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ABSTRACT

The intervention policy of the Swedish Central Bank is studied using daily
data on all intervention instruments during the late 1980s. In sharp contrast
to the first generation Krugman target zone models, it is found that the
interventions occur all over the exchange rate band and almost every day.
To capture this feature this paper uses a model with continuous interventions
that increase in size when the exchange rate moves from some preferred level,
implying that interventions nof only takes place ai the boundaries. This
gives a strong mean reverting behaviour of the fundamental. In addition,
time varying devaluation expectations are included in the model. The model
is then estimated using the method of simulated moments. The results -
indicate that this model captures the characteristics of Swedish exchange
rate data better than the Krugman model. The éstimated degree of mean

reversion is substantial.






0. Introduction

The basic target zone model due to Krugman [1991] has been more or less rejected
in a number of empirical tests. The Krugman model suggests a non—linear relationship
between the exchange rate and some fundamental determinant of the exchange rate, with
more pronounced non-linearity close to the boundaries of the target zone. Moreover, this
model implies that the exchange rate distribution should be U—shaped. However, no strong
evidence of non—linearities nor bi—modality in the exchange rates distributioﬁ has been
presented. Lindberg and Soderlind [1992] suggest that this, in the Swedish case, could be
explained by the presence of mean reverting intra—marginal interventions. The aim of this
paper is to formulate a target zone model with a more realistic intervention rule and to
study whether it fits Swedish data better than the Krugman model.

Section 1 summarizes some results from attempts to test the Krugman model.
Section 2 provides a study of how Swedish intervention policy is conducted, using a ynique
data set of Swedish central bank interventions. The mair conclusion is that there is
evidence of exchange rate targeting within the band, exchange rate smoothing, and interest
rate smoothing. Section 3 formulates a model with intra-marginal interventions which
increases in size when the exchange rate moves from some preferred level — in addition to
the Krugman interventions at the boundaries. Furthermore, time varying devaluation
expectations are included in the model. In section 4, the model is estimated on daily
Swedish data by the method of simulated moments. The results indicate thai the model
captures the characteristics of Swedish exchange rate data much better than the Krugman

model. Finally, in section 5, our conclusions are summarized.




1. What is wrong with the Krugman model?

This section summarizes the Krugman [1991] model and some results from attempts

to test the model.

The model starts with the standard asset price relation
(1.1) s(t) = f(1) + oE,[ds(1)]/dt,
where s(t) is the logarithm of the exchange rate at time ¢ (that is, the price of the foreign
currency in terms of the own currency), f(t) the fundamental determinant of the exchange
rate, @ a positive parameter and E : the time ¢ expectations operator. The fundamental can
be thought of as
(1.22) F(1) = n(2) + v(1),
where m(%) is the logarithm of the money stock, which is controlled by the monetary
authority, and v(t) the sum of the logarithms of velocity and other macrovariables
exogenous to the exchange rate. For notational convenience, the latter will henceforth be
called just velocity. Velocity is assumed to be a Brownian motion,
(1.2b) du(t) = o, d¥ ().
In (1.2b), ¢, is a constant instantaneous standard deviation and ¥, a standard Wiener
PIOCess.

The central bank keeps the exchange rate to a band, s < s(¢) < s. This is done by
restricting the fundamental to a band, f< f< f One of the critical assumptions in the
Krugman model is that the central bank only intervenes at the boundaries of the exchange

rate (and the fundamental) band:
dL>0 only if f=f,

: d = - , W
(1.3) m(t) = dL(t) — dU(1), where {dU>0 ouly if £-7,

where df and 47 are infinitesimal interventions.

It can be shown that the the exchange rate function s{f(?)] is

(1.4) s[f(1)] = f(t) —24sink [Af(1)],



where sinh(z) denotes the hyperbolic sine function ((e=—e=)/2) and the constant 4 remains
to be determined. In a target zone 4 can be determined from the "smooth pasting"

condition, which requires that ds(f)/df=0. This gives the target zone exchange rate

function

(1.62) S[F(1)] = £(t) —sinh [\f(£)]/ [Acosh (A7)
where cosh(z) denotes the hyperbolic cosine function ((e2+e7)/2) and
(1.6b) A = [2/(eo?)]}.

The Krugman model has a number of testable implications. Among these, we note
the following. First, the exchange rate is a non-linear function (S-shaped) of the
fundamental and the slope is always less than one ("the honeymoon effect"). The
non—linearity is more pronounced close to the target zone boundaries.! Second, the
relation between the interest rate differential and the exchange rate is negative, and weaker
for longer maturities.? As a consequence of these two facts, the degree of non—linearity in
a prediction equation for the exchange rate decreases with the forecasting horizon. Third,
the exchange rate distribution is U~shaped.3

The existence of non—linearities in a target zone context has been studied by several
authors. Meese and Rose [1990] compare the in—sample prediction power of a locally
weighted regression (LWR) and an OLS of a linearization of (1.6a), for, among others,
some EMS currencies. The LWR is a non—parametric approach, which can be regarded as
fitting a series of linear approximation to some smooth non—linear function. They use data
on money supply and industrial production in order to construct a proxy for the
fundamental (f). The results show no strong evidence of non—linearities. Diebold and
Nason [1990] reach the same conclusion for some EMS currencies when comparing the

out—of—sample prediction power of a random walk and an LWR. of an AR(1) structure.

IThis is shown by Krugman [1991].
2This is shown by Svensson [1991b].
3This is shown by Svensson {1991a].



Flood, Rose and Mathieson [1990] cannot either find any out—of—sample evidence of
non—linearities in EMS data using a parametric approach. Lindberg and Soderlind [1992]
compare an AR(5) and an LWR for the Swedish krona for various out—of—sample
forecasting horizons and periods. They find slight evidence of non-linearities during
periods when the exchange rate was close to the target zone boundaries. All in all, there is
only weak support for non-linearities.

The evidence on the distribution of the exchange rate is fairly clear in its rejection
of the Krugman model. Flood, Rose and Mathieson [1990] study EMS currencies and find
some but small evidence of bi~modality in the exchange rate distribution for the Belgian
franc, Danish krone and French franc and no evidence at all for the Dutch guilders and
Italian lira. In very few cases do they find any major clustering of observations close to the
boundaries. Lindberg and Soderlind [1992] show that the shape of the distribution of the
Swedish krona has some similarities with a normal distribution (and explicit tests cannot
reject the hypothesis that the exchange rate distribution is in fact normal).

