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1 Introduction

The term structure of interest rates, that is, how interest rates depend on the
time to maturity, receives considerable attention in both financial and economic
analysis. Estimated spot interest rates (zero-coupon rates) for different
maturities and associated implied forward interest rates are since long standard
tools for financial analysis in the financial markets, for instance in the pricing of
financial instruments. The term structure of interest rates, in the form of the
yield curve (that is, the yield to maturity on coupon bonds as a function of their
time to maturity) and the yield spread between long and short interest rates (that
is, the slope of the yield curve), is also a traditional indicator for monetary
policy. Long interest rates are usually considered to vary with long-run inflation
expectations, and the spread between long and short interest rates is sometimes
interpreted as indicating how expansionary or contractionary current monetary
policy is.

The recent move to flexible exchange rates in Europe is likely to increase the
role of indicators in monetary policy. A fixed exchange rate can be seen as a
well-defined intermediate target for monetary policy. The loss of an inter-
mediate target and the difficulties in finding a new intermediate target make it
likely that monetary policy will be more dependant upon the use of indicators.
As a complement or even alternative to the standard yield curve and the yield
spread, implied forward interest rates have recently begun to be used as one of
the monetary policy indicators by several central banks, for instance Bank of
England, Federal Reserve Board, and Sveriges Riksbank. Implied forward
interest rates are interest rates on loans and investments that start on a future
date. They can be derived from the yield curve. Forward rates present the
information in the term structure of interest rates in a way that is more easily
interpreted for monetary policy purposes, and can under appropriate
assumptions be used to infer market expectations of future interest rates,
inflation rates and currency depreciation rates more directly than the standard
yield curve (see Bank of England (1993) and Svensson (1993b,¢)).

The standard yield curve of yields to maturity on Treasury bills and Government
bonds plotted against the time to maturity is unfortunately not an unambiguous
representation of the term structure of interest rates, even if the bonds have no
default risk and are fully liquid. The reason is that almost all bonds are coupon
bonds, and yields to maturity on coupon bonds depend on the coupon, the
“coupon effect." Bonds maturing at the same date with different coupons will
therefore show different yields to maturity. The term structure therefore need to
be expressed in some standardized way in order to be unambiguous.

Two standardized ways to express the term structure occur in the literature,
namely to report a par yield curve consisting of yields to maturity on par bonds
(bonds that trade at par and have coupons that equal the yield to maturity) or to




report a spot rate curve consisting of yields to maturity on zero-coupon bonds.
In practice there are few bonds trade at par, and there are few or no zero-
coupon bonds available beyond 12 months maturity. Either way to express the
term structure then requires estimation of the term structure from yields to
maturity on non-par coupon bonds. Even if there were a fair number of par
bonds or zero-coupon bonds available, it would still be advantageous to also use
the information in the non-par coupon bond yields.1

The most common way to express the term structure of interest rates these days
is in terms of spot rates that are estimated from available coupon bonds for
longer maturities and zero-coupon bonds (Treasury bills) for shorter maturities.

Implicit forward rates are then calculated from these spot rates. A number of
different estimation methods are available,

McCulloch (1971, 1975) introduced the now standard method to estimate a
continuous discount function {the zero-coupon bond prices as a function of the
time to maturity) from coupon bond prices. The method consists of computing
model prices of the bonds by valuing the coupon payments and thé principal
with the discount function, and then estimate the parameters of the discount
function by fitting model prices to actual bond prices by minimizing the sum of
the squared errors between model and actual prices. The spot and forward rates
can then be computed from the discount function. McCulloch (1975) used a
cubic spline as the functional form for the discount function, which allows the
estimation to be formulated as a linear regression. As discussed by Shea (1984),
the cubic spline has the disadvantage that estimates of forward rates may be
unstable. Especially for the longest maturity in the sample they may fluctuate
between large positive and negative values, and they may even be negative. The
estimates also depend on the location of the knot points between the different
segments of the cubic spline.

We shall follow McCulloch in estimating a discount function by fitting model
prices to observed bond prices. We shall deviate from McCulloch in using two
other functional forms than the cubic spline, one very simple form suggested by
Nelson and Siegel (1987) (NS), and one very complex form derived in a
theoretical model by Longstaff and Schwartz (1992) (LS). These functional
forms give more stable estimates of forward rates than cubic splines. The forms
are not nested.

The purpose of the paper is hence to compare the performance of the NS and
LS functional forms in estimating spot and forward rates on Swedish term

1 The term structure can also be estimated from the interbank interest-swap market, since the yields
quoted there can be interpreted as yields on par bonds. The yields may include a default risk, though,




structure data in order to judge which method is most appropriate for monetary
policy analysis.2

Thus monetary policy analysis rather than financial analysis is in focus, for
instance, the use of forward rates as indicators rather than to price financial
_ instruments for arbitrage decisions. This has some consequence for the criteria
according to which the performance of the two finctional forms is evaluated.
First, for monetary policy purposes somewhat less precision is required than for
financial analysis. Yield errors of a few tens of basis points are acceptable for
monetary policy analysis, but hardly acceptable for arbitrage decisions. Second,
from an economics point of view, zero-coupon prices can be interpreted as
intertemporal marginal rates of substitution. It seems reasonable to postulate
that marginal rates of substitution are rather smooth, in which case it follows
that estimates spot and forward rates should be rather smooth. Smoothness
reduces precision, but as mentioned the demand for precision is less for
monetary policy analysis than for financial analysis. Increased demand for
- precision in financial analysis tends to result in jagged spot rates and volatile
forward rates. Third, since forward rates can be interpreted as indicating
expectations of future interest rates, which in turn depend on expectations of
future real interest rates and future inflation rates, it seems reasonable to restrict
forward rates for settlements very far into the future to be constant. This
because it seems unlikely that market agents have information that allow them
to have different expectations for, say, 25 and 30 years into the future, Fourth,
the demands on robustness of estimates is probably higher for monetary policy
analysts than for financial analysis. The estimates in policy analysis should allow
comparisons over time and across countries, with different sets of bonds and
Treasury bills, and be less sensitive to missing observations and the number of
bonds and bills used in the estimation.

