the finite-sample distributions are not anywhere close
to the asymptotic distribution for sample sizes smaller than 200 observations,
Consequently, for a model with richer parametric structure as in Figure 5.2, de-
viations from the asymptotic distribution are even larger. For the specification
(n = 5,k = 4,7 = 3), a sample size of at least 500 observations is needed.

The response surface regressions are constructed according to the number of
degrees of freedom in the asymptotic distribution, for the different specifications
of the VECM. This classification works well for degrees of freedom equal to 2,
3, and 4. For these cases the relationship between the system dimension, n, and
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Figure 5.2: Cumulative distributions for varying sample sizes T', using specifica-
tionn=25,k=4,and r = 3.

Probability

Chi-sq(df=2)

40

Critical value

size distortion is more or less linear, but for d.f. = 1 the relationship seems to be
non-linear. To improve the fit of the response surface regression for this case, we
have estimated one regression for each possible dimension.

In Figure 5.3 we can see that the fitted response surface regression explains
size distortion very well, in fact so well that the two series are difficult to discern
except for large 7. The slope of the curve describes the correction due to sample
size and the texture is the correction for lag-order. This correction increases as
the sample size decreases. Let us illustrate the effects in two simple examples
for a test with 4 degrees of freedom , using the regression given in Table 5.1.
For a model with lag-order 3 and sample size T’ = 80, the regression suggests a
correction of 7.88, and for a model with the same lag-order, but a sample size of
T = 100, we get a correction of 5.37. If we instead fix the sample size to T = 100
and increase the lag-order to 4, then the regression predicts a correction of 9.21.

5.2. Size

Tables 5.2-5.5 report the Monte Carlo estimated sizes for the likelihood ratic test
in (2.4) and its bootstrapped analogue. They are organized according to the
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Figure 5.3: Deviation between asymptotic and simulated percentiles for a test
with 4 degrees of freedom and the fitted response surface regression. Each cycle

represents a given sample size for three lag-orders.
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Table 5.1: Response surface regressions, conditional on the number of degrees of
freedom,

d.f. Parameter estimates R?
4 1/t 1/t2 I3/t ly/t
165.55 26359.05 10840.15 49177.30 98.9
(6.8) (15.4) (7.5) (29.5)
3 1/t 1/¢2 I3/t2 la/t? ns/ V't ot

13244 16346.40 5934.27 21475.69 12.54  -105.09 99.3
(115)  (218)  (121) (399  (55) (49

2 1/t 1/t Ia/t ls/t na/vVt  ng/ V't
242.80 9460.34  25.30 14139  -12.03  -7.73

(4.7) (5.7) 24 (131  (34)  (22)
ns/v't o/t 3/t
36.30 -1804.06 -7167.15 97.9

(9.7) (-1.6) (-6.3)
1 1/t 1/t I3/t ly/t ng/VEt  ma/VE

80.78  9956.20  36.88 9.66 2.38 3.78
(5.5) (11.3) (4.8) (1.3) (1.8) (2.8)
‘I"g/tz l T3 /tz
-4597.61 -3200.90 95.6
(-5.9) (-4.2)
n =4 1/t 1/t Is/t L/t I3/t I/t

67.70  6189.83  171.83 14250 -3452.00 -1528.40 99.7
(11.2) (16.6) (18.8) (15.8) (-6.4) (-2.8)

n=23 1/t 1/t? la/t la/t I3/t ly/t?
57.15  8769.59 14252  62.83  -5101.28 -6068.38 99.9
(16.6) (48.7) (29.6) (127y  (-19.9)  (-23.2)

n=2 1/t 1/t I3/t ly/t Ia/t* L4/t
165.02 8539.08 -88.93  -96.73  2082.72 270.10 99.2
(14.6) (12.8) (-5.5) (-5.9) (2.1) (0.3)

Values presented within brackets are f-values of corresponding coefficient
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Table 5.2: Estimated size, in percent, for the original and the bootstrap test at a
nominal significance level of 5 percent. The asymptotic distribution is a x? (4).
T
n k r Test 40 60 80 100 200
5 4 1 Orig 98.0 847 623 46.5 17.2
Boot. 13.7 107 73 74 6.5
5 3 1 Orig 85.0 584 35.7 26.4 120
Boot. 11.2 95 6.1 7.1 46
5 2 1 Orig 72.0 345 227 15.6 10.0
Boot. 99 56 48 48 5.6

degrees of freedom in the asymptotic distributions. In general we find that the
asymptotic approximation becomes worse as the degrees of freedom increase. This
is also true for the bootstrap test. But, whereas the asymptotic test needs T' =
200 observations and 1 degree of freedom in order for the estimated size to be
anywhere near the nominal test size, it can be seen that the size distortion for
the bootstrap test is quite modest even for 7' = 40 and 4 degrees of freedom.® In
fact, when T" > 60 we frequently find that the bootstrap sizes are not significantly
larger than the nominal size.