Any credible exchange rate band with some kind of mean reverting mechanism (that
is, as long as the exchange rate band boundaries are not absorbing) should result in a
negative correlation between the exchange rate and the interest rate differential. In the
Krugman model that relationslﬁp is determinisiic and the relation becomes weaker for
longer maturities. The empirical evidence strongly rejects a deterministic relation between
exchange rates and interest rate differentials. This is in itself a rejection of the Krugman
model. The empirical evidence on the correlation sign is mixed. Flood, Rose and
Mathieson [1990] find no clear pattern in the correlation between the interest rate
differential (with 2 days to maturity) and the exchange rate for the EMS currencies.
Svensson [1991] studies the Swedish krona and the interest rate differential for 1,3,6 and 12
months and finds negative correlations, with smaller absolute values for longer terms,
which is in line with theory. On the other hand, in Lindberg and Soderlind [1992] we get

the opposite result, using a somewhat different and longer sample of Swedish data. We



find positive correlations, which increase with longer terms. Kontulainen, Lehmussaari and
Suvanto [1990] note that for the Finnish markka, the correlations are negative and more so
with longer terms. All these mixed results highlight the importance of the credibility of
the exchange rate policy. Rose and Svensson [1991} and Lindberg, Svensson and
Séderlind [1991] attempt to quantify the devaluation expectations for the French franc and
the Swedish krona, respectively. The results indicate that the devaluation expectations
fluctuate substantially over time and that they are occasionally of significant magnitude.
We believe that the empirical performance of the Krugman model can be much
improved by the explicit introduction of time-varying devaluation expectations and
mean-reverting intra-marginal interventions. In order to motivate the introduction of
intra-marginal interventions, we shall first present some empirical facts about the Swedish

intervention policy.
2. Description of the Swedish intervention policy

In August 1977 Sweden withdrew from the then existing European system for
exchange rate collaboration (known as the snake) and pegged the krona unilaterally
vis—a~vis a trade weighted currency basket. The krona was devalued in November 1981
and October 1982. In June 1985 the bandwidth was officially declared to be #1.5% around
the benchmark value, the central parity. For the earlier period Sveriges Riksbank (the
central bank of Sweden) claims to have been defending an unofficial zone of +2.25%. In
May 1991 the Riksbank abandoned the currency basket and pegged the Swedish krona to
the theoretical ecu. This measure was not accompanied by any realignment of the krona
and the basic characteristics of the exchange rate system prevailed. The ecu peg is
unilateral and the bandwidth is unchanged.

The Swedish exchange rate and credit market regulations were gradually dismantled



during the 1980s.4 Since December 1985 Sweden has relied on a market oriented system
for the implementation of monetary and exchange rate policy. The key element of the
institutional framework is a predetermined supply function for borrowed reserves, that is,
discount window borrowing of the commercial banks from the Riksbank.’ 8 The
commercial barks have unlimited access to discount window borrowing. However, the
marginal borrowing rate is increased, in a predetermined step by step fashion, when
discount window borrowing rises. The amount of borrowing permitted for an individual
bank at each marginal rate is related to the capital base of the bank. Moreover, the
Riksbank uses lagged reserve accounting to fix the demand for reserves by the banks.?
Thus, to the extent that the demand for total reserves is sensitive to the interest rate it is
due to the elasticity of the currency demand of the public. This means that the demand for
total reserves is more or less insensitive to interest rate changes in the very short run,
which implies that the supply of total reserves is neither an instrument nor an operative
target for Swedish monetary policy.

In the Swedish case, the overnight interest rate is treated as the operative
(intermediate) target for monetary policy whereas the supply of non-borrowed reserves is
the principal monetary instrument. By adjusting the supply of non—borrowed reserves,
using non—sterilized interventions in the foreign exchange market or the domestic market
for government bills, the Riksbank is able to force the banks to borrow at the preferred
marginal borrowing rate. As the demand for reserves by the banks is fixed and the banks
have free access to discount window borrowing at an increasing rate, non—sterilized

interventions can operationally be defined as central bank operations that affect the

4Gee, for instance, Englund [1990] for a review of the deregulation process.

5For a discussion of the institutions, targets and instruments in Swedish monetary policy see HOrngren
and Westman—MAartenson [1991].

8The similarities to the German system, described by Batten et al [1990}, are obvious. A comparison
between the Swedish, the US and the German system is made by Freedman [1990].

7The accounting period is one month and required reserves is adjusted with a two month lag.



amount of discount window borrowing and thus the marginal borrowing rate. The central
bank has almost complete control of the overnight interest rate, as no bank is willing to
pay more for overnight funds than the marginal rate offered by the central bank.® By
following this procedure the central bank is also able to influence interest rates on longer
maturities and to control the exchange rate. Of course, the Riksbank is not able to control
the exchange rate independently of the interest rates. A simplified balance sheet of the
Riksbank and some definitions are provided in Appendix 1.

Let us now take a closer look at how Sveriges Riksbank has designed its intervention
policy and make some comparisons with the intervention rule of the Krugman model (1.3).
We will proceed by making a cursory visual inspection of the interventions across the
exchange rate band and finally by looking at some simple stylized facts, that is, how
interventions are correlated to exchange rates and interest rates. The intervention data,
made available by Sveriges Riksbank, are daily and cover the period January 1988 to
December 1990, that is, 746 observations. The data have been purged from a few
observations coinciding with changes in the shape of the supply curve of borrowed reserves
since these changes were accompanied by interventions that were made to offset any effects
on the marginal borrowing rate. Interest rates, that is, Euro—deposit rates quoted at
around 10 a.m. Central European time, were obtained from the Bank for International
Settlements. The exchange rate is the official fixing rate at 10.40 a.m. in units of kronor
per unit currency basket. Diagram 2.1 shows the exchange rate as the percentage deviation
from central parity for the period January 1988 to December 1990. The exchange rate is
ranging from —1.5 to 0.8 during this period and the mean is —0.6.

In the very short run, the Riksbank stabilizes the exchange rate with the help of
spot interventions in the foreign exchange market. The interventions in the spot market

take place quite frequently. The Riksbank sterilizes some of the interventions with the

8See Englund et al. [1989] for an analysis of the operative characteristics of the system.



help of currency swaps, repurchase agreements and reverse repurchase agreements.?
During the sample period, the Riksbank acted as a net seller of foreign currency in 15% of
the business days and as a net buyer in 33% of the business days, while the krona was at
the (lower) boundary only during less than 1% (6 days) of the trading days. This is clearly
not in line with the intervention rule in the Krugman model, where interventions are
assumed to take place only at the boundaries of the exchange rate band.

Diagram 2.2 shows the intensity of the spot interventions across the exchange rate
band as net purchase of foreign currency per day in 0.2% intervals of the band. Near the
strong edge of the band, to the left in the diagram, the Riksbank buys foreign currency as
expected. Moreover, net purchases are smaller closer to the center and for some intervals
the Riksbank acts as a net seller. This supports the idea of a mean reverting policy rule
with intra—marginal interventions. In that case, one would also expect to find net sales of
foreign currency in the intervals close to the weakest position of the krona, but we actually
observe the opposite, that is, large net purchases of foreign currency. These observations
ieﬂect two short periods of huge interventions in the market for government bills in
February 1990 and October 1990, respectively. On both occasions, the interest rates were
increased sharply by the Riksbank in response to a supply pressure on the krona.
Consequently a demand pressure for Swedish kronor followed, which was in line with the
aim to reverse foreign exchange flows. The appreciation of the krona was then partly
counteracted by the Riksbank that bought foreign currency spot. This illustrates that
other types of interventions than in the foreign exchange market are of importance for the
control of the exchange rate.

The most important monetary instruments are repurchase and reversed repurchase

agreements that the Riksbank makes with market makers in Swedish government bills.