In practice our criteria of evaluation boils down to comparing measures of fit
and convergence properties for NS and LS.

The LS functional form is derived in a theoretical model. We would like to
emphasize that we do not attempt to test the theoretical model, for instance
whether the restrictions it imposes are empirically fulfilled or not. We simply use

2 Svensson (1993a) compares estimation of forward rates with simpler approximate methods to
estimation with the Longstaff and Schwartz functional form. The simpler methods are the "uncorrected"
method of approximating a coupon bond by a zero-coupon bond with the same maturity, the "duration”
method of approximating a coupon bond by zero-coupon bond with the same duration, and the "recursive
method with interpolation." The last method involves interpolating yields to maturity and coupons to
find synthetic coupon bonds that mature exactly one year apart, in which case a convenient recursive
formula can be used to compute spot and forward rates, The uneorrected and duration methods imply a
bias in estimating forward interest rates, and the recursive method with interpolation relies on a non-
convincing assumption of continuity of coupons in time to maturity. The simpler methods appear clearly
inferjor to estimation of the discount function with either a cubic spline or the N§ or LS functional
forms.




the functional form to fit it to the data, without testing whether the theoretical
restrictions are fulfilled.3 :

The practical difference between the NS and LS functional forms is that the NS
is much easier to use whereas LS is much more flexible. The result of our
comparison is briefly as follows. The NS and LS estimates of spot and forward
rates are very similar. LS has a marginally better fit than NS. The NS fit is well
within the precision that seem reasonable for monetary policy analysis, though.
With regard to convergence and computation, NS is child's play, whereas LS is
close to a nightmare. For the sample studied NS therefore from a practical point
of view appears much superior to LS. Put differently, the Swedish term
structure studied is not so complicated that the flexibility of LS is needed.
Estimates in Svensson (1993c) indicate that NS performs satisfactory also for
the term structure in Britain, France, Germany, and the United States from
September 1992 to September 1993. The flexibility of the LS functional form
would be needed only for a very complex term structure when the fit of NS is
bad.

The paper is outlined as follows. Section 2 provides definitions and describes
the method to estimate spot and forward spot and forward rates in general -
terms. Section 3 and 4 present the NS and LS functional forms. Section 5
presents the data and discusses the method of comparison and the details of the
estimation. Section 6 reports the results and section 7 concludes.

3 For instance, we deviate from the theory in estimating parameters separately for each trade date,
whereas according to the theory the parameters should be constant across dates.




2 Estimation of Spot and Forward Rates

First we restate definitions and the simple algebra of yields to maturity, spot
rates and forward rates (see for instance Shiller (1990)). Consider a coupon
bond with a principal of 100 Swedish kronor, an annual coupon ¢ (measured as
a proportion of the principal); a time to maturity #m (measured in years), and a
price p in Swedish kronor (net of accrued interest rate). The annually
compounded yield to maturity is the annually compounded internal rate of
return that makes the present value of the coupon payments and principal equal
to the price of the bond.

Formally, let 7,, £ =1,2.., X, denote the times for the coupon payment, where X
is the number of coupon payments. In the special case when m is an integer, we
simply have 7, =k and X = m. In the general case we have

7, =m—[m]+k-1and K =[m|+1, (2.1

where [m] denotes the largest integer that is strictly smaller than m. The vield to
the maturity and the price of the bond are then related according to

X 100c 100
27

- 2.2)
(1 y)® (1+J’)x

i

p

(The last term on the right hand side is the present value of the principal of the
bond.)

Let d(m) denote the price of a zero-coupon bond with principal 1 krona and
time to maturity m years. The spot rate is the yield to maturity on a zero-coupon
bond. The algebra of spot and forward rate is easiest if spot and forward rates
are expressed as continuously compounded rates. Then the spot rate s(m7) and
the price of the discount bond d(m) are related according to

Ind(m)

n

(2.3)

 dlm) = exp[~slm)m] and (m) =

Let f(m, M) denote the (implied) forward rate with settlement in # years and
maturity in M > m years. It fulfills

4 Continuously compounded interest rates s and annually compounded rates § are related according
to s=In(l+5) and §=exp(s)- L
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nd(M)—Ind(m) _ s(M)M = s(mm
M-m B M-m )

Fm M)=- (2.4)

The instantaneous forward rate f(m) with settlement (and maturity) iri m years
ts defined as

Olnd(m)

o s(my+m

an) @9

J ()= lim f(m, M) =~

It follows that the spot rate for a given maturity is the average of the
instantaneous forward rates with settlement between zero and the spot rate's
maturity.

s(m) = ij’ra F(Ddt, (2.6)

Finally, let s(0) and f(0) denote the limits of the spot rate s(m) and
instantaneous forward rate f () when the maturity 7 approaches zero (s(0) is
the instantaneous spot rate). It follows from (2.6) that they are equal,

5(0)=/(9) 2.7)

The relations (2.5)-(2.6) imply that spot rates and instantaneous forward rates
are related exactly as average and marginal cost of production, where the time
to maturity corresponds to quantity produced.