The overall impression is that the size distortion for the bootstrap test acts
in a similar fashion as does the asymptotic test, only to a much lesser exfent.
Thus, we find that the bootstrap test deteriorates as the number of lags and
cointegrating vectors increase. With some caution, we may detect the same effect
occurring as the dimension of the system increases. However, for larger sample
sizes and smaller degrees of freedom, these patterns disappear and the nominal
and estimated sizes coincide.

5.3. Power

Tables 5.6-5.9 report Monte Carlo estimated power for the likelihood ratio test
in (2.4) and its bootstrapped analogue. Again we have organized the resuls
according to the degrees of freedom in the asymptotic distributions. The purpose
of this set of simulations is to establish the bearing of the theoretical prediction

*We intepret the size distortion for the bootstrap test as a reflection of an inadequately
estimated (bootstrap) DGP ¥ in small samples.
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Table 5.3: Estimated size, in percent, for the original and the bootstrap test at a

nominal significance level of 5 percent. The asymptotic distribution is a %2 (8).
T

r  Test 40 60 80 100 200

2 Orig. g95.6 78.1 57.0 38.6 14.9
Boot. 12.5 104 93 81 45
5 3 2 Orig 87.5 62.8 39.1 295 13.1
Boot. 105 96 82 80 52

5 2 2 Orig 55.5 23.8 15.7 133 9.7
Boot. 83 6.0 54 55 5.8

4 4 1 Orig 81.4 52.2 31.3 228 10.7
Boot. 114 89 58 53 44

4 3 1 Orig. 55.6 20.8 20.0 164 &3
Boot. 92 53 43 59 5.0

4 2 1 Orig 57.4 26.9 165 121 6.7
Boot. 83 63 50 50 48

P

s
W

of Davidson and MacKinnon (1996b), namely that power of the bootstrap test
will, for practical purposes, not be smaller than the size adjusted power of the
asymptotic test.® In order to reduce the computational burden we have chosen
not to size adjust the bootstrap power estimates, but in view of the modest size
distortion reported above, this should not hamper interpretability. Of course, the
results will also provide information, albeit limited, on what power we may expect
for the likelihood ratio test in a realistic test situation.

We find that the overall outcome supports Davidson and MacKinnons’ result,
the bootstrap power is almost as good as the asymptotic power on most occasions.
It is sometimes, and for unknown reason, dramatically worse. For instance, when
p =5 and 7 = 3, we see that the bootstrap tests performs poorly for both lag-
orders. Since the asymptotic power also behaves strangely for these cases (e.g. a
smaller power for T' = 200 than for T = 60 when k = 4), this may be a reflection
of the somewhat limited experimental control implied by use of an empirical DGP.

Unlike the experiments regarding test size, it is difficult to detect how the

6T he statement of Davidson and MacKinnon (1996b) is that the power of the bootstrap test
is predicted to differ from the power of the size adjusted asymptotic test by an amount of the
same order in T , as the size distortion of the bootstrap test itself.
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Table 5.4: Estimated size, in percent, for the original and the bootstrap test at a
nominal significance level of 5 percent. The asymptotic distribution is a x?* (2).
T
n k r Test 40 60 80 100 200

5 4 3 Orig. 84,9 747 65.6- 56.2 27.3
Boot. 3.5 85 83 83 52
5 3 3 Orig 73.7 53.7 385 281 124
Boot. 75 74 66 68 5.2
5 2 3 Orig 72.4 53.7 41.8 345 16.0
Boot. 70 51 70 6.2 5.2
4 4 2 Orig 62.6 33.1 21.1 164 738
Boot. 91 35 40 6.5 5.1
4 3 2 Orig 63.8 40.5 249 190 86
Boot. 94 81 5.6 BT 4.5
4 2 2 Orig 39.3 199 12.1 11.0 5.9
Boot. 76 6.6 45 58 3.6
3 4 1 Orig 56.0 53.7 23.3 186 8.5
Boot. 88 73 70 6.9 4.5
3 3 1 Orig 35.9 187 12.8 107 6.9
Boot. 6.8 6.3 47 5.0 4.8
3 2 1 Orig 459 24.1 133 105 7.5
Boot. 80 67 45 49 5.9
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Table 5.5: Estimated size, in percent, for the original and the bootstrap test at a
nominal significance level of 5 percent. The asymptotic distribution is a x* (1).
T
n k r Test 40 60 80 100 200