%A repurchase agreement is a combination of a open market purchase and a forward contract to resell the
assets at some future date. A currency swap is an agreement to sell (buy) foreign currency at one date
and to buy (sell) it from (to) the same counterpart at a future date.
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These agreements normally cover a period of one to seven days. During the sample period,
repurchase or reversed repurchase agreements were made by the Riksbank in 30% of the
business days. Together with the Riksbank’s activity in the foreign exchange market, this
gives the picture of a central bank that intervenes almost continuously. On some occasions
the Riksbank also intervemes directly in the spot market for government bills, that is,
makes open market operations. The change in the Riksbank’s holdings of government bills
across the exchange rate band are shown in Diagram 2.3.1° It is obvious that
intra—marginal interventions is the rule rather than an exception. It is also worth noting
that the Riksbank has decreased its holdings of government bills substantially in some of
the weaker intervals of the band to defend the exchange rate.

The spot interventions in the foreign exchange market and the change in the
holdings of government bills can be viewed as different components of dm in equation (1.3),
while the change of non—borrowed reserves corresponds closely to dm itself.i Therefore, let
us check how the supply of non—borrowed reserves has been managed by the Riksbank in
order to get a better overall picture of the intervention policy. Diagram 2.4 shows the
change in non—borrowed reserves across the exchange rate band. The diagram makes it
evident that the Riksbank adjusts the amount of non—-borrowed reserves to conirol the
exchange rate intra—marginally.

In comparison with the Krugman model we must conclude that an intervention rule
with nothing more than infinitesimal interventions at the boundaries of the exchange rate
band is ill suited as a description of the Swedish intervention policy. It is obvious that the
intervention rule should include intra—marginal interventions. However, the question is
then how the intra—marginal interventions should be modelled. The choice of model should

of course be based on the stylized facts. The inverted U—shape of the Swedish exchange

0The Riksbank's holdings of government bills are also influenced by overnight government borrowing at
the Riksbank.

11See appendix 1 for a definition of non—borrowed reserves.



11

rate distribution, rather than a U—shape as predicted by the Krugman model, indicates
that fundamentals are mean reverting, which could arise from a mean reverting
intra—marginal policy rule. So far, the evidence presented in diagrams 2.2—4 is mixed.
Therefore, it might be fruitful to us to study this in more detail.

Table 2.1 shows the correlations between interventions and a selected set of
variables. The significant negative correlations between the interventions and the first
difference of the exchange rate are quite interesting, since they indicates that preferences
for exchange rate smoothing may have influenced the intervention policy of the Riksbank.
If there is no drift in velocity, an intervention rule that omly includes mean reveriing
interventions would produce positive correlations to the first difference of the exchange
rate. Therefore, we must conclude that there is evidence in favour of exchange rate
smoothing. There is also a strong positive correlation between the change in non—borrowed
reserves and the first difference of the 6—month interest rate. This indicates that
preferences for interest rate smoothing, to some extent, influence the intervention policy of
the Riksbank. This is not surprising, since interest rate smoothing is a well-known

behaviour of central banks.12

12G¢e, for instance, Batten et al, [1990].
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Table 2.1 : Correlations between interventions and a set of macro variables.t

Net spot Change in Change in
purchase of government non—borrowed
foreign bills Teserves
currency holdings
Exchange rate 0.03 —0.04 —-0.01
(0.83) (0.22) (0.64)
First difference ~0.28 -0.04 ~0.10
of exchange rate (0.00) (0.35) (0.03)
Interest rate 0.28 —0.06 0.02
differential * (0.01) (0.22) (0.37)
Interest rate * 0.19 ~0.04 0.03
(0.03) (0.21) (0.26)
First difference 0.06 0.10 0.13
of interest rate® (0.45) (0.15) (0.06)

tThe probability values within parentheses were estimated using the method Newey—West (1987) with
10 lags.

2 g—month interest rates on Euro—deposits.

Now, let us check if there is any evidence of a mean reverting policy rule. The
correlation coefficient between the level of the exchange rate and the change in government
bills holdings is negative, which supports the idea of a mean reverting policy rule.
However, there is a contradicting positive sign of the correlation between spot
interventions, that is, net purchases of foreign currency, and the exchange rate. This is not
of major importance since there is an overall support for a mean reverting policy rule due
to the negative correlation between the change in non—borrowed reserves and the exchange
rate. However, it is worth noting that none of the correlation coefficients to the level of the

exchange rate are significant. This might indicate that the target level of the exchange
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rate within the band has been changed during the sample period. However, exchange rate
and interest rate smoothing add a lot of noise to the intervention data, which makes it
more difficult to detect any distinct evidence of exchange rate targeting within the band in
daily data. To check the latter possibility we used a data set ranging from January 1987 to
December 1990 with monthly averages of the exchange rate and monthly interventions.
The correlations to the exchange rate level turn out to be much stronger in monthly data.
The correlation coefficient between net spot purchase of foreign currency and the exchange
rate is -0.08. The correlation coefficient between the change in non-borrowed reserves and
the exchange rate is -0.16. Thus, a study of monthly data strengthen the case for a mean
reverting policy rule.

Thus, in the Swedish case, there are signs of preferences for exchange rate and
interest rate smoothing, a sort of gemeral "leaning against the wind" policy. It is also
possible to argue that the Riksbank has a preferred exchange rate level in the band and to
some extent tries to minimize deviations from that level, that is, to minimize the
asymptotic (unconditional) standard deviation of the exchange rate. A number of
intervention rules could most certainly be considered in light of these facts. However, we
choose to make a very simple extension of the intervention rule in the Krugman model.
We allow for continuous interventions that increase in size when the exchange rate moves
from some preferred level, implying that interventions are made not only at the boundaries.
This intervention rule is consistent with the observed correlations between interventions
and the exchange rate level. We will also briefly discuss how the modelling of the
intervention rule should be modified to account for the correlations between interventions

and the first difference of the exchange rate.
3. Devaluation expectations and intra-marginal interventions

In Sections 1 and 2 we argued that there is plenty of evidence of devaluation
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expectations and that the Riksbank has pursued a very active intervention policy. The
effect of the former is a non-deterministic relation between the exchange rate and the
interest rate differential, and for some periods, a positive correlation sign between the
exchange rate and the interest rate differential. The effect of the latter is an exchange rate
rate distribution with much more mass at the interior of the band than predicted by the
Krugman model. To capture these features in a formal exchange rate model suitable for
estimation, we propose a combination of the Bertola—Svensson [1990] model for time
varying devaluation expectations and the mean reverting interventions discussed in, among

others, Delgado and Dumas [1991].

A. Stochastic devalnation risk

This subsection presents a version of the Bertola—Svensson [1990] model for stochastic
devaluation risk.

The logarithm of the exchange rate s(¢) can be decomposed into the exchange rate
within the band z(t) (approximately the percentage deviation from central parity) and the

logarithm of the central parity c¢(t)

(3.1a) s(t) = z(t) + c(1).
In a similar fashion, we decompose the money supply m(t) as
(3.1b) m(t) = (1) + c(1).