The problem to &stimate spot and forward rates can then be stated"as follows. For
a given trade date, let there be » coupon bonds, where bond j=1,.,n, is
represented by the triple (¢, m;, p;) of the coupon ¢;, the time to maturity m, ,
and the observed price p,. (If observed yields to maturity rather than prices are
available, the observed prices are calculated from (2.2).) Let the discount function
be modeled by a particular functional form d(m;,b), where 5 is a vector of
parameters. The model price of each bond (net of accrued interest), P, (%), is the

present value of the bond when the coupon payments and the principal value are
priced with the discount function,

Xy
P(b)= kz_:‘loo-cjd(rj,,;b)+1oo-d(%;b),j= 1.7, (2.8)

where ,

- % =1,.., K, denotes the times of the coupon payments on bond 7.
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The observed price is assumed do differ from the model price by an error term
with zero expectations

p;=P(b)+e,E[e;]=0. (2.9)

The error term can be motivated by institutional features. The yield spread in
the data base from Sveriges Riksbank that we use is constructed by taking the
best bid and the best ask yield at closing time, hence constructing a minimum
bid-ask spread. This procedure may incorporate some mispricing. For example,
the yields collected do not necessary reflect trades at the same time. In addition,
yield volatility is usually especially high at closing time, perhaps due to
temporary imbalances in supply and demand.5 6

The model prices are then fitted to the actual prices with non-linear least squares
or with maximum-likelthood (assuming error terms are normal). That is, the

estimate b is given by

2

b= argmgn Zn:[Pj(b)— pJ.] ' (2.10)

Fe

This approach has been used by several authors, with different functionalforms
for the discount function.”? McCulloch (1971, 1975) used a quadratic and cubic
spline, respectively. The latter has become a standard method. McCulloch's
formulation has the advantage that the estimation can be expressed as a simple
linear regression. Cubic spline estimates often leads to very unstable forward
rates, though; especially for the longest maturities in the sample for which the
forward rates may be either very large or very small, sometimes even negative
(Shea (1984), Langetieg and Smoot (1989), see also the graphs in McCulloch
(1990) or the Gauss viewing program that comes with McCulloch and Kwon
(1993)). This is a drawback, especially if the focus is on the forward rate
estimates, as in monetary policy analysis. The same problem arises for
exponential splines (Vasicek and Fong (1982), Shea (1985)). Carleton and
Cooper (1976) estimated zero-coupon prices without any restriction on
continuity, which implied large fluctuations in spot and forward rates.
Chambers, Carleton and Waldman (1984) used a polynomial for the spot and

3 Our maintained assumption is that the given functional form is the true form for the discount
function, and that only the parammeters are unknown and remain to be estimated, Green and Oedegaard
(1993) interpret the error term as partly a specification error because the true functional form may
deviate fromn the asswmned functional form.

Below we shall see that the mean absolite price error is not larger than the average bid-ask spread
in the market.

Bank of England estimates a par yield curve with a different method, namely by fitting a surface {o
bond data in the yield, coupon and time-to-maturity plane (see Bank of England (1990} and
Mastronikola (1991)).
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forward rates, which however implies that spot and forward rates for long
maturities reach large positive or negative values.?

From an economics point of view it seems reasonable, though, that spot and
forward rates for long maturities should be positive and approximately constant.
The property that spot and forward rates approach a constant for long
maturities is shared by several recently suggested functional forms. Nelson and
Siegel's- (1987) simple functional form has this property, as has several
functional forms that are derived from equilibrium models, for instance the one-
state-variable model of Cox, Ingersoll and Ross (1985), or the two-state-
variable model of Longstaff and Schwartz (1992).% 10

As stated above, in this paper we shall compare estimation with the simple form
of Nelson and Siegel with the complex form of Longstaff and Schwartz, Next
we therefore give the details of these functional forms.1! 12

8 Schaefer (1981) uses Bemnstein polynomials which avoids the problem of negative forward rates,
The madels of Cox, Ingersoll and Ross (1985) and Longstaff and Schwartz (1992) can be seen as
s%ecial cases of the n-state-variable model of Duffie and Kan (1993).
1 Tanggaard (1992) suggest a nonparametric kemnel smoothing procedure to estimate the discount
function.
1 Majnoni (1993) compares the functional forms of Cox, Ingersoll and Ross (1985} and Longstaff and
Schwartz (1992) on Italian data.
As mentioned we do not test the theoretical model of Longstaff and Schwartz (1992). The one-state-
variable model of Cox, Ingersoll and Ross (1985) has been subject to several tests, for instance by
Brown and Dybvig (1986}, Gibbons and Ramaswamy (1986) and Brown and Schaefer {1993),
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3 Nelson & Siegel

Nelson and Siegel (1987) assume that the instantaneous forward rate is the
solution to a second-order differential equation with two equal roots. Hence it
can be written

f(m'; b) =5, +5 CXP(“‘ B;“)'*‘ﬂz E:—exp(—-%), (3.1)

where b= (3, A, B,, 7) 1s the vector of parameters. The spot rate can be derived
by integrating the forward rate. It is given by

s@ﬂam+%+@ﬁ:jgil¢ww@§} (3-2)

T

The spot and forward rates have convenient properties. The limit of the spot
and forward rates when maturity approaches infinity and zero, respectively, are

F(e0;8) = 5(e038) = f, and (3.3)

FO0)=s(0;8) =B, +B. (3.4)

Thus the spot and forward rate approach a constant for long maturities and
settlements.