4 4 3 Orig. 447 252 169 144 83
Boot. 74 59 6.1 45 4.9
4 3 3 Orig 33.8 22.6 149 134 84
Boot. 53 7.5 52 63 58
4 2 3 Onig. 282 146 98 107 7.0
Boot. 54 49 50 55 5.1
3 4 2 Orig 248 158 148 11.1 7.0
Boot. 66 63 63 b1 5.0
3 3 2 Orig 27.7 18.8 135 125 7.9
Boot. 73 6.6 54 56 64
3 2 2 Orig 340 184 132 104 6.3
Boot. 84 66 63 6.0 4.5
2 4 1 Orig. 310 158 136 99 7.5
Boot. 72 55 54 49 43
2 3 1 Ornig. 349 186 123 95 5.5
Boot. 59 6.2 59 45 37
2 2 1 Orig. 40.1 30.8 16.2 134 6.5
Boot. 7 7.4 50 57 45
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Table 5.6: Power, in percent, for the original and the bootstrap test at a nominal
level of 5 percent, presented for 4 df.
Alternative hypothesis
-1.1 -1.3 —-1.5
60 100 200 60 100 200 60 100 200
Orig. 10.0 10.7 884 9.7 40.2 100 12.9 83.6 100
Boot. 10.3 85 86.8 10.2 29.8 100 11.4 585 100
5 2 1 Orig. 39 48 106 43 63 299 85 32.0 320
Boot. 5.1 48 10.7 56 6.2 26.6 6.7 28.0 28.0

orfl 3
(-
e

power is related to the size and complexity of the system. However, in general,
and as expected, the power increases with sample size and distance between the
null and the alternative. The power for the larger sample size, T' = 200, is
reasonable, irrespective of which alternative we use. For the sample size which
is frequently at hand in empirical applications, T = 100, the results are not very
reassuring. For the smaller sample size, T = 60, the power estimates are only
occassionaly significantly larger than the nominal test size.

5.4. Empirical application

The purpose of the following empirical application is to demonstrate how infer-
ence about long-run economic relationships may shift when asymptotic tests are
substituted for bootstrap analogues. We have re-evaluated the asymptotic tests of
the hypotheses labeled H; ~ Hjq in Table 6.1 in Juselius (1997), moreover corre-
sponding bootstrap tests have been calculated, see Table 5.11. These hypotheses
are examples of the third class, § = (Hyp, ), i.e. r vectors are restricted and
remaining r — 7; vectors are estimated unrestrictedly.

Hypotheses Hs, Hg, Ha1, and His cannot be rejected by either test, likewise
both tests reject hypotheses Hi, Ha, Hs, and Hig, although Ha and Hyo are bor-
derline cases using the bootstrap test. Hypothesis H4 concerns the stationarity
of the real bond rate and is not rejected by the bootstrap test. Consequently Hg
- the stationarity of a linear combination of inflation and the nominal bond rate
- is also insignificant. Bootstrap testing of hypothesis Hy indicates that the real
deposit rate is also stationary, and so is a linear combination of inflation and the
nominal deposit rate implied by Hs.
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Table 5.7: Power, in percent, for the original and the bootstrap test at a nominal
level of 5 percent, presented for 3 df.
Alternative hypothesis
-1.1 -1.3 -1.5
n k r 60 100 200 60 100 200 60 100 200

Orig. 258 154 705 27.0 33.7 100 31.2 67.0 100
Boot. 10.1 89 53.8 9.8 184 998 104 342 100
5 2 2 Orig.. 56 64 331 5.4 129 100 6.7 19.1 100

Boot. 59 6.1 319 6.1 131 100 6.6 183 100
4 4 1 Orig. 54 54 849 72 193 106 . 9.0 185 100

Boot. 9.2 7.1 84.9 85 17.8 100 9.6 16.9 100
4 2 1 Orig. 55 53 159 9.1 16.0 96.1 21.0 426 96.8
Boot. 5.5 5.7 158.9 85 145 93.5 11.3 22.7 938

R
N
b

Table 5.8: Power, in percent, for the original and the bootstrap test at a nominal
level of 5 percent, presented for 2 df.
Alternative hypothesis
-1.1 -1.3 -1.5
n k r 60 100 200 60 100 200 60 100 200
5 4 3 Org. 170 8.8 16.1 16.1 15.5 41.1 179 95 10.6
Boot. 83 89 139 9.3 119 213 83 85 110
5 2 3 Org. 54 7.0 408 7.9 36.1 822 12.5 33.0 75.9
Boot. 5.7 6.7 29.1 9.6 17.5 29.9 10.2 131 224
4 4 2 Orig. 71 62 628 8.2 10.8 100 125 9.6 787
Boot. 5.3 6.1 624 62 99 100 6.7 T4 TT.2
4 2 2 Omg. 583 51 583 6.0 53 6.2 8.7 138 742
Boot. 5.8 49 54 59 51 59 7.3 121 725
3 4 1 Ong. 73 73 717 86 169 100 1.7 239 100
Boot. 7.2 6.2 69.2 8.0 140 100 8.7 172 100
3 2 1 Orig. 54 46 82 75 9.9 674 135 29.7 96.2
Boot. 5.5 4.7 8.0 81 0.3 66.1 9.3 21.0 921
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Table 5.9: Power, in percent, for the original and the bootstrap fest at a nominal

level of 5 percent, presented for 1 df.