The () component can be thought of as an instrument for governing the current
exchange rate band. The ¢(¢) component, the central parity, is constant{ except during
devaluations when it takes a jump. We assume that 2(¢) and ¢(¢) are independent
stochastic processes and that the width of the exchange rate band is constant. This means
that [s(¢),5(2)] = [z+¢(2),E+¢c(¢)] holds, where [z,Z] is the constant band for z({), and
z(t) does not jump at a devaluation. Using this notation the asset pricing relation (1.1)

can be written as

(3.2) z(t) + ¢(2) = v(t) + a(t) + c(2) + oE[dz(2) + de(2)]/d1.
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Let g(1) denote the expected rate of devaluation,

(3.32) o(1) = BJde(1)]/dt,
and A(t) a composite fundamental,

(3.3b) h(1) = v(2) + () + ag(1).
This enables us to express (3.2) as

(3.4) z(t) = k(1) + oB [dz(2)]/d1,

which indeed looks similar to (1.1).

Similarly to (1.2b) we assume that g(t) follows
(3.5) dg(t) = apdi (1),
where ¥, is a standard Wiener process.® Furthermore, we assume that v(t) and g(t) are
independent, which means that the sum of v»(¢) and ag(t) (the exogenous continuous
processes) follows
{(3.6a) dlv(t)+ag(t)] = ad¥(t),

where d¥ is a standard Wiener process and

(3.6b) c=y op + %o} . |

Note the formal similarity between (3.6a) and (1.2b). In the case with only marginal
interventions, Bertola and Svensson [1990] show that the solution of the model for z{t)
specified by (1.3) and (3.3-3.6) is formally the same as in the Krugman model (1.6) with

h(t) and ¢ replacing f() and ¢,. This means that the exchange rate band is now defined

in terms of z and } instead of s and f.

B. Continuous and mean reverting interventions

This subsection formalizes the notion of continuous and mean reverting interventions by
making use of the Ornstein—Uhlenbeck process, previously analyzed by, among others,

Delgado and Dumas [1991]. The distributional effects of this intervention rule are derived

13Bertola and Svensson [1990] allow for both drift and non—zero correlation between the standard
fundamental (velocity) and the expected rate of devaluation.
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in Appendix 2.

According to (3.1b) interventions dm() take two forms: occasional jumps in e(t),
that is, devaluations (of either sign) and infinitesimal changes in a(t), denoted ds(?), in
order to keep z({) within the band [z,3]. The policy rule for devaluations is not an issue
here, so we focus on n(¢}.1

In addition to the Krugman interventions (1.3) we assume continuous interventions
of increasing size as the exchange rate moves way from some preferred level. This can be
formalized as

dL>0 only if h=h
(3.7) du(t) = —p[h(1) — ho}dt + dL(t) — dU(2), where {dﬁ>0 oy if A,
where h and  are the boundaries of the band for % (t). In (3.7) ho corresponds to a
preferred exchange rate level within the band zo=1{ho), and p is a constant positive policy

parameter. Combining (3.6a) and (3.7), we find that in the interior of the band the

composite fundamental follows the Ornstein—Uhlenbeck process
(3.8) dh(t) = —p[h(2) — holdt + ad¥(2).

Compared with the formulation in the Krugman model (1.2b) or the
Bertola—Svensson model (3.6a), (3.8) means that we have introduced a variable drift
parameter. The drift becomes negative when (%) exceeds the preferred value Ay, and vice
versa. This tends to make the h(t) process mean reverting also without the interventions
at the boundaries, that is, reverting to the value kp. At the boundaries, we have the
jnfinitesimal marginal interventions as before.

It is shown in Appendix 2 that the density function for the composite fundamental

is

14Gee Bertola and Svensson [1990] for a study of the statistical implications of various atochastic processes
for ¢(f), Lindberg, Svensson and SOderlind {1991] for an attempt to identify the driving variables of g(1},
and Edin and Vredin [1991] for an attempt to estimate the actual devaluation policy rule of the central
banks in the Nordic countries.
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(3.9) #(h) = K expl—p(h—ho)?/a’], he[h,]
with the constant K determined by the requirement that the integral over [h,A] equals
unity. Hence, the distribution of the regulated Ornstein—~Uhlenbeck process is simply a
truncated normal distribution. In contrast, the fundamental in the case with a Brownian
motion without drift is uniformly distributed on [4,4].

Using (3.3b), (3.4), (3.7) and applying Ito’s lemma, we have that the function for
the exchange rate within the band z[A(?)] must fulfill the second order differential equation

2 .
(3.102) ygﬁiﬂ+ G- g%(ﬂ—ii—pz(y) +2§—p = 0, with
(3.10Db) y = plho—h(2))*/ 0%

The homogeneous equation associated with (3.10a) is the so called Kummer’s equation.

The general solution is

_ _h + aphg 1 1p{hy—h)? 1+ap 3 p(ho—h)2] o (ho=h)
(3.11a) o(h) = Larhe 4 E[zap,i, (k + Bl (hoh)
where 4 and B are two constants and X(.) is

(3.11b) Haby)=1+%4 %{-ﬁ}}}g—? + %%}g ¥

the so-called Kummer’s function.15

The constants 4 and # are determined by the smooth pasting conditions.
Furthermore, the boundaries and the mean of the composite fundamental (%) can be
determined from the boundaries (z,%) and the mean (zo) of the exchange rate.!d Hence,

4,8,h,k and kg can be obtained from

dz(h)/dh =0
dz(R)/dh =0
(3.12a—¢) z = z(h)
z = g(k)
To = z(ho)

15See Abramowits and Stegun [1972] or Pearson [1990].
18This solution has been derived by Froot and Obstfeld [1991] and Delgado and Dumas [1991].
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The resulting exchange rate function will henceforth be called the regulated exchange rate
within the band.

A freely floating exchange rate would amount to no interventions, which implies
that p=A=HF=0, and (3.11) becomes z(k)=h and, by (3.1a), s(¢)=~(t)+c(?). The case
with mean reverting interventions (p>0), but without any exchange rate boundaries
(implying 4=B8=0) could be interpreted as a managed floating exchange rate, with
s(8)=[h(t)+eaphd/(1+ap)+c(t).

The density function of the exchange rate within the band can be found by applying
the lemma on change of variable in density functions
(3.13) ¥(2) = ¥z )| 24D | ze(z2),
where z{.) denotes the inverse of the exchange rate function (3.11) and #(.) the density
function for the composite fundamental given in (3.9). Note that the density function is
defined only in the interior of the exchange rate band due to the smooth pasting conditions.
Unfortunately, there is no explicit form for this density function, but it can easily be
calculated numerically.

The function for exchange rate within the band and the distribution are illustrated
in Diagrams 3.1-3.4. For these diagrams, we have used the parameter values e=3 years,
¢=0.1 per vyear, z=—1.5%, 7=1.5%, z¢=0 and ¢(¢)=0. In Diagrams 3.1-3.2 p=1 per year
and in Diagrams 3.3-3.4 p=3 per year. In Diagrams 3.1and 3.3, the freely floating
exchange rate and managed floating exchange rate are also illustrated. It is clear that with
these parameter values, the intramarginal interventions do much of the job to stabilize the
exchange rate, since the managed floating exchange rate is very close to the regulated
exchange rate. However, the managed floating exchange rate will eventually show extreme
values since there are no boundaries.