Furthermore, suppose there exist a stationary point for the forward rate. That

7N .
is, suppose there exists 777> 0 such that ,_%i’ii)_ =0, and let f = f(71;b). Then

m

7 =B, +5, exp(-—l +~§J-) and | (3.5)
%: l—g—’. ‘ : (3.6)

Thus, given £, and £, f, is determined by (3.5) if there exists a maximum or a
minimum f . Furthermore, since the second derivative of f(m;8) at 7 fulfills
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8 f (71, b) _ —ﬁz%eXp(—ﬁ)- | (3.7

an’ T

It follows that the sign of £, determines whether there is a maximum or a
minimum, a negative (positive) £, corresponds to a minimum (maximum).
Finally, given £, and £,, 7 is determined by 7 according to (3.6).

It follows that £, B, /5, and v are determined recursively in order by

(o), £(0), f, and A. The parameters are therefore rather intuitive, and it is
easy to find suitable starting values for the optimization procedure.

The Nelson and Siegel discount function is then given by
d(m;b) = exp[~s(m,b)m], (3.8)
where s(m;b) 1s given by (3.2).

The Nelson and Siegel forward rate is a very simple functional form. It can have
at most on¢ stationary point.
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4 Longstaff & Schwartz

Longstaff and Schwartz (1992) specify a model where there are two state
variables, the instantaneous spot rate # and the spot rates instantaneous rate of
variance V. The two state variable are assumed to follow mean-reverting
stochastic processes. Their model can be seen as a version with two state
variables of Cox, Ingersoll and Ross's (1985) model with one state variable.
Longstaff and Schwartz then derive an equilibrium discount function as a
solution to a partial differential equation. The solution is a very complex
functional form,

F (m;r,V) = A(n,)zr B(m)m exp[rcm +C (m)r + D(m)V], 4.1
where
- 2¢
Alm) = (6+ p)(exp(gm) -1 +2¢’ (4.2)
_ 2y
B(m) = (vt P ep(um -Di2y’ (4.3)
Clm) = ap{exp(wm) — 1)B(m) — By (exp(gn) — 1) A(m) ’ 4.
pp(B-a)
D(m) = wlexp(gm) — 1) A(m) — gp(exp(ym)—1)B(m) @)
py(f-a) ’ '

p=+2a+8, (4.6)
w=+/2f+V and | @.7

K=y(0+ @)+ m(v+ ). (4.8)

The parameters a,f, 7, 7,6 and v are functions of the parameters of the

stochastic processes for the state variables # and V' and the investors' risk
aversion.13 The parameters must be nonnegative, except v which may be of
either sign. The state variables and the parameters o and f must fulfill the

restrictions.

13 The parameter ¥ is the sum of a parameter, 4 , which is proportional to the market price of risk and
may be of eithier sign, and a nonnegative parameter, ¢, in the underlying diffusion process.
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a<K<ﬁor[i<—V—<a. (4.9)
r r

Considered as a functional form for the discount function as a function of the
time to maturity, the state variables are also regarded as parameters and the
parameter vector is hence &= (r,V, a, S, ¥, 1, &, v). The discount function is

hence given by
d(m, b)=Fm,1,V, 0, 8,7, 1,8, V), (4.10)
The spot rate can be found from (2.3) and is given by

ron+2yIn A(m) + 2 nin B(m) + C(m)r + D(m)lV
- .

(4.11)

s(m, by =—

The instantaneous forward rate can be derived according to (2.5). The spot and
forward rates have the properties

J(0;0) =5(0;0)=r and (4.12)
fle8) = o0;8) = o= 8)+ 1y~ v). (4.13)

Thus the spot and forward rates approach a constant for long maturities and
settlements.

The Longstaff and Schwartz functional form has some theoretical support, since
it 15 derived from an equilibrium model. The form is very flexible and the
forward rate can have both a maximum and a minimum.
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5 Data and Method

The data consists of daily data from November 23, 1992, (two business days
after the krona was floated on November 19, 1992) to June 21, 1993, 142 trade
dates altogether. Each trade date has observations of the so-called marginal
lending rate (the rate at which Sveriges Riksbank lends overnight reserves to
banks), the yields on the 11-12 outstanding Swedish Treasury Bills, and the
yields on the 6-7 outstanding Government Benchmark. Bonds (the longest
maturity was 10 years until January 1993, when a new 16-year bond was
issued). Arbitrage on the interbank overnight rate makes the interbank overnight
rate close to the marginal lending rate.

The parameters of the discount function were estimated for each trade date
separately. That is, the parameters were allowed to change between trade dates.
Three different cases, denoted NS1, NS2 and LS were estimated.

Case NS1 is the estimation of the Nelson and Siegel discount function when the
spot and forward rates for zero maturity/settlement, S(O) and f(0), are
restricted to be equal to the marginal lending rate. This restriction was imposed
to make the estimates comparable to the estimates with case LS, where this
restriction was also imposed (see below). In practice NS1 amounts to impose
the restriction that the sum of the parameters £, and £, equal the marginal
lending rate.