Alternative hypothesis

—1.1 -1.3 —-1.5
n k r 60 100 200 60 100 200 60 106 200
4 4 3 Orig. 55 43 17.2 7.2 109 61.5 9.8 19.0 B1.7
Boot. 5.0 6.5 17.5 7.0 11.6 60.0 75 1683 75.8
4 2 3 Orig. 48 49 213 3.7 86 099.9 3.5 41.9 100.
Boot. 4.2 4.7 21.5 32 86 999 3.1 41.0 100
3 4 2 Orig. 57 65 889 5.5 244 100 5.2 46.0 100
Boot. 5.5 6.0 88.3 50 221 100 44 424 100
3 2 2 Orig. 58 47 &8 5.7 41 21.2 91 6.7 9.3
Boot. 5.0 4.8 5.8 55 4.7 21.0 69 53 835

Table 5.10: Original and bootstrap test of liner restriction in the cointegrating

space, the restriction on § are defined as § = (01 H,¢) .

original test Boot-test

mi—p Yy Opr Ryy Re: D83 x*(v) pval per pual

7-(1 0 1 0 141 0 -08 13.0(1) 000 10.7 0.3
Ho 0 1 0 0 39 -09 13.5(1) 0.00 124 0.04
Ms 0 1 145 0 0 .08 053(1) 047 611 0.58
Ha 0 0 -1 0 1 .001 148(2) 000 146 0.05
Hs 0 0 1 0 -0.2 .014 7.23(1) 0.01 732 0.05
He 0 0 0 1 -1 -0l 115(2) 0.00 147 0.01
Ha 0 0 -1 1 0 -0l1 54(2) 007 109 0.24
M 0 0 -14 1 0 -017 52(1) 002 753 0.11
Hg 0 0 0 1 -0.5 -.003 0.07(1) 0.80 764 0.84
Hao 0 0 1 -05 0.05 .017 7.8(1) 001 7.06 0.04
Hy 1 -1 0 0 72 -18 0.00(1) 096 6.66 0.7
Hao 1 -1 0 -141 141 -1.80 0.02(1) 0.89 5.98 0.90

per denots the 5% percentile of the bootstrap distribution. Compare with
XEos (1) = 3.84, x5 (2) = 5.99. The bootstrap-tests are based one 5000

replicates.
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Table 5.11: Estimated sizes for testing an hypothesis of type 8 = (He, 1), in
percent, at a nominal level of 5 percent.

T =80
Test
n k r Orig. Boot.
4 4 3 16.1 4.6
4 4 2 24.5 4.7
4 3 3 17.1 5.3
4 3 2 24.8 6.4
4 2 3 11.8 6.0
4 2 2 13.6 6.2

Finally, in a minor Monte Carlo experiment we examine the size properties
of the bootstrap tests applied in Table 5.11. For this experiment the restriction
matrix H is set to

61000
Hnxs)=|00100
0 0001

Due to the extensive computational effort involved (the maximum likelihood
solution has to be iterated), the experiment is restricted to the following cases:
n=4, ke {4,3,2}, r € {3,2} and T = 80. The results in Table 5.12 show that
there is no significant size distortion for the bootstrap tests.

6. Conclusions

The likelihood ratio test statistics that are used for checking linear restrictions
on cointegrating vectors, are not xZ distributed in small samples. Depending
on the complexity of the empirical model, convergence towards the asymptotic
distribution is attained for various small sample sizes, but rarely for such that e.g.
quarterly macro data imply.

This paper demonstrates that a parametrically bootstrapped likelihood ratio
test is, more or less, unaffected by size distortions. Moreover, the power of the
bootstrap test turns out to be almost as good, or bad, as size adjusted power for
the asymptotic test. These results are based on Monte Carlo simulations using
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an empirical model as data generating process. Hence, we believe that they have
bearing for the test behaviour in empirical models.

Extensive simulation experiments have provided input for response surface
regressions that seek to explain the size distortion of the asymptotic test in terms
of system dimension, lag order, cointegrating rank, and sample size. The i for the
regressions are extremely good, and suggests that they could be used for inference
purposes, albeit being based on one particular empirical model.

The general conclusion is that bootstrap hypothesis testing is a useful de-
vice for robust inference in this context. Obviously, further work is needed to
check sensitivity against model mis-specification such as incorrect lag order and
deviation from the normality assumption.
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