The degree of mean reversion is also illustrated by Diagrams 3.5—3.6, which show
the expected exchange rate within the band after 1,3,6 and 12 months, for p=1 per year

and p=3 per year, respectively. These expected values for finite horizons are obtained by
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solving Kolmogorov’s backward equation, with suitable initial and boundary conditions, as
discussed in Svensson [1991). It is clear from Diagrams 3.5-3.6 that a higher degree of
mean reversion (higher p) implies that the expected exchange rate within the band will be
closer to the unconditional mean (zo=0 in the diagram). Two things are worth noting.
First, for high mean reversion (p=3) and a long (for instance, 12 month) forecasting
horizons, the expected exchange within the band is virtually a constant. This is in line
with the empirical findings in Lindberg, Svensson and Soderlind [1991]. Second, the
expected exchange rate within the band is almost a linear function of the current exchange
rate, which is consistent with the lack of nonlinearity found by, among others, Meese and
" Rose [1990], Diebold and Nason [1990], Flood, Rose and Mathieson [1990], Lindberg and
Soderlind [1992] and Lindberg, Svensson and Soderlind {1991].

4. Estimating the Swedish exchange rate process

In this section, the model presented in Section 3 is estimated using daily Swedish

exchange rate data for the period between June 27, 1985 and November 15, 1990.

A Estimation of {a,0.0}

The model summarized by (3.6b), (3.7) and (3.11) has 9 parameters
{a,af,ag,p,ﬁ,ﬁ,hg,z{ ,B}. Since we use only exchange rate data for the estimation, the
components ¢, and 7, in (3.6b) are not identified, only ¢ is. In the next subsection we use
interest rate differential data in order to give a rough estimate of the split of ¢ into o, and

¢,. For the moment, that leaves us with 8 parameters {a,s,0,4,5,k0,4,8}, but we know that

-
the boundaries for z(¢) are [z,Z] = [~1.5%,1.5%)], and we let the mean 7z, be estimated by
the mean of the sample which is —0.63%. By exploiting the relations in (3.12a—€) the

parameters {A,R,ko,4,8} are defined implicitly by {a,0,0} and the knowledge of {z,Z,z,}.
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Henceforth, the discussion will focus on estimating the parameters {a,0,p} and it should be
understood that this also involves solving for the implicitly defined parameters.

The simulated moments estimator (SME) for {a,s,p} is given by minimizing

(4.1a) (a,0,0)'(2*)"16(a,0,0),
where
T* T
(4.1b) Her.0) = 1Y £ =1 TY Ke(e,0p).
t=1 t=1

In (4.1a) 6(.) is a [¢gx1] vector of differences between empirical and simulated moments
defined in (4.1b), where ¢ is the number of moments used. In (4.1b) ¥; and ¥, are [g=1]
vectors of moment generating functions for empirical and simulated data, respectively,
with T= denoting the sample size of data and T the length of the simulations. X+ is the [gxg]
covariance matrix of I:, which is estimated using the method of Newey—West [1987]. This
choice of the weight matrix gives the most efficient SME.17 ¥+ is estimated using 10
non—zero autocovariances, but since the correct number of autocovariances is unknown we
will also report some results from a sensitivity experiment using 100 non—zero
autocovariances. If we let ,uk(y) denote the ¥B central moment of some variable y, then we
have used the following 8 moments in (4.1): pz(z;), pz(Aa;t), ,u4(xt), ul(ztxt-l), pl(Aa:tA:f:t-l),
pl(AxrA:ct-g), #2(A$tAzt-1) and u2(Aa:tA:t:t.2).
The algorithm for the SME used is as follows.

()  Generate a discrete approximation to the standard Wiener process {AF;} = ew/A7,
where €t is drawn from a standard normal distribution and A{ is the fraction of a
year of the sampling interval. In the simulations At = 1/264, which corresponds to
daily observations. The sample length of simulations (7) is 11230, while the
empirical sample length (7*) is 1240.

(77) Generate a series of composite fundamentals {44} from

17See Duffie and Singleton [1989] and Ingram and Lee [1991] who investigate the SME in detail.
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F— (he + oMWy — R) if by - p(he-ho)At + cAKpuy 2 B

(42) Aty = A — (he + oAFvar —~ B) if by = p(he-ho)Al + oAy <A

hy — p(hy—ho)At + oAWg. otherwise,

where A is used as the initial value of 4.

(i71) For each point {ai,r;,px} in a three dimensional (subscripts j,j,x indicate the

division in each dimension) grid generate an exchange rate series {z:} by (3.11).

(iv) 'The SME is given by the triple {1,0j,0x} that minimizes (4.1).
All in all, 25050 different grid points has been used with the grid covering the domain
a€[0.15,0.64), #€[0.01,0.05] and pe[1,5].

Duffie and Singleton [1989] and Ingram and Lee [1991} show that, under some
regularity conditions, the estimates of the parameters are comsistent and normally
distributed, with the covariance matrix
(4.3a) (14+7)(Do(Z+) " P0) Y/ T,
where 7=T+/T and J, the expected value of the Jacobian of Im(a,cr,p), which can be

estimated by

a

T
all/TZArs(a,a,ﬁ)]
(4.3b) by = . .

Mea,o,p}

In practice, the derivatives in (4.3b) have been approximated by finite differences. One of

the regularity conditions is that J; should have full column rank., This condition has been
investigated numerically at different {a,0,p} values including the point estimates reported
below, and it seems to be fulfilled. Furthermore, the estimated differences between the
simulated and the empirical moments §(&,0,5) are also normally distributed with
covariance matrix (147)8+/ 7. A measure of goodness of fit is

(4.4) T6(&,5,5) (2+)6(8,5,8) ~ x*(g-3),

which should be interpreted as that the hypothesis that the model is correctly specified
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(able to fit data) should be rejected if the left—hand side exceeds the x¥ g—3)—value at, say,

the 5% significance level.

The estimates and the asymptotic standard errors are given in Table 4.1.

Table 4.1: Estimated parameter and asymptotic standard errorst

Empirical Parameter Std error Significance level

a 0.353571 0.274451 0.197646
7 0.031263 0.014027 0.025825
p 3.684211 0.376635 0.000000
4 0.000154 0.000161 0.337715
B 0.000145 0.000072 0.045518
h —0.031636 0.011568 0.006241
k 0.045445 0.022010 0.038948
ho —0.006530

,u,z(z:t) 0.259393 0.255796 0.026014 0.890047
pa{Azs) 0.007129 0.006369 0.000615 0.216397
,u4(2:t) 0.148594 0.157520 0.030642 0.770829
# (2478-1) 0.255362 0.252612 0.025898 0.915452
,u,l(Aa;tAzt-l) —0.000942 ~0.000104 0.000383 0.028645
,ul(AxtA:vt-g) —0.000048 —0.000066 0.000310 0.953147
pz(A:I:f,Azt-l) 0.000049 0.000000 0.000024 0.039152
p2(AztAzt-2) 0.000015 0.000001 0.000008 0.099340
Qfit 12.590532 0.027533

TThe asymptotic standard errors for the implicitly defined parameters { _i_z_,?i,ho,A ,B} have been

calculated using the delta method. See, for instance, Judge et al. [1985]. In the table, z, is measured as

percentage deviation from central parity.