Case NS2 is the estimation of the Nelson and Siegel discount function without
the above restriction, in which case s{0) and f(0) may deviate from the

marginal lending rate.

Case LS is the estimation of Longstaff and Schwartz discount function. The
discount function then has 8 parameters, the two state variables » and ¥V and
the 6 parameters «,f, ¥, 17,6 and v. Since the two state variables can be
interpreted as the overnight rate and the volatility of the overnight rate,
respectively, they can in principle be estimated separately, or estimated jointly
with the other parameters. Because of convergence difficulties and indications
that the functional form is overparameterized, it is preferable to estimate the
state variable separately, in order to reduce the number of parameters to be
estimated jointly. We simply imposed the restriction that 7 equals the overnight
rate. As for the volatility I’ we tried to estimate it as a GARCH process for the
volatility of 1-week, I-month and 3-month Treasury bill rates.!? We could not
reject the hypothesis that the volatility was constant, however. Therefore,
throughout the sample we restricted ¥ to equal 0.0010 per year®, 10 basis

14 Since the marginal lending rate is held constant between the mstances at which it is changed by the
central bank, we thought that the volatility in the LS model better corresponds to the volatility of short
rates with maturities between 1 week and 3 montlhs.
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points per year® , which is about the average volatility for these rates.!3 Thus we
ended up estimating the remaining six parameters a,f, 7, 7,6 and v, taking
into account the nonnegativity constraints on all except v, and taking into
account the restriction (4.9).

The restriction that the estimated spot and forward rate should go through the
marginal lending or the overnight rate can be motivated by the fact that fitting
model prices to observed bond and bill prices gives a low weight to the fit of
short term vyields, since the prices are insensitive to the yields for short
maturities. The restriction can the be seen as a way of compensating for the low
weight in the fit given to the short yields. In our case the low weight is to some
extent compensated for because we have relatively many T-bills and relatively
few bonds in the Swedish sample. Another possibility would be to experiment
by imposing weights on the errors between model and observed prices that
decrease at different rates with the time to maturity. Parameters could then be
estimated by weighted Nonlinear Least Squares. 16

NS1 and NS2 have been estimated with Maximum Likelihood, including
heteroskedasticity-consistent ML estimates of the covariance matrix of the
parameters. For LS we usually encountered difficulties in the computation of the
covariance matrix for the parameters, probably due to flatness of the objective
function near the optimum. The reported LS estimates have then been estimated
with Nonlinear Least Squares, which here gives the same point estimates as ML.

As mentioned, the evaluation of the three different cases is then done in terms of
measures of fit and convergence properties.

15 Since interest rates have the dimension per year, the variance of an interest rate has the dimension
2 . . . . . 3
per year” , and ¥, the instantaneous rate of variance of an interest rate, has the dimension per year™ .

The volatility of the 1.week, 1-month and 3 month were between 8 and 12 basis points per year?'
16 See for instance Coleman, Fisher and Jbbotson (1992}, Langetieg and Smoot (1989) and Majnoni
{1993) for exampies of different weighting of the error terms.
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6 Results

We start by discussing two examples, the estimates for the trade dates
November 23, 1992, and April 16, 1993. Figures la-c shows actual yields to
maturity and estimated spot and forward rates for November 23, 1992,
estimated for NS1 (Nelson and Siegel with spot and forward rates for zero
maturity restricted to equal the marginal lending rate), NS2 (Nelson and Siegel
without the above restriction) and LS (Longstaff and Schwartz with the above
restriction). The squares are observed yields to maturity (percent per year,
annually compounded) for the marginal lending rate, 12 Treasury bills and 6
Government bonds. The dashed curves show the estimated spot rates, the solid
curves the estimated instantaneous forward rates, and the thin horizontal dashed
lines show the infinite-maturity spot and long rate (the horizontal asymptote
s(e0) and f (). The error bars in the NS diagrams are 95 percent confidence
intervals, computed with the delta method.!”

Figures 2a-¢ show, for NS1, NS2 and LS, observed T-bill and bond prices
(squares), estimated prices (dots) {error bars for NS1 and NS2 denote with 95
percent confidence intervals), and coupons (pluses), for the same trade date,
November 23, 1992,

Figures 3a-c and 4a-c show the same things for the trade date April 16, 1993.

Table I reports the parameter estimates and measures of the fit for the two
dates. Standard errors are included for NS1 and NS2. We see that the NS
parameters are fairly precisely estimated. The resulting confidence intervals for
the spot and forward rates are also rather narrow, as seen in the figures.

It is apparent from the figures that the NS and LS estimates are very similar.
Both spot and forward rates are close. For spot rates the largest differences
occur at the shortest end, and depend upon whether the NS estimation is
restricted to coincide with the marginal borrowing rate or not, For forward rates
the differences are evenly distributed across different settlements even though
the differences on November 23 are more distinct for longer maturities. For
April 16 the LS estimates are within the confidence interval of the NS estimates.
In Figures 2a-c the fit of the estimated prices is very good in all cases and
differences between the estimates are hardly visible. The Root Mean Squared
Price Errors (RMSPEs) in the three cases vary between 5 and 8 basis points
(hundredths of percent of the principal of the bond); the Mean Absolute Price
Errors (MAPEs) vary between 4 and 6 basis points. For the yields, the

17 Although the algebra is easiest with continuously compounded rates, the figures report annually
compounded rates, since yields on bonds with annual coupons usually are reported as annually
compotuided rates,
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RMSYEs vary between 9 and 20 basis points per year; the MAYEs vary
between 6 and 12 basis points per year.