These results could, for instance, be compared with the results from estimating the
Krugman model in Lindberg and Soderlind [1992], where we were unable to find a unique

minimum of the loss function due to its flatness. The multiple minima were located along
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a line passing through {#&0} = {1.03,0.0028} with an approximative slope of
A&fAg = 17000. The introduction of the p parameter enable us to find a unique minimum
of the loss function. The 7 and p parameters are significantly different from zero at the 3%
and 1% significance levels, respectively, while ¢ only at the 20% significance level. Thus,
the loss function is still somewhat flat in the e—dimension. The resulting function for the
exchange rate within the band is illustrated in Diagram 4.1. It is indeed hard to detect the
non-linearity, except very close to the exchange rate band boundaries. The results further
indicate that 4 is not significantly different from zero. This is interesting since in (3.11) 4
multiplies the non—symmetric term. Hence, we cannot reject the hypothesis that the
function is symmetric around zy=—0.63%. Of course, we know that this is not literally
true, but in practice it might have worked that way since the Riksbank intervened in order
to keep the exchange rate at a certain distance from the upper band boundary. This is also
seen in Diagram 4.2 which plots a kernel density estimate of the empirical density function
and the demsity function implied by the point estimate.l#  Notice that the empirical
density is very low above 0.5% and virtually zero above 1%. The empirical and estimated
density functions are located in about the same range and with most of the probability
mass around the mean z3. However, the empirical density function has several peaks in the
interior of the range: one around z=—1% and another around z=-0.3%, in contrast to the
estimated density which has one peak in the interior at z=—0.6 (by construction). One
possible, model related interpretation, is that our sample might contain two (or more)
regimes with different values of zo. Furthermore, the estimated density function shows a
peak at the lower boundary. Since the smooth pasting conditions are in operation, there
will always be such a tendency. We argued in conjunction with Diagrams 3.2 and 3.4 that
this tendency can be reduced to being invisible (as in Diagram 3.4) if the the mean

reversion in fundamentals is strong enough. Here we have the case that, even if the mean

18See Silverman [1982). Here, the estimate is calculated at 1000 different points, using a Gaussian kernel
and a window size of 1.06*standard deviation/sample sizel’ 5.
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reversion is very strong (p=3.68), the mean z, is fairly close to the lower boundary.
Therefore, there is still a significant portion of probability mass of the composite
fundamental close to the lower (but not the upper) boundary. In Diagram 4.2 this shows
up as a peak, although a very narrow one, in the exchange rate density function.

The hypothesis that the simulated moments are equal to the empirical moments can
only be rejected at the 5% significance for two of the moments, namely ,u,I(Aa:tA:z:t_l) and
pz(AztAzt-l). This means that the model has some problems in captuﬁng the first
autocorrelation of the change in the exchange rate within the band. This is responsible for
the fairly poor measure of fit on the last row of Table 4.1. At the 3%, but not the 2%,
significance level it is possible to reject the hypothesis that the model fits the data. What
is behind this result? In Section 2 we noted that there is evidence of an exchange rate
smoothing behaviour of the Riksbank. To the extent that the smoothing (interventions)
takes place instantaneously when a disturbance occurs, our model is able to capture this.
To illustrate this point, rewrite (3.6a) as

dlv(t)+ag(?)] = (L+7)ed¥(2),
and assume that (3.8) is as before. This implies that the interventions must be
dn(t) = —p[h(t) — holdt + dL(2) — dU(t) — yod¥(2),

with dJ and d7 defined as before. Here, the instantaneous standard deviatiorn of the
exogenous process o(t)+ag(t) has been increased with the factor 7o, while the
interventions are assumed to instantaneously counteract this.19 This leaves the evolution of
k() in (3.8) unchanged. Obviously, this will give a negative correlation between dn(t) and
dz{f), as found for data in Table2.1, but it can not explain the high negative
autocorrelation of dz(¢) found in data. However, if some of the smoothing is carried out
by lagged interventions, for instance taking place the day after the shock, then this will

give a negative autocorrelation in dz(t). Therefore, our partial conclusion is that even if

19A5 usual we leave all considerations about optimality of the intervention rule aside. In particular, we
assume that the ceniral bank, for some reason, chooses not to counteract all disturbances.
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our model is consistent with instantaneous smoothing (which surely occurs in reality) it
might still lack a mechanism for exchange rate smoothing which operates with a lag. It is
also worth noting that if 4 = 0, then the correlation between the exchange rate level,z (i),
and the interventions, dn(t), is close to minus one. However, with 7 > 0 this correction
tends to zero, because it is swamped by noisy smoothing intervention. Though, as shown
in section 2, the negative correlation between the exchange rate and interventions is
uncovered in time averages of data.

We have also run exactly the same algorithm but using an estimate of I* based on
100 non—zero autocovariances. The estimated parameters {e,0,0} (and standard
deviations) are then 0.420 (0.300), 0.0347 (0.015) and 3.643 (0.691), respectively. Hence,
the point estimates differ somewhat, but not significantly so. The fitted moments are
correspondingly similar. The only marked difference is that the fit of pl(AztAzt-I) and
pz(AztA:ct-l) is now even more strongly rejected. Hence, the overall fit of the model can
now be rejected at the 1% significance level.

Additional insight in the working of the model and how it behaves in relation to
data and the Krugman model can be gained from a small Monte—Carlo experiment. Using
the estimated [&,5,5], 100 samples with 1240 observations of the exchange rate within the
band were generated and for each of these a number of statistics were computed. The
initial values of the composite fundamental (4) were drawn from the distribution given by
(3.9). Table 4.2 shows the average of these 100 samples. The counterparts for the
Krugman model, from a Monte-Carlo experiment in Lindberg and Séderlind [1992], are

given in column 2. Statistics for the official index series are given in columnz 3.
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Table 4.2: Comparison simulated and empirical exchange ratet

Simulated Krugman Empirical
Mean —0.606 —0.004 —0.611
(0.171)
Cond std deviation3 0.079 0.018 0.082
(0.002
Min —1.472 —0.457 —1.515
(0.060
Max 0.556 0.464 0.818
(0.334
Skewnessb 0.205 0.012 0.367
(0.297)
Normalityc 47.959 92.417 67.264
(73.530)
Homoskedasticityd 26.245 17.287 78.708*
(10.916)
Unit roote ~3.168 —1.590 —3.013+
(0.653)

tRejection on the 5% significance level, for skewness, normality, homoskedasticity and unit root tests, is
denoted by *. These significance levels are only reported for data.

2The conditional standard deviation is for one step—ahead forecasts error based on a fifth order AR.

bThe asymptotic distribution for the skewness measure (#3) is such that a3~N(0,6/T), where T is the
number of observations, given that the observations are independent. But, here the observations are
strongly autoregressive. Therefore, the 5% critical value has been calculated by means of a Monte Carlo
experiment. This amounted to fitting an AR(5) too each series and sample. Simulating this AR(5)
process (which is normally distributed) 250 times and calculating the statics gives an estimate of the
variance, which usually is larger than §/T.

CBera—Jarque’s test for normality. The asymptotic distribution for the statistics is y2(2), given that the
observations are independent. Due to autoregression, the 5% critical value has been calculated by means
of a Monte Carlo experiment (see b).

dWhite’s test of conditional homoskedasticity. The test statistics is asymptotically distributed as y%(m),
where m is the number of quadratic terms in the auxiliary regression (here 10). See, for instance,
Spanos [1986] for a description. The variables used in the auxiliary regression are 5 lags of the series
studied.

€Perron’s [1988] Z(ip_) test (using 25 lags). The statistics should be lower than —2.86 in order to reject
the hypothesis of unit root {(non—stationarity) on the 5% significance level. See Fuller [1976].

The introduction of a preferred exchange rate within the band z, does of course

mean that the simulated distribution has a mean in accordance with data. The conditional
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standard deviation (that is, the standard deviation of Az; conditional on 2.1, Zt-2,...) is four
times as high as in the Krugman model and now well in line with data. Since the negative
mean is now fairly well fitted, the minimum values of the simulations are very close to the
lower boundary. But, due to the high degree of mean reversion, the maximum is too low
compared with data. In contrast to the simulations with the Krugman model, the present
simulations show some weak evidence of skewness. As before and in accordance with data,
there is only very weak evidence of nom—normality and conditional heteroskedasticity.
Furthermore, due to the increased mean reversion the hypothesis of a unit root (which is
known to be false for the simulations) can now be rejected. The combined evidence of
Tables 4.1 and 4.2 suggests that although the model is statistically rejected in Table 4.1,
the introduction of a mean reverting composite fundamental helps us to fit a number of
features (moments) of the exchange rate data much more closely than with the Krugman

model. We regard this is as a step in the right direction.

B Estimation of devaluation expectations and further identification of parameters

The existence of significant devaluation expectations for the Swedish krona has been
documented by, among others, Lindberg, Svensson and S&derlind [1991). The most obvious
sign of devaluation expectations is a non deterministic relation and, during some periods, a
positive correlation between the exchange rate within the band and the interest rate
differential. Does this model improve upon the Krugman model which predicts a
deterministic negative relationship between the exchange rate and the interest rate
differential?

As shown in (3.6b) the existence of devaluation expectations affects the
interpretation of the estimated instantaneous standard deviation of the composite
fundamental 3. In order to split the estimated ¢ into its components ¢, and ?rg, we need
more information about either velocity v({) or the expected rate of devaluvation g(t). The

probably most efficient way to proceed is to use the estimated parameters together with
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data on the exchange rate and the interest rate differential to form an estimate of the
expected rate of devaluation §(t). Based on this estimate, an estimate of sy can be
obtained, which by using (3.6b), ¢ and & gives an estimate of 7.

Assuming uncovered interest rate parity, we have the expected rate of devaluation
at time ¢ during the period [¢,2+47], 9(¢,7), as
(4.5) g(t,7) = §(t,7) — B [e(t+7)~2(2)]/,
where §(1,7) is the interest rate differential between a r—period riskless asset denominated
in Swedish kronor and a similar asset denominated in the foreign currency basket. We use
daily data on the Swedish official exchange rate index (expressed as a percentage deviation
from central parity) and the interest rate differential on Euro—deposiis with 1 month to
maturity. Hence, in terms of (4.5) 7=1/12 year, since we choose the time unit to be years
(the interest rates are expressed as yearly rates).

By using the estimated coefficients from Table 4.1, the relation between E t[z(t+:r)]
and z(¢) can be estimated by solving Kolmogorov’s backward equation (as was done in
order to produce Diagram 3.6). The results are shown in Diagrams 4.3—4. The former
shows the estimated expected exchange rate within the band after 1 month as a function of
the current exchange rate within the band, while the latter shows the estimated expected
rate of depreciation of the exchange rate within the band. It is worth noting that the
expected change is zero when the current exchange rate is —0.6%, which corresponds to z.

Diagram 4.5 displays the estimated expected rate of depreciation of the exchange
rate within the band, constiructed by applying the function in Diagram 4.4 on data for the
exchange rate within the band. The interest rate differential is also shown. Finally, the
estimated expected rate of devaluation over a one month horizon 5(::,1/12) is shown in
Diagram 4.6. The diagram is similar to the empirical results in Lindberg, Svensson and
Soderlind [1991] who formed an estimate of E [2({+7)] by invoking rational expectations
and regressing z({+7) on z(t) using ex post data.

According to the random walk assumption about g{t) in (3.5) the theoretical finite
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expected rate of devaluation ¢(¢,7) equals the theoretical instantaneous rate of expected
devaluation g(?).20 It is then correct to treat our estimate of the finite ¢(¢,1/12) as an
estimate of the instantaneous g(¢), as well. Based on this, 5,=0.0588 per (year) 32, Then
since @=0.35 year and & = 0.0313 per yyear (3.6b) gives 7,=0.0233 per yyear. Will this
produce the positive correlation on 0.197 between z(?) and 6(¢,1/12) observed in data?
Bertola and Svensson [1990] shows that the larger ao, is relative to s, the higher is the
correlation between the exchange rate and the interest rate differential. With o, high
enough, the correlation can even become positive, in sharp contrast to the Krugman model.
A simple Monte—Carlo experiment with 100 samples of length 1123 (as in our data) using
these parameter estimates gives an average correlation of —0.018 with a standard deviation
of 0.277. This is different from the data but not significantly so, and moreover it is
definitely different from the prediction of the Krugman model. This is partial evidence of
the ability of the Bertola—Svensson model of devaluations expectations to fit the data.

It is legitimate to ask whether the random walk assumption about ¢(?) in (3.5) is
reasonable. In this context it is interesting to note that a Perron [1988] Z(1,) test of the
estimated expected rate of devaluation gives the test statistics —2.55, which is larger than
the critical value —2.86. Hence, the hypothesis of a unit root (random walk) in the
expected rate of devaluation cannot be rejected, which gives some support for the

assumption in (3.5).

5. Summary and Conclusions

In the Swedish case, interventions occur all over the exchange rate band and almost

every day. Thus, an appropriate interventions rule should include intra—marginal

20The results in Lindberg, Svensson and SOderlind [1991] give some support for the notion that the
expected rate of devaluation is equal across maturities.
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interventions modelled as occurring on a continuous basis. The inverted U-—shape of the
empirical exchange rate distribution suggest that fundamentals are mean reverting and
thus, possibly, that interventions occur in a mean reverting fashion. Qur study of Swedish
intervention data provides some support for this idea. Therefore, we formulated a model
where interventions follows an Ornstein—Uhlenbeck process in the interior of the band, that
is, continuous interventions that increase in size when the exchange rate moves from some
preferred level, in addition to the interventions at the boundaries. Moreover, the presence
of time—varying devaluation expectations is undoubtedly a salient feature of the Swedish
krona and was therefore included in the model in a way proposed by Bertola and
Svensson [1990]. The model was then estimated on Swedish data and its performance in
relation to data and the Krugman model was evaluated in Monte—Carlo experiments.

The results indicate that a model with mean reverting intra—marginal interventions
and time—varying devaluation expectations captures the basic characteristics of the
Swedish exchange rate band much better than the Krugman model. Fimst, the
Bertola—Svensson model of devaluation expectations has the ability to explain the positive
correlation between the exchange rate and the interest rate differential found in Swedish
data. Second, the estimated degree of mean reversion is substantial. This explains the
inverted U~shape of the Swedish exchange rate distribution and the difficulties to capture
any non—linearities in the exchange rate.