The fit of LS is marginally better. In terms of RMSPE the fit of NS2 (without
the restriction) is naturally better than that of NS1 (with the restriction). The
difference is rather small though. The yield errors are similar, except for NS2 on
November 23. This is due to the errors for the shortest maturities, as is apparent
from Figure 1b. Whether or not the restriction is imposed in the NS estimation
indeed sometimes leads to large differences (sometimes 100 basis points per
year) in estimated spot and forward rates for the shortest maturities. This is not
difficult to understand, since minimizing price errors give little weight to short
yields, since prices are insensitive in short yields.

The differences between the estimates on November 23 are larger than typical,
whereas the differences between the estimates on April 16 are typical for the
rest of the sample.

Finally, we see in Table 1 that the convergence properties are rather different.
NS1 and NS2 converge with few iterations in short time. LS needs many more
iterations, and even more time, since each iteration takes longer.

Next we discuss summary results for the whole sample. Tarble 2 summarizes the
results for the fit for NSI, NS2 and LS, respectively. Table 3 reports summary
statistics for absolute differences in estimated spot and forward interest rates
between NS1 and LS. Table 4 summarizes the results for the parameter
estimates and the convergence properties.

Figures Sa-c show estimated spot rates for the whole sample period, for NS1,
NS2, and LS, and Figures 6a-c show corresponding forward rates.

With regard to the fit, in Table 2 we see that the (sample) mean of the MAPE
and RMSPE are highest for NS1, 8 and 10 basis points respectively, with
(sample) standard deviations 3 basis points and (sample) maxima 17 and 19
basis points. The mean of the MAPE and RMSPE are lower and similar for NS2
and LS, about 5 and 7.5 basis points, respectively, with standard deviations
between 1 and 3 basis points, and maxima between 9 and 16 basis points. The
mean of the MAYEs vary between 7 and 10 basis points per year, with standard
deviation between 3 and 5 basis points per year, lowest for LS. Altogether LS
appears to have a marginally better fit than NS1 but no better fit than NS2. The
maximum MAPEs does not exceed 20 basis points, and the maximum MAYE
does not exceed 40 basis points per year, which indicate a precision more than
sufficient for monetary policy analysis.

With regard to the absolute deviations in estimated spot and forward rates,
reported in Table 3, we see that the estimated spot rates are very similar. The
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means for the differences in the spot rates with 1-10 years to maturity are
between 2 and 5 basis points per year. The largest differences occur at the
shorter maturities. The maxima are about 20 basis points per year for maturities
longer than one year. For the forward rates, the average differences are slightly
larger, 7 to 11 basis points per year, and they seem to be uniformly distributed
over the maturity. The standard deviations are larger and the greater variability
can also be seen in the minimum and maximum columns. However, the maxima
do not exceed 40 basis points per year for maturities less than 10 years.

With regard to the parameter estimates, we see in Table 4 that for NS1 and NS2
the means of 3, 4 and f, are about 10, -0.4 and -6 percent per year (the
dimension of the betas). (The mean of f() exceeds the mean of 3, for NS
and NS2 simply because the first is annually and the second is continuously
compounded). The corresponding standard deviations are between 0.4 and 1.3
percent per year. The mean of 7 is about 1.4 years (the dimension of 7 with
standard deviation of about 0.3 year.

For the parameters of LS, the standard deviations are much larger relative to the
means. The estimates of the parameters are in that sense rather unstable. This
also shows in that similar estimated spot and forward curves have rather
different parameters. This indicates that the correlation between the estimates
may be high, and that the model may be overparameterized. This has not been
possible to verify by estimating the covariance matrix of the estimates for LS.
However, the circumstance that the covariance matrix is difficult to compute is
in itself an indication of overdetermination. However, the sample covariance
matrix of the LS estimates (not reported) does mot indicate high correlation
between the parameters.

There is of course no presumption that the parameters should be constant
during the sample. Therefore, the means reported in Table 4 are not estimates of
constant parameters, they only indicate the average magnitude of the
parameters. Nevertheless, if the sample means of the NS and LS parameters
would be interpreted as estimates of constant parameters over the sample, and if
each observation would be assumed to be independent, corresponding #-
statistics would indicate that all parameters are significantly different from zero.
(The standard errors are then the square root of the sample variance divided by
the number of observations less one.)

The (sample) mean of the asymptote f(c0) is about 100 basis points per year
lower for LS than for NS1 and NS2. The (sample) standard deviation is larger
for LS than for NS1 and NS2: 43 basis points per year for NS1 and NS2, and
almost 8 times larger for LS. This result arises since in a few cases the LS
estimation results in a very low estimate of f(e0). Consistent with this, the
medians of the estimates of f(ec) are similar, 10.65, 10.66 and 10.60 percent
per year for NS1, NS2 and LS, respectively.
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The parameter estimates of NS, including the asymptotic spot and forward rate
(), are much more stable than those of LS. This, together with their clear

interpretation, is certainly an advantage for NS.

With regard to the convergence properties, the convergence for both NS1 and
NS2 is relatively insensitive to starting values and occurs with relatively few
iterations. Each iteration is also quick, so in general convergence is fast and
easy. NS1 converges even more easily than NS2, on average 16 against 28
iterations, and maximum 38 iterations against 250. The average time for each
iteration is about 0.5 second on a 486 machine with 50 MHz clock frequency.
Using NS is from this point of view child's play.

In contrast, convergence in LS is extremely sensitive to starting values, and
frequently requires very many iterations. Many iterations are very slow. Local
minima abound. The average number of iterations is more than 500, sometimes
2000 iterations are required. The average time for each iteration is about 1.5
seconds, but frequently each iteration takes up to 8 seconds. In 8 cases
convergence failed. Compared to NS, convergence in LS is closeé to a
nightmare.

Obviously, in terms of convergence properties, the advantage of NS is huge.




23

7  Conclusions

We have estimated the Swedish term structure with two functional forms, the
simple form of Nelson and Siegel (1987) and the complex form of Longstaff and
Schwartz (1992). The functional forms have been compared with regard to their
performance in estimating spot and forward interest rates to be used in
monetary policy analysis, for instance as monetary policy indicators.

The result of our comparison is that LS has a marginally better fit, but that NS
is superior with regard to convergence properties, confidence interval
computation, parameter stability, and parameter interpretation. Furthermore, the
NS fit seems well above what is needed for monetary policy analysis. On
balance, our comparison thus favors NS.

The comparison is made on the Swedish term structure between November
1992 and June 1993. It appears that this term structure was not sufficiently
complicated to warrant the flexibility of LS. This does of course not exclude the
possibility that the term structure on other occasions and for other countries
could be too complicated for NS and therefore warrant LS or other more
flexible forms. Estimation of the term structure for Britain, France, Germany
and the United States for six selected dates between September 1992 and
September 1993 in Svensson (1993¢) indicates, however, that NS gives a
satisfactory fit also for these countries and this period.!8 Since the NS functional
form only allows for one interior maximum or minimum, one major determinant
of whether the NS gives a good fit or not should be whether the term structure
has more than one interior maximum or minimum. It remains an open question
how often that occurs.1?

In any case, a simple operational way to estimate the term structure is to start
with a simple form like NS and then judge whether the fit is sufficiently good. If
not, a more complex form should be tried to see if the fit improves.

18 The fit for Germany is sometimes not as good as for the other countries.

1t is of course possible to compare estimation with NS and LS in a Monte-Carlo study, However, the
result of the comparision will of course be heavily influnced by what functional form is used to generate
the data.
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Table 1. Estimation Results, November 23, 1992, and April 16,
1993

NS1 NS2 LS
(1) (2) &) (4) ) ©
Nov23 Aprl6é Nov23 Apr 16  Nov 23 Apr 16
Parameters
B (%lyry  10.24  10.29 10.32  10.30
(0.05) (0.03) (0.05) (0.04)
B (%lyr) 2.26 -0.54 1.58 -0.59
_ (0.24) (0.13)
B, (%/yr) -5.76  -6.16 -5.11 -6.08
(0.24) (0.06) (0.31) (0.19)
7 (yrI5) 0.87 1.53 1.04 1.55
(0.04) (0.04) 0.10) 0.07)
a 0.0061 0.0000
Jij 0.0102  0.0260
y 8.4211 0.0042
) 2.5153 1.0899
7 2.6390 1.4348
v ' 0.3001 0.3234
¥ (%/yr) 12.50 9.75
V @.p./yr?) 10.00 10.00

Measures of fit -

RMSPE (%) 0.0822 0.0673 0.0656 0.0669 0.0532 0.0620
MAPE (%) 0.0580 0.0516 0.0485 0.0515 0.0432 0.0474
RMSYE (%/yr) 0.1160 0.088% 0.2031 0.1003 0.0940 0.0971
MAYE (%/yr) 0.0756 0.0622 0.1155 0.0683 0.0630 0.0615

Convergence
Tterations 10 18 14 15 501 377
Time (minutes) 0.05 0.14 0.10 0.14 10.43 10.32

Note: NS1, NS2 and LS refer to Nelson and Siegel with restriction, without
restriction and Longstaff and Schwartz with restriction, respectively. Hete-
roskedasticity-consistent standard errors for the parameters in column (1)-(4)
are given in parentheses. RMSPE and MAPE denote the mean root square
price error and mean absolute price error, respectively, in percent of the
principal. RMSYE and MAYE are the analogs for yield errors, in percentage
points per year. Iterations and Time denote the number of iterations and the
time to convergence.
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Table 2. Summary of Fit

2a. NS1 (Nelson & Siegel with restriction)

Mean Std Dev Min Max Obs Miss
RMSPE 0.1016 0.0278 0.0406 0.1912 142
MAPE  0.0760 0.0256 0.0315 0.1751 142
RMSYE 0.1409 0.0722 0.0335 0.3646 142
MAYE 0.0972 0.0481 0.0253 0.2628 142

b el i

2b. NS2 (Nelson & Siegel without restriction)

Mean Std Dev Min Max Obs Miss

RMSPE 0.0751 0.0255 0.0202 10,1594 142 1
MAPE 0.0483 0.0121 0.0140 0.0870 142 1
RMSYE 0.1537 0.0986 0.0295 0.3928 142 1
MAYE 0.0813 0.0436 0.0240 0.2060 142 1