However, the appropriate design of the intervention rule is not self—evident.
Swedish intervention data indicate that exchange rate smoothing is of importance. In
simulations our model has some difficulties in capturing the first autocorrelation of the
change in the exchange rate. A partial conclusion is therefore that the model lacks a
mechanism for exchange rate smoothing, which operates with a lag. Intervention data also
suggest that preferences for interest rate smoothing influence Swedish intervention policy.
An interesting topic for future research is to illustrate the dependence between policy

preferences, intervention rule, and the behaviour of exchange rate and interest rates.
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Another interesting topic is the role of sterilized interventions and signalling in an

exchange rate band.
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Appendix 1. The Balance Sheet of the Riksbank and the Market for

Reserves

A simplified balance sheet of the Riksbank can be written as

Assets Liabilities
FX CU
GB RR
BR NW
where FX = foreign exchange reserves,

GB = holdings of government bills (incl. other government borrowing),
BR = borrowed reserves, i.e. discount window borrowing,

CU = currency held by the public,

RR, = required reserves, and

NW = the net worth of the Riksbank.

The supply of non—borrowed reserves NBR, is defined as
(A1.1) NBR = FX + GB —NW.
Thus, the supply of total reserves R% is

(Al1.2) Rs = NBR + BR.
The demand for total reserves is given by

(A1.3) Rd = CU + RR.
The equilibrium condition in the market for reserves is
(A1.4) Rs = R,

which we can write as

(A1.5) NBR + BR = CU + RR.
Thus, we are able to write the change in non-borrowed reserves as

(A1.6) ANBR = ACU + ARR — ABR.
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Appendix 2. The asymptotic distribution of the regulated
Ornstein—Uhlenbeck process

This appendix shows the derivation of the asymptotic distribution of the exchange
rate, given that the fundamental follows an Ornstein—Uhlenbeck process with zero mean.
The approach of the derivation follows that of Bertola and Caballerc [1992].

The Ornstein—Uhlenbeck process with zero mean has the differential
(A2.1) df (t) = —pf(t)dt + odz(t),
where z is a standard Wiener process, and we let f denote the fundamental. This process

has the discrete time approximation

fo +Af  with probablity ¢
(A2.2) Joens = . .
fi—Af  with probablity 1—g¢.
According to (A2.1) Fdf(t)=—pf(t)dt, which gives that the probability ¢ must satisfy
(A2.3a) —pfidt = gAf + (1—q)(-Af),
which gives |
(A2.3b) ¢ = H1-pfAt/Af).

For this approximation to converge to the process (A2.1) as (Af,At)~0, the rates of
convergence of(Af,A{) must be such that the variance obeys

oAt = ¢(Af+pfAt)? + (1-g)(-Af+pfAt)?,
which by using (A2.3b) can be rearranged as

02 = (Af)2/At — p2f2Ad.

The last term will definitely go towards zero, as Af and A? do. The resulting requirement
on the rates of convergence is that
(A2.4) o2 = (Af)2/AL
should hold.

Now, to get to the state f {were the time index has been dropped for convenience),
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we can either start in f+Af or in f~Af. The probabilities in each of the two cases of
reaching fis

SHAS: #{1 + p(f+Af)At/Af] (requires an increment of —Af)

f—AS: 41— p(f—Af)At/Af] (requires an increment of Af).
The asymptotic (steady state) probability density function #(f) for this discrete process

must obey the the following equation around the state f

(A2.5) (/) = $(f+af)3{L + p(f+Af)%7tJ + ¥(f~ANH1 —p(f—-Af)%t],
which can be rearranged to

0= [§(f+4f) - ¥(F)] - [(f) - #(fAN)] +
(A2.6) pfg_}{ [#(F+AF) - 9(N] + [ —#(fAN] } +

PAL[P(f+Af) + H(F-Af)].
Multiplying (A2.6) with 1/(Af)? and evaluating the limiting expression as (Af,A1)-0, we

have

A2.7 42 d di 2 dt 2p =0,

(a27) LUK + IS 8t 20f 4 W) dt 29

where dt and df denotes the limiting A¢ and Af. Using the relation {A2.4) and multiplying
with ¢2/2, this can be written

(A2.8) g d25ﬂ Al - d;—gfﬂ Al=o,

which is the Kolmogorov forward equation (in steady state).

Karlin and Taylor [1981] show the solution to this 2nd order differential equation.

In short, the solution is found in the following standard way. Integrating (A2.8) once and

%ﬂ(ﬂl + ¢(f)§§f = (1,

where C; is some constant. Now, multiply with the integrating factor exp(pf?/s2), the

multiplying with 2/¢2, gives

resulting expression can be written

ﬁr[exp(pf’/ e)9(f)] = exp(pf?/s2)Cs.
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Integrating once more and multiplying the result with exp(—pf?/s?) gives the solution to

(A2.8) as
f

(A2.9) $(f) = exp(—pf?/o?) 0 f exp(pp?/o?)dp + Crxp(—pf/7?).

As usual the density function #(f) mus: fulfill the following two conditions

(A2.102) IEGES"

where the integration is over the entire state space, and

(A2.10b) #(f)20 for all f in the state space.

In the case with no boundaries, it can be shown that ;=0 in order to ensure that (A2.10b)
is fulfilled. Then (A2.9) is nothing but the normal density function (see Karlin and Taylor
[1981)).

What if there are reflecting boundaries? Denote the lower and upper boundaries
with f and , respectively. At the upper boundary, the state f can be reached either from
7 itself, since a positive increment Af would immediately be counteracted by an

intervention of the same size, or from f—Af. The probabilities in each of the two cases of
reaching f is
7 :3#[1—pfat/Af] (anincrement of Af counteracted by intervention)
{ 7-Af: 3[1 — p(F-Af)At/Af] (an increment of Af).
Hence, around f the asymptotic density function must satisfy
(A2.11) #(7) = $(Pll - pTAL] + $(F-ANH1 - p(?—ﬁf)%_;l,
which can be rearranged as
0 = [§(f) — $(J-AN] + pf%_;iﬁ(f) + ${F-Af)] ~ btpd(F-4S).
Multiplying with 1/Af, using (A2.4) and evaluating the limiting expression as (Af,A1)-0,

we have

= d! $() + %gﬁ(}) —lim %_}peb(f—ﬂf)-
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Since the rates of convergence are such that (A2.4) is fulfilled and that eventually
1/(Af)2»1/Af, we have that im A¢{/Af=0. As a result, the boundary condition at the upper
boundary is
(A2.12) 0= %MJ + 20747,
and analogous at the lower boundary f. This is a version of the result in Cox and
Miller [1968].

Using (A2.9) in (A2.12) and simplifying gives the requirement (=0 (except in the

degenerate case when f=7=0). Hence, the density function simplifies to

(A2.13a) ¥(f) = Crexp(—pf3/a3),
with ( determined by the analogue of (A2.10a)
i
(A2.13b) 1/ [ exp(—pf?/s?)df = Cu.
f

Hence, the distribution of the regulated Ornstein—Uhlenbeck process is simply a truncated

normal distribution.
In the case with non—zero mean of the process
df(t) = —p[f(t) - foldt + odz(2)
a simple change of variable establishes the distribution as,
(A2.14) W) = & expl-p(f—f2)3/ o] with
with the constant & determined by the requirement that the integral over [f,f] equals

unity.
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