2c. LS (Longstaff & Schwartz with restriction)

Mean Std Dev Min Max Obs
RMSPE 0.0738 0.0312 0.0200 0.1584 142
MAPE 0.0508 0.0195 0.0155 0.1265 142
RMSYE 0.1143 0.0599 0.0262 0.3105 142
MAYE 0.0682 0.0327 0.0227 0.2103 142

DOOOOOOOE
n

Note: RMSPE and MAPE (in percent of the principal) denote the root mean
square price error and mean absolute price error, respectively, RMSYE and
MAYE (in percentage points per year) are the analogs for yield errors. Obs
refers to the total number of trade dates, and Miss refers to the number of
trade dates for which convergence failed.
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Table 3. Summary of Absolute Differences in Spot and Forward
Rates

3a. Spot Rates (NS1-LS)

Maturity Mean Std Dev Min Max Obs Miss
0.5 0.0973 0.0835  0.0008  0.3793 134
1 0.0485  0.0460  0.0003  0.2028 134
3 0.0414  0.0326  0.0004  0.1468 134
5 0.0192  0.016%  0.0003  0.0681 134
7 0.0221 0.0192  0.0000  0.0730 134
0 0.0187  0.0145  0.0002  0.0565 134

o0 OO 00 G Co OO

(oY

3b. Forward Rates (NS1-LS)

Settlement Mean Std Dev Min Max Obs Miss
0.5 0.0763 0.0673 0.0024 0.3080 134
1 0.0812 0.0969 0.0001 0.3901 134
3 0.0702 0.0642 0.0009 0.3401 134
5 0.1014 0.0787 0.0002 0.3133 134
7 0.0649 0.0521 0.0002 0.2527 134
0 0.1135 0.1501 0.0008 0.6452 134

o0 00 OO0 00 OO 00

—

Note: Summary statistics for absolute differences (in percentage points per
year) in estimated spot and forward rates. NSI and LS refer to Nelson and
Siegel with restriction and Longstaff and Schwartz with restriction,
respectively. Maturity and settlement is measured in years. Obs refers to the
number of trade dates for which convergence occured for both NS1 and LS,
Miss refers to the number of trade dates for which convergence failed for
either NS1 or LS.
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4. Summary of Parameter Estimates and Convergence

d4a. NS1 (Nelson & Siegel with restriction)

. Mean Std Dev Min Max Obs Miss
By (%olyr) 10.11 0.39 9.43 10.79 142
B, (%Blyr) -5.92 0.91 -7.23 -3.02 142
T (yrs) 1.31 0.30  0.56 1.94 142
7o) (®/yr) 10.64 0.43  9.89  11.40 142
Iterations 16.05 4.51 8.00 34.00 142

[ Y W S W U G 'y

4b. NS2 (Nelson & Siegel without restriction)

Mean Std Dev Min Max Obs Miss
By (%lyr) 10.16  0.39 9.46 11.22 142
58 (%/yr) -0.42 1.00 -1.61 3.59 142
By (Blyr) -5.47 1,26 -8.13 -3.19 142
T (yrs) 1.46  0.26 0.48 2.01 142
fleo) (%/yr) 10.70° 0.43  9.92  11.87 142
Iterations 27.70  22.65 13.00 205.00 142

Y g S Y

dc. LS (Longstaff & Schwartz with restriction)
Mean Std Dev Min Max Obs Miss

0.01 002 000 0.17 134
0.05 0.05 0.00 0.22 134
2.81  5.64 0.00 27.10 134
1.43  1.21 000 5.56 134
1.67 3.07 0.00 13.76 134
0.53 1.04 -0.94 3.83 134
floo) (%/yr) 9.60 320 0.00 14.91 134

Iterations  538.34 436.60 32.00 2458.00 134

TN LR TR
SO OO 00 OO 00 00 0D 0

Note: Obs refers to the total number of trade dates, and Miss refers to the
number of trade dates for which convergence failed.




%/yr, annually compounded

l4r
13}

28

Figure la. NS1 (Nelson and Siegel, w/ restriction), Nov 23, 1992
95% confidence interval
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Figure 1b. N3S2 (Ne}son and Siegel, w/o restriction), Nov 23, 1992
95% confidence interval
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Figure lc. LS (Longstaff and Schwartz, w/ restriction), Nov 23, 1992
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Figure 2a. NS1, Actual and Estimated Bond Prices, Nov 23, 1992
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Figure 2b. NSZ, Actual and Estimated Bond Prices, Nov 23, 1992
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Figure 2c¢. LS, Actual and Estimated Bond Prices, Nov 23, 1992
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Figure 3a. NS1 (Nelson and Siegel, w/ restriction), April 18, 1993
95% confidence interval
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Figure 3b. NS2 (Nelson and Siegel, w/o restriction), April 18, 1993
95% confidence interval
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Figure 3c. LS (Longstaff and Schwartz, w/ restriction), April 16, 1993
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Figure 4a. NS1, Actual and Estimated Bond Prices, April 16, 1993
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Figure 4b. NS2, Actual and Estimated Bond Prices, April 18, 1993
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Figure Bbh. NS2, Spot Rates Figure 5c. LS, Spot Rates

Figure 5a. NS1, Spot Rates
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Figure 6c¢. LS, Forward Rates

Figure 6b. NSZ2, Forward Rates

Figure 6a. NS1, Forward Rates